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Abstract—Exponential growth of information generated by online social networks demands effective and scalable recommender
systems to give useful results. Traditional techniques become unqualified because they ignore social relation data; existing social
recommendation approaches consider social network structure, but social contextual information has not been fully considered. It is
significant and challenging to fuse social contextual factors which are derived from users’ motivation of social behaviors into social
recommendation. In this paper, we investigate the social recommendation problem on the basis of psychology and sociology studies,
which exhibit two important factors: individual preference and interpersonal influence. We first present the particular importance of
these two factors in online behavior prediction. Then we propose a novel probabilistic matrix factorization method to fuse them in
latent space. We further provide a scalable algorithm which can incrementally process the data. We conduct experiments on both
Facebook style bidirectional and Twitter style unidirectional social network datasets. The empirical results and analysis on these two
large datasets demonstrate that our method significantly outperforms the existing approaches.

Index Terms—Social Recommendation, Individual Preference, Interpersonal Influence, Matrix Factorization
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1 INTRODUCTION

Social network users generate large volumes of informa-
tion, which makes it necessary to exploit highly accurate
recommender systems to assist them in finding useful
results. Traditional collaborative filtering techniques do
not consider social relations, making them difficult to
provide accurate recommendations [1]. Recently, Ma et
al. [2][3] proposed a framework of social recommender
systems that made use of social relation data, from which
friendship information is exploited to regularize the user
latent space. However, in this work, the social contextual
information was not fully considered. It is significant and
challenging to discover social contextual factors from the
contextual information and integrate them into a unified
recommendation framework.

Fig.1 shows the entire social contextual information
which can be derived from links on social networks.
Users typically examine items’ content and information
on senders. For example, in Twitter, when a user receives
a tweet that is posted by one of his friends (the sender),
he usually reads its content to see whether the item is
interesting. We can get this knowledge from item content
and user-item interaction information. In this case, the
user cares about who the sender is and whether the
sender is a close friend or authoritative. If more than
one friend sends him the same tweet, he may read it
more attentively. This knowledge can be learnt from
social relation and user-user interaction information. Both
of these aspects are important for the user to decide
whether to adopt (e.g., share, retweet) the item. The
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Fig. 1. A novel framework for social recommendation:
it understands mechanism of user behavior on social
networks, fully utilizes contextual information, and sum-
marizes the knowledge as two social contextual factors.

above can be summarized as two contextual factors: (1)
individual preference and (2) interpersonal influence.

Besides the experiential assumptions, psychological
and sociological studies have proved that individual
preference and interpersonal influence affect users’ deci-
sions on information adoption. In Bond’s work [4], it is
indicated that individuals are to some extent influenced
by others’ behaviors, rather than making decisions in-
dependently (i.e. purely preference driven). In [5], web-
based experiments are designed for music adoption pre-
diction. This work demonstrates that the introduction of
interpersonal influence into the preference-driven deci-
sion process (as is the case in real social networks) makes
user behaviors more complicated and thus increases the
unpredictability of the item adoption. Therefore, only
when individual preference and interpersonal influence
are properly incorporated into recommendation, can the
uncertainty be reduced and quality improved.

To address this problem, we propose a social con-
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Fig. 2. Our social contextual recommendation model based on a probabilistic matrix factorization method: it
incorporates interpersonal influence and individual preference. Sender is the user who generates an item (e.g., post,
retweet, etc.). Receiver connects to the sender and thus receives the item.

textual recommendation framework as shown in Fig.2.
This framework is based on a probabilistic matrix fac-
torization method to incorporate individual preference
and interpersonal influence to improve the accuracy of
social recommendation. More specifically, we factorize
the user-item interaction matrix into two intermediated
latent matrices including user-item influence matrix and
user-item preference matrix, which are generated from
three objective latent matrices: user latent feature ma-
trix, item latent feature matrix, and user-user influence
matrix. Moreover, as we can partially observe individual
preference and interpersonal influence based on previ-
ous user-item and user-user interaction data, we further
utilize the observed social contextual factors to compute
the three objective latent matrices. Furthermore, we pro-
vide a scalable algorithm to incrementally process the
data so that it can achieve the scalable recommendation
goal and be used on large real applications. The time cost
is linear to the size of recommended items and users.

We have conducted experiments on two real so-
cial network datasets. One is collected from Renren
(www.renren.com), a Facebook style website in China; and
the other is collected from Tencent Weibo (t.qq.com), a
Twitter style website in China. The two datasets rep-
resent two typical social network structures: one for
bidirectional social relations (mutual friends), and the
other for unidirectional social relations (followers and
followees). It is shown that social contextual factors can
greatly boost the performance of recommender systems
on social network data, and our method outperforms the
previous algorithms by a large margin. We attribute this
great performance to the incorporation of complete so-
cial contextual factors from both individual and interper-
sonal sides, which has been verified by the experiments.

This paper is organized as follows. In Section 2, we
give introduction to relevant work. In Section 3, we
illustrate the effectiveness of two contextual factors with

studies on social datasets. In Section 4, we show the
formulation on social contextual model. Section 5 is
about the experimental result and key insights of social
contextual factors on social recommendation problem.
Section 6 comes to the conclusion.

2 RELATED WORKS

In this section, we review several major approaches to
recommendation methods. Content-based filtering and
collaborative filtering have been widely used to help
users find out the most valuable information. With
the emergence of social networks, researchers have de-
signed trust-based and influence-based methods to take
advantage of the knowledge from user relationships.
Matrix factorization methods have been proposed for
social recommendation due to their efficiency in dealing
with large datasets. Although there are some mixture
models of these methods, it is valuable to understand
the mechanism in social recommendation problems and
make the most use of social contextual information from
the perspective of users’ motivation of item adoption.

Content-based filtering introduces the basic idea of
studying the item content for the ranking problem.
With the emergence of topic modeling techniques like
LDA [6], recent content-based approaches [7][8][9][10]
rank candidate items by how well they match the topic
interest of the user as their preference. These approaches
working on individual patterns is not able to learn user
behavior patterns from user-item interaction data.

Collaborative filtering methods, which consists of
memory-based and model-based methods, are widely
used. The memory-based approaches [11][12][13][14] cal-
culate the similarity between all users based on their
ratings of items. The model-based methods learn a
model based on patterns recognized in the ratings of
users. Liu et al. [15] build a model-based collaborative-
filtering framework with three layers (user-interests-
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(a) User behaviors on Renren social network (b) User behaviors on Tencent Weibo microblogging service

Fig. 3. Distribution of two contextual factors of user behaviors in (a) Renren and (b) Tencent Weibo: the adoption
behaviors usually have higher individual preference and interpersonal influence than the refusion behaviors.

item) to help personalized ranking on recommender
systems. Collaborative filtering only utilizes user-item
interaction information, but it is not able to make full
use of social relation and rich social knowledge including
user profiles and detailed item content.

Recently, several matrix factorization methods
[16][17][18][19][20][21][22][23] have been proposed.
The matrix approximation models all focus on
representing the user-item rating matrix with low-
dimensional latent vectors. Recognizing that influence
is a subtle force that governs the dynamics of
social networks, influence-based recommendation
[24][25][26][27][28][29][30] involves interpersonal
influence into social recommendation cases. Trust-based
approaches [31][32][33][34] exploit the trust network
among users and make recommendation based on the
ratings of users who are directly or indirectly trusted.
SoRec [2] is proposed as a probabilistic factor analysis
framework which fuses the users’ tastes and their
trusted friends’ favors together. Aiming at improving
recommender systems by incorporating users’ social
network information into both friend network and trust
network, Ma et al. [3] propose a matrix factorization
framework with social regularization. But this work only
constrains users’ individual features from interpersonal
side but ignores users’ individual side, which makes the
framework lack of complete contextual information to
further improve the performance. However, it is still an
open issue about what factors motivate user adoption
on recommended items and how they can be effectively
integrated to further improve the accuracy of social
recommendation.

From psychological and sociological views, Bandura
[35] gives a social cognitive theory of mass communi-
cation and argues that communication systems operate
through two pathways. In the direct pathway, they pro-
mote changes by motivating and guiding participants to
get what they prefer. In the socially-mediated pathway,
participants’ decisions are influenced by their friendship
networks. Benjamin [36] shows the similar opinion that
factors such as cognition, feeling, taste, interest and

interpersonal relationship develop the structure of social
behaviors and interactions. For social web, these two
factors exactly represent individual preference and inter-
personal influence. That motivates us to propose a social
contextual recommendation framework to incorporate
them by analyzing both user motivation and application
mechanism to recommender systems for social networks.
In our paper, we incorporate both individual preference
and interpersonal influence in a principled manner.

3 SOCIAL CONTEXTUAL FACTORS

In this section, we will demonstrate the existence and
significance of social contextual factors (including indi-
vidual preference and interpersonal influence) for social
recommendation on real large datasets.

Given an item, the behavior of user adoption depends
on individual preference to understand whether the
user likes the item or not. Interpersonal influence tells
whether the user has close relationships with the item
senders (e.g., followees who post the tweet in Twitter).
Based on previous data, we apply LDA to the content
of web post (e.g., tweet) and extract topic-level distribu-
tions of these items. According to user behavior history,
we summarize how much user u likes item a with a
naı̈ve preference measurement as

P
u

(a) = T
a

· ( 1

|A(u, a)|
X

a

02A(u,a)

T
a

0)

where A(u, a) is the set of items adopted by user u
excluding a, and T

a

is the topic distribution of item a.
To describe interpersonal influence from the perspec-

tive of user-user interactions on social web, we calculate
the percentage of recommended items adopted by u
from u’s friends or followees who send the item a:

I
u

(a) =
1

|V (u, a)|
X

v2V (u,a)

|S(u, v) \A(u)|
|S(u, v)|

where V (u, a) is the set of senders who send item a to
user u, S(u, v) is the set of items sent from v to u, and
A(u) is the set of items that u adopts.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCROPT ID 4

Fig. 4. The two contextual factors have little correlation:
the absolute values of correlation between preference
and influence is smaller than 0.2 for more than 40%
cases, and smaller than 0.4 for more than 70% cases.

We classify the items into “adopted” ones and “re-
fused” ones according to user behaviors, and plot the
pairs (u, a) as points, w.r.t., individual preference P

u

(a)
and interpersonal influence I

u

(a) in Fig.3, which shows
that users intend to adopt items with better preference
scores and from higher influential friends or followees
in Facebook or Twitter style networks.

In order to demonstrate that individual preference and
interpersonal influence are not only effective but also
complementary social contextual factors, we compute
their correlations in social recommendation cases. We use
P and I to denote preference and influence of a user’s
adopted item. The Pearson correlation is defined as

⇢
P,I

=
cov(P, I)

�
P

�
I

=
E[(P � µ

P

)(I � µ
I

)]

�
P

�
I

The correlation is 1 or -1 in the case of perfect positive or
negative linear relationship, and zero if preference and
influence are uncorrelated. In Fig.4, the absolute corre-
lation values of more than 40% users are less than 0.2
and the values of around 70% are less than 0.4. Thus we
conclude that individual preference and interpersonal
influence can be applied as two complementary social
contextual factors in recommendation.

4 MODEL

4.1 Social Contextual Model ContextMF

In this section, we introduce details of our social contex-
tual model based on matrix factorization (ContextMF ).
First, we formally define the problem of social recom-
mendation. Suppose that we have M users with the
i-th user denoted as u

i

, and N items with the j-th
item denoted as p

j

. We denote the information adoption
matrix as R 2 {0, 1}M⇥N , with its (i, j)-th entry

R
ij

=

⇢
1 if u

i

adopted p
j

0 otherwise

Then the social recommendation problem is converted
to predict the unobserved entries in the information

adoption matrix R based on the observed entries and
other factors.

In our model, we suppose that whether a user adopts
an item on social networks is determined by three as-
pects: (1) item content: what the item tells about, (2) user-
item interaction: what items the user likes, and (3) social
relation and user-user interaction: who the senders are.

Let U 2 Rk⇥M be the latent user feature matrix,
V 2 Rk⇥N be the latent item feature matrix. S 2 RM⇥M

is the interpersonal influence matrix, with each entry S
ij

representing the degree of influence user u
i

has on user
u
j

. It should be noted that S
ij

> 0 if and only if u
i

is
the friend of u

j

in social networks such as Facebook and
Renren, or is followed by u

j

in microblogging services
such as Twitter and Tencent Weibo. G 2 RN⇥M is the
item sender matrix, with entry G

ij

= 1 meaning that u
j

sends the item p
i

and vice versa. Based on these deno-
tations and the assumption that users can only receive
items from their friends as social networks usually do
(G

ii

= 0), we can see the social recommendation problem
is to find out U, V and S so that ((SG>) � (U>V))
can well approximate the observed entries in R without
over-fitting, where � is the Hadamard Product.

In our case, we know the item content, user behaviors
over the items, and the interactions between users. From
these previous data, we can derive the item content
representation, individual preference, and interpersonal
influence. We compute the user-user preference simi-
larity matrix W 2 RM⇥M , item-item content similarity
matrix C 2 RN⇥N , and user-user interaction matrix
F 2 RM⇥M as

W
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=

P
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Though the accuracy of similarity matrices W and C
depends on how LDA performs on previous data, it is
fair towards competing methods in experiments to share
knowledge from these matrices.

With the hypothesis that the similarities in observed
spaces are consistent with the latent spaces, we regular-
ize the three latent spaces by observed matrices (social
contextual factors) in that: (1) the users that are similar
in user latent space U have similar preferences (derived
from preference similarity matrix W); (2) the items that
are similar in item latent space V have similar descrip-
tive contents (derived from content similarity matrix C);
(3) high interpersonal influence in the influence latent
space S generates frequent interpersonal interactions F;
(4) the product of user latent space U and item latent
space V corresponds to the users’ individual preference
on the items; (5) the Hadamard product of interpersonal
influence and individual preference is proportional to
the probability of item adoptions.
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As the model performance is evaluated by root mean
square error (RMSE) on the test set, we adopt a prob-
abilistic linear model with Gaussian observation noise.
Here we define the conditional distribution over the
observed entries in R as:

P (R|S,U,V,�2
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By incorporating the social contextual factors, we de-
fine the posterior distribution as
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where ⌦ denotes that zero-mean spherical Gaussian
priors are placed on latent feature vectors and observed
matrices. Then

lnP (S,U,V|R,G,M,C,F,⌦)
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Maximizing the posterior distribution is equivalent
to minimizing the sum-of-squared errors function with
hybrid quadratic regularization terms:

J = ||R� SG> �U>V||2
F

+ ↵||W �U>U||2
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F

is the Frobenius norm.
We can adopt a block coordinate descent scheme to

solve the problem. That is, starting from random initial-
ization on S,U,V, we solve each of them alternatively
with the other two matrices fixed and proceed step by
step until convergence. As the objective is obviously
lower bounded by 0 and the alternating gradient search
procedure will reduce it monotonically, the algorithm is

guaranteed to be convergent. In this paper, we use the
gradient search method to solve the problem. Specifi-
cally, the gradients of the objective with respect to the
variables are

@J
@S

= �2(R� SG> �U>V)G

�2�(F� S) + 2�S
@J
@U

= �2V(R� SG> �U>V)>

�4↵U(W �U>U) + 2⌘U
@J
@V

= �2U(R� SG> �U>V)

�4�V(C�V>V) + 2�V

Thus, we apply the following gradient-based approach
to our social contextual model in Algorithm 1. J de-
creases the fastest in the direction of gradients during
each iteