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Abstract

People often use multiple platforms to fulfill their dif-
ferent information needs. With the ultimate goal of serv-
ing people intelligently, a fundamental way is to get
comprehensive understanding about user needs. How
to organically integrate and bridge cross-platform in-
formation in a human-centric way is important. Exist-
ing transfer learning assumes either fully-overlapped
or non-overlapped among the users. However, the real
case is the users of different platforms are partially
overlapped. The number of overlapped users is often
small and the explicitly known overlapped users is
even less due to the lacking of unified ID for a user
across different platforms. In this paper, we propose a
novel semi-supervised transfer learning method to ad-
dress the problem of cross-platform behavior predic-
tion, called XPTRANS. To alleviate the sparsity issue,
it fully exploits the small number of overlapped crowds
to optimally bridge a user’s behaviors in different plat-
forms. Extensive experiments across two real social net-
works show that XPTRANS significantly outperforms
the state-of-the-art. We demonstrate that by fully ex-
ploiting 26% overlapped users, XPTRANS can predict
the behaviors of non-overlapped users with the same
accuracy as overlapped users, which means the small
overlapped crowds can successfully bridge the informa-
tion across different platforms.

Introduction
An information platform acts as an information source to in-
form people about something or provide knowledge about
it. The diversity of people’s information needs intrinsically
determine the multiplicity of platforms that people engage
in. It is common for a user to watch videos in YouTube,
browse images in Flickr and share social information in
Facebook. The contents that the user interact with across dif-
ferent platforms often have explicit/implicit correlations, or
correspond to different aspects of his/her needs. With the
ultimate goal of serving people intelligently, a fundamen-
tal way is to get comprehensive understanding about user
needs. However, the current information platforms are either
isolated or their correlations are significantly undermined.
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How to organically integrate and bridge cross-platform in-
formation in a human-centric way is of paramount signif-
icance for better satisfying users’ information seeking, or
more broadly, maximizing the potential value of the big data
isolated in different platforms. More specifically, we are in-
terested in the problem of cross-platform behavioral predic-
tion: how to predict user behaviors in one platform (e.g.,
e-commerce, health care) based on user behaviors in other
platforms (e.g., social media, wearable sensor)?

A paucity of research works have investigated cross-
domain behavior prediction problem based on transfer learn-
ing. CODEBOOK (Li, Yang, and Xue 2009a) assumes the
auxiliary platform and target platform without overlapped
users, Netflix and MovieLens, share the same user-item
rating patterns. TPCF (Jing et al. 2014) integrates three
types of data from auxiliary domains including (1) data with
aligned users, (2) data with aligned items, and (3) homoge-
neous data that have the same rating scale as the target do-
main, but without the knowledge from the correspondences
of users and items. The previous works assume either a
fully-overlapped shape (Zhong, Fan, and Yang 2014) or a
non-overlapped shape (Li, Yang, and Xue 2009a) among
the users across different platforms or domains. However,
the real case is in the middle, where there are some com-
mon users (partially overlapped users) across the different
platforms. The number of overlapped users is often small,
and the number of explicitly known overlapped users is even
less, due to the lacking of unified ID for a user across differ-
ent platforms. Thus the essential problem in cross-platform
behavioral prediction is how to fully exploit the small num-
ber of overlapped crowds to optimally bridge a user’s behav-
iors in different platforms. To this end, we entail several key
challenges as follow:
• Sparsity: Users often adopt only a small portion of items

in one platform. On average, a Douban user generates rat-
ings for 60 books, 200 movies, and 100 songs from 50,000
items. A Weibo user has 4.5 tags from 10,000 and tweets
about 5,000 entities from 100,000.

• Heterogeneity: Behavioral data sets are heterogeneous
with different types of items and links. The weights of
links can be integer values, non-negative integers, or
floats: We have ratings from Douban, “Like” number from
social media, review emoticons from e-commerce, run-
ning distance and blood pressure from wearable devices.
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Figure 1: Exploiting 26% of active overlapped users be-
tween Weibo and Douban, XPTRANS can predict the movie
rating behaviors of non-overlapped users with the same ac-
curacy as overlapped users.

• Different representations: Rating, tweeting and purchas-
ing behaviors should have different patterns. Users’ be-
havioral patterns cannot be represented in the same la-
tent space, which is one of the points that make our work
unique from traditional methods.

• Partially overlapped crowds: The natural bridge across
platforms is overlapped users whose interests, tastes and
personality are consistent. How to make full use of par-
tially overlapped users’ correspondences is still an open
and challenging problem.
To address the above challenges, we propose a novel semi-

supervised transfer learning method, called XPTRANS,
based on matrix factorization that has been well adopted to
represent heterogeneous data. First, XPTRANS jointly opti-
mizes users’ latent features on different platforms to allevi-
ate the sparsity issue. Second, the latent space for user rep-
resentation in one platform should be different from another.
For different platforms, XPTRANS allows different settings
for latent dimensions. From data study, we find that the sim-
ilarities between overlapped users are consistent across dif-
ferent platforms. Thus, our method uses constraints of pair-
wise similarity to bring better flexibility for representations.

Figure 1 showcases the insights from the experiments
on real data: XPTRANS predicts Douban users’ movie rat-
ing behaviors by transferring tweet data from Sina Weibo.
Exploiting more active overlapped user or more percent-
ages of overlapping behavioral data, the prediction error
consistently decreases and accuracy increases. We demon-
strate that by fully exploiting 26% overlapped users, XP-
TRANS can predict the behaviors of non-overlapped users
(who generated few records on one platform) with the same
accuracy as the predictions on overlapped users (who gen-
erated more records on two platforms), which means the
small overlapped crowds can successfully bridge the infor-
mation across different platforms. Therefore, the little per-
centage of overlapped crowds is of much significance for
cross-platform behavioral prediction.

Table 1: Data statistics: The overlapping population between
Douban and Sina Weibo is 32,868.

#User #Item #Link
Book 30,536 212,835 1,877,069
Movie 40,246 64,090 8,087,364
Music 33,938 286,464 4,141,708
Social tag 2,721,365 10,176 12,328,272
Tweet entity 25,586 113,591 141,908,323

Our contributions in this paper are as follows:
• We propose Cross-Platform Behavior Prediction as an

open, challenging and promising problem for both the in-
dustry and research communities.

• We analyze users’ behaviors across two real social net-
working platforms, which provides insights on exploiting
overlapped crowds to alleviate sparsity issue.

• We develop a semi-supervised transfer learning method
XPTRANS to predict user behaviors across platforms. Ex-
tensive experiments show that XPTRANS significantly
outperforms state-of-the-art transfer learning methods.
We demonstrate that (1) with the overlapping population
increasing, prediction performances on non-overlapped
users’ behavior consistently improve, and (2) a little per-
centage of overlapped crowd is significant for cross-
platform behavioral prediction.

Data and Preliminary Study
Data sets
We study two social networking data sets of overlapped
users, Douban and Sina Weibo, to demonstrate the challenge
of sparsity in behavior prediction problem. We have three
types of items in Douban: book, movie and music; and we
have two types in Weibo: social tag and tweet entity. We
identified the overlapped users with their log-in accounts.
Table 1 lists the data statistics. We observe that the sparsity
of the five user-item matrices is serious but of different de-
grees: 95% in entity domain, 99.7% in movie domain, and
99.96-99.97% in book, music and tag domains.

Preliminary Study
Our idea of cross-platform behavioral modeling is to con-
nect behavioral data from different platforms with over-
lapped crowds. We study the data sets to demonstrate the
idea by answering the following two questions.

Q1: Do overlapped users have impacts on connecting
latent spaces of different platforms?

A1: Yes! Given two platforms, if we use a user-based vec-
tor to represent an item on a platform, and on the other plat-
form, we find one item that has a big value of user-based
similarity with it, we can connect them. However, when
there is NO overlapped user, the similarity is zero; with the
percentage of overlapped users increasing, we may find a
better similar item (of the maximum value of user-based
similarity). For every two domains, Figure 2 plots curves of
the percentage vs the similarity. We observe that



Percentage of Overlapping Users

A
vg

. M
ax

. U
se

r-
B

a
se

d 
S

im
ila

ri
ty

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06
(Movie, Entity)
(Movie, Tag)
(Music, Entity)
(Book, Entity)
(Book, Tag)
(Music, Tag)
(Movie,Music)
(Book,Movie)
(Book,Music)
(Tag,Entity)

Figure 2: Overlapped users have significant impacts on con-
necting two platforms: (1) Cross-platform user-based sim-
ilarity is smaller than within-platform similarity. (2) With
more overlapped users, the similarity consistently increases.
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Figure 3: High coverage by overlapping users: they adopt
>80% items in every domain, though only 1.1% users have
accounts on both social networks.

• When two platforms have more overlapping users, the
value of cross-platform user-based similarity consistently
increases (solid lines).

• When few overlapped crowds exist, one more will make
a big difference: The similarity increases faster when the
percentage of overlapped users is between 0 to 10%.

• Cross-platform transfer is more difficult than with-
platform cross-domain transfer. Cross-platform user-
based similarity is smaller than within-platform similarity
(dotted lines).
Q2: Can a small percentage of overlapped users cover

most items on every platform?
A2: Yes! Figure 3 is a bar plot of the coverage of users

and items in each domain on the two platforms. Though the
percentage of overlapped users over the total population is
very small, they adopt more than 80% items in every do-
main. Surprisingly, only 1.1% of the users who adopt at least
one tag on Weibo have Douban accounts, they use as many

as 85.9% of the tag set.

Cross-Platform Behavior Prediction

We first give the definition of cross-platform behavior pre-
diction problem and then propose a novel semi-supervised
transfer learning method and a scalable algorithm.

Notations and Problem Definition

First we introduce some symbols and notations that will
be used through out the paper. Suppose we have two plat-
forms P and Q. Platform P (Q) has mP (mQ) users and
nP (nQ) items. We denote by rP and rQ the number of
user/item clusters, i.e., the scale of latent spaces. We have
user-item (rating) matrix R(P ) ∈ RmP×nP and R(Q) ∈
RmQ×nQ . The corresponding observation indicator matri-
ces are W(P ) and W(Q). Then we have user and item clus-
tering matrices U(P ) ∈ RmP×rP and U(Q) ∈ RmQ×rQ

and V(P ) ∈ RrP×nP , V(Q) ∈ RrQ×nQ . We denote by
W(P,Q) ∈ RmP×mQ the user indicating matrix of the over-
lapped users where the entries are filled with either 1 or 0,
depending on the availability. Now we can provide the prob-
lem definition as follows.

Problem 1 (Cross-platform behavior prediction (XPBP))
Given a target platform P and an auxiliary platform Q, the
user-item matrices R(P ) and R(Q), the observation binary
weights W(P ) and W(Q), the overlapping user indicator
matrix W(P,Q), find the user clustering matrices U(P ) and
U(Q), the item clustering matrices V(P ) and V(Q), predict
missing values in R(P ).

XPTrans: Semi-supervised Transfer Learning

To solve the above problem, we consider joint nonnegative
matrix factorization (NMF) of (1) the term of behavioral
data on the target platform P , (2) the term of behaviors on
the auxiliary platform Q, and (3) the term that uses overlap-
ping user indicator W(P,Q) to supervise user-based similar-
ity across platforms. This leads to the following optimization
problem, which is to minimize

J =
∑

i,j W
(P )
i,j

(
R

(P )
i,j −

∑
r U

(P )
i,r V

(P )
r,j

)2
+λ
∑

i,j W
(Q)
i,j

(
R

(Q)
i,j −

∑
r U

(Q)
i,r V

(Q)
r,j

)2
+µ
∑

i1,j1,i2,j2
W

(P,Q)
i1,j1

W
(P,Q)
i2,j2

(
A

(P )
i1,i2
−A(Q)

j1,j2

)2
, (1)

where we denote byA(P )
i1,i2

the user-based similarity between

ui1 and ui2 on platform P , and denote by A(Q)
j1,j2

the user
similarity between uj1 and uj2 on platform Q:

A
(P )
i1,i2

=

rP∑
r=1

U
(P )
i1,r

U
(P )
i2,r

, A
(Q)
j1,j2

=

rQ∑
r=1

U
(Q)
j1,r

U
(Q)
j2,r

.



Eq. (1) can be represented into NMF. We are minimizing
J = ||W(P ) � (R(P ) −U(P )V(P ))||2F

+λ||W(Q) � (R(Q) −U(Q)V(Q))||2F
+µ(||W(P,Q)1(Q)W(P,Q)> �U(P )U(P )> �U(P )U(P )>||
+||W(P,Q)>1(P )W(P,Q) �U(Q)U(Q)> �U(Q)U(Q)>||
−2||U(P )U(P )>W(P,Q)U(Q)U(Q)>W(P,Q)>||) (2)

s.t. U(P ) > 0,V(P ) > 0,U(Q) > 0,V(Q) > 0,

where 1(P ) ∈ RmP×mP and 1(Q) ∈ RmQ×mQ are filled
with all 1s. Moreover, λ is a trade-off parameter determining
the importance of knowledge transfer from auxiliary plat-
form Q to target platform P , µ is a parameter determining
the importance of the supervised term, � is the Hadamard
product, || · || is the 1-norm as a vector norm and || · ||F is
the Frobenius norm. We useL2 norms of U(P ), V(P ), U(Q),
and V(Q) as regularization terms but omit them for space.

As in the standard NMF (Lee, Yoo, and Choi 2010),
the gradients of U(P ), U(Q), V(P ) and V(Q) to minimize
Eq. (2) can be derived easily:

∂J
∂U(P ) = −2[W(P ) � (R(P ) −U(P )V(P ))]V(P )>

+4µ[W(P,Q)1(Q)W(P,Q)> �U(P )U(P )>]U(P )

−4µ[W(P,Q)U(Q)U(Q)>W(P,Q)>]U(P ), (3)
∂J

∂U(Q) = −2λ[W(Q) � (R(Q) −U(Q)V(Q))]V(Q)>

+4µ[W(P,Q)>1(P )W(P,Q) �U(Q)U(Q)>]U(Q)

−4µ[W(P,Q)>U(P )U(P )>W(P,Q)]U(Q), (4)
∂J

∂V(P ) = −2U(P )>[W(P ) � (R(P ) −U(P )V(P ))], (5)
∂J

∂V(Q) = −2U(Q)>[W(Q) � (R(Q) −U(Q)V(Q))]. (6)
A general cross-platform representation: Now we ex-

tend XPTRANS into a general case. We denote by K the
number of platforms and by R(k) ∈ Rmk×nk the user-item
matrix on the kth platform, where mk (nk) is the number
of users (items). Then we have user and item clustering ma-
trices U(k) ∈ Rmk×rk , V(k) ∈ Rrk×nk , and we have ob-
servation binary matrices W(k) ∈ Rmk×nk . We denote by
W(k,k′) ∈ Rmk×mk′ the partially overlapping user indica-
tor matrix between the k-th and k′-th platforms. Now the
objective function is to minimize

J =
∑

k λk
∑

i,j W
(k)
i,j

(
R

(k)
i,j −

∑
r U

(k)
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(k)
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)2
(7)

+
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where we have

A
(k)
i1,i2

=
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r=1

U
(k)
i1,r

U
(k)
i2,r

; A
(k′)
j1,j2

=

rk′∑
r=1

U
(k′)
j1,r

U
(k′)
j2,r

,

and λk is the importance of user behavioral data from the k-
th platform, and µk,k′ is the similarity of overlapping users’
behavioral patterns on the k-th and k′-th platforms.

Derivatives of the above error function with respect to
U(k) and V(k) are given by

∂J
∂U(k) = −2λk[W(k) � (R(k) −U(k)V(k))]V(k)>

+4
∑

k′ µk,k′ [W(k,k′)1(k′)W(k,k′)> �U(k)U(k)>]U(k)

−4
∑

k′ µk,k′ [W(k,k′)U(k′)U(k′)>W(k,k′)>]U(k) (8)
∂J

∂V(k) = −2λkU(k)>[W(k) � (R(k) −U(k)V(k))], (9)

Algorithm 1 XPTRANS: Semi-supervised transfer learning
for cross-platform behavior prediction

Require: user-item matrix R(k), observation binary matrix
W(k), overlapping user indicator W(k,k′)

1: Initialize U(k) and V(k).
2: Repeat the following steps until convergence: (a) fixing

V(k), updating U(k) by rule in Eq. (8); (b) fixing U(k),
updating V(k) by rule in Eq. (9).

3: return U(k) and V(k), for k = 1, ...,K

where 1(k′) ∈ Rmk′×rk′ is filled with all 1s.
XPTRANS algorithm and complexity: The basic al-

gorithm procedure for solving Eq. (7) is shown in Algo-
rithm 1. The computational complexity of XPTRANS is
O(
∑

kmknkrk+
∑

k,k′(mkmk′(mk+mk′+rk′)+m2
k(rk+

rk′))). Since nk,mk,mk′ � rk, r
′
k (constant), we know it

reduces down to cubic time O(m(m2+n)).

Experiments
In this section we will present the empirical study on the
XPTRANS method for cross-platform behavior prediction.

Experimental Settings
Data sets: User behaviors (e.g., ratings, adoptions) are of-
ten sparse on every platform (see Table 1). We use the Sina
Weibo (tag, tweet entity) and Douban (book, movie, mu-
sic) data sets in our experiments. Our extensive experiments
have been conducted on 12 (target,auxiliary)-platform as-
signments to test the prediction performance. For example,
• From tweet entity to movie: Can we transfer user interests

(e.g., political topics) from Weibo network to predict what
movie (e.g., House of Cards) the user really likes?

• From book to tag: Can we predict users’ social tags (e.g.,
science freak) with their tastes on Douban books (e.g., A
Brief History of Time)?
Algorithms: We implement the following two variants of

our proposed method and baseline methods:
• XPTRANS: It uses overlapping crowds as supervisory

knowledge. The function is shown in Eq. (2).
• CMF (Collective Matrix Factorization with regulariza-

tion) (Singh and Gordon 2008): It does not transfer
knowledge from the auxiliary platform.

• CBT (Codebook Transfer) (Li, Yang, and Xue 2009a):
It transfers more useful knowledge through cluster-level
user-item rating patterns, called “codebook”. However, it
does not use the supervisory overlapping part.

• XPTRANS-ALIGN: It is a variant of our cross-platform
method with too strong assumption. It assumes that the
behavioral patterns have the same representation across
platforms (r = rP = rQ). So, the latent features of over-
lapping users can be aligned in the same space. This ob-
ject function replaces the 3rd term in Eq. (2) with

µ
∑

i,j W
(P,Q)
i,j

∑
r

(
U

(P )
i,r − U

(Q)
j,r

)2
. (10)

Training, testing and auxiliary parameters: We run
hold-out experiments to test the performance of walking



Table 2: XPTRANS outperforms the state-of-the-art methods in predicting cross-platform behaviors.
Q: Weibo tweet entity→ P : Douban movie Q: Douban book→ P : Weibo tag
RMSE MAP RMSE MAP
P ∩Q P \Q P ∩Q P \Q P ∩Q P \Q P ∩Q P \Q

CMF (Singh and Gordon 2008) 1.379 1.439 0.651 0.640 0.418 0.429 0.477 0.464
CBT (Li, Yang, and Xue 2009a) 0.767 1.290 0.808 0.676 0.261 0.419 0.675 0.477
XPTRANS-ALIGN 0.757 1.164 0.811 0.702 0.256 0.411 0.681 0.487
XPTRANS 0.715 0.722 0.821 0.820 0.236 0.374 0.705 0.533
XPTRANS vs. CBT ↓6.8% ↓44.0% ↑1.62% ↑21.3% ↓9.6% ↓10.8% ↑4.5% ↑11.7%
XPTRANS vs. XPTRANS-ALIGN ↓5.5% ↓38.0% ↑1.3% ↑16.8% ↓8.0% ↓9.0% ↑3.6% ↑9.4%

across platforms. We set the percentage of training behav-
ioral entries in R(P ) by non-overlapping users as 70%, the
percentage of auxiliary behavioral entries in R(Q) by non-
overlapping users as 70%, and the other two parameters:
• α(P∩Q)

R ∈ [0, 100%]: the percentage of overlapping be-
havioral entries in R(P ) and R(Q);

• α(P∩Q)
U ∈ [0, 100%]: the percentage of the most active

overlapping users in R(P ) and R(Q).
We conduct experiments for 10 times and report the average
performance.

Evaluation: The results will be evaluated with two cri-
teria: Root Mean Square Error (RMSE) and Mean Average
Precision (MAP). We test prediction performance on two
tasks: hold-out behaviors by overlapping users (P ∩Q) and
by non-overlapping users (P \Q). The performance is better
if we spot smaller RMSE and higher MAP.

Experimental Results
Cross-platform prediction performance: Table 2 shows
the RMSE and MAP of our proposed XPTRANS and base-
line methods. Typically, we show the performances of trans-
ferring Weibo tweet entity to Douban movie and Douban
book to Weibo social tag. Our XPTRANS improves the
performance of predicting non-overlapping users’ behav-
ior. In predicting Douban movie ratings, XPTRANS reduces
the RMSE by 44% over the state-of-the-arts and 38% over
XPTRANS-ALIGN; it increases the MAP by 21% over CBT
and 16.8% over XPTRANS-ALIGN. In predicting Weibo
social tag, XPTRANS has 9.4% improvement. This result
demonstrates the positive effects of the auxiliary knowledge
and supervisory information. The assumption on user repre-
sentations by CBT and XPTRANS-ALIGN are too strong:
for a single user, the representations are the same in differ-
ent platforms. The term of pair-wise similarity in XPTRANS
provides more flexibility on the user representations. For new
comer recommendation, if we focus on users whose movie-
rating behaviors have been completely hidden, RMSE scores
of CBT and XPTRANS are 1.737 and 1.569 (smaller is bet-
ter). XPTRANS can jointly optimize (1) the users latent rep-
resentations in U (Q) using R(Q) and (2) representations in
U (P ) using overlapped user similarity constraints, for a new
comer in P who has behaviors in Q.

Figure 4 reports the RMSE decreasing percentage of ev-
ery pair of target-auxiliary platforms. We observe that

• Consistently as in Table 2, the improvement on predict-
ing non-overlapping users’ behavior is higher than the
improvement on predicting overlapping users’ behavior.
The sparsity problem of the non-overlapping users is more
challenging and XPTRANS can alleviate the problem.

• Transferring Weibo’s behavioral data to predict interest-
driven item adoptions on Douban can reduce the RMSE
by 38.0%, indicating that it is effective to incorporate
knowledge from social platforms for content sharing.

• Using auxiliary book/movie/music data to predict social
tags can reduce the RMSE by 9.0%, while the RMSE de-
crease of predicting tweet entity is small. Predicting tweet
entity adoptions is such a difficult task that the perfor-
mance cannot benefit much from cross-platform transfer.
The important role of overlapping users: When does

the prediction on non-overlapping users’ behaviors with
cross-platform transfer achieve the same performance as the
prediction on overlapping behaviors without the transfer?
From Figure 1 we can spot that in transferring tweet en-
tity data to predict movie, more overlapping users can bet-
ter improve the performance than overlapping behaviors:
using α

(P∩Q)
U =26% of active overlapping users and using

α
(P∩Q)
R =60% of overlapping behaviors can make the per-

formance of predicting non-overlapping users’ behavior to
reach the same RMSE and MAP as that of predicting over-
lapping users’ behavior.

Related Works
Cross-Domain Collaborative Filtering
Adomavicius et al. surveyed the field of recommender sys-
tems, described limitations and discussed possible exten-
sions (Adomavicius and Tuzhilin 2005). The next genera-
tion of recommender systems should learn across multiple
data sources (Jiang et al. 2012)(Gao et al. 2013)(Montañez,
White, and Huang 2014)(Jiang et al. 2015). Shi et al. pro-
posed a generalized tag-induced CDCF approach to enjoy
the benefit of using social tags as representatives of explicit
links between domains (Shi, Larson, and Hanjalic 2011).
They reviewed two categories of collaborative filtering be-
yond the user-item matrix: rich side information and interac-
tion information (Shi, Larson, and Hanjalic 2014). However,
for cross-platform scenarios, a user does not always perform
on every platfrom. The number of overlapping users be-
tween the two million-user platforms are usually very small
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Figure 4: XPTRANS (P→Q) significantly improves the per-
formance in target platform Q via knowledge transfer from
auxiliary platform P , especially for non-overlapping users.

due to data access and user matching techniques. Cross-
platform behavior modeling is still an open and challenging
problem.

Transfer Learning for Behavior Prediction
Pan et al. surveyed the categories of transfer learning, with
many works having attempted to further enrich the field (Pan
and Yang 2010). Li et al. proposed a generative model to
learn between multiple rating matrices. Li et al. proposed
CODEBOOK (Li, Yang, and Xue 2009a) to transfer knowl-
edge through a latent space, which assumed the auxiliary
domain (Netflix) and target domain (MovieLens) shared the
same user-item rating patterns(Li, Yang, and Xue 2009b).
Yang et al. proposed heterogeneous transfer learning across
user-tag and user-image networks (Yang et al. 2009). Chen
et al. used tensor factorization method to fuse user, tag, and
book/movie information in a single model (Chen, Hsu, and
Lee 2013). Tan et al. proposed transfer learning with mul-
tiple views and multiple sources (Tan et al. 2014b). Lin
et al. assumes that users from homogeneous data (two do-
mains of the same rating scale) share the same prior pa-
rameters in their generative model (Jing et al. 2014). How-
ever, users have different types of behaviors and form dif-
ferent behavioral patterns on different platforms, which de-
mands different representations (Pan et al. 2011)(Moreno et

al. 2012)(Tan et al. 2014a). Our work aims at cross-platform
data where the bridge is the overlapping population of users.
The above transfer learning methods either align all users in
the same space or assume that the two domains are indepen-
dent. We have pointed out the significance of supervision of
overlapping users for cross-platform study.

Semi-Supervised NMF
Recently, a number of approaches have studied how to con-
duct semi-supervised learning using non-negative matrix
factorization (Koren 2008)(Singh and Gordon 2008)(Jiang
et al. 2014)(Al-Shedivat et al. 2014). For multi-label learn-
ing, Liu et al. proposed constrained NMF to minimize
the difference between input patterns and class member-
ships(Liu, Jin, and Yang 2006). For clustering problems, Li
et al. used NMF to integrate various forms of background
knowledge from distributed data sources into clustering (Li,
Ding, and Jordan 2007). Wang et al. co-clustered data sets of
different types with constraints in their matrix factorizations
(Wang, Li, and Zhang 2008). Lee et al. conducted both docu-
ment clustering and EEG classification tasks in the presented
semi-supervised NMF method (Lee, Yoo, and Choi 2010).
Inspired by the above methods and their practice in different
applications, we consider using the overlapping population
across platforms as supervisory information.

Conclusion
In this paper, we proposed cross-platform behavior predic-
tion problem to alleviate sparsity with behavioral data from
auxiliary platforms. We discovered that overlapped crowds
had significant impacts on knowledge transfer across plat-
forms. In response, we developed semi-supervised transfer
learning method XPTRANS to exploit how the small num-
ber of the overlapped crowds can bridge user’s behaviors in
different platforms. Extensive experiments on two real social
networks show that XPTRANS significantly outperforms the
baseline transfer learning methods.
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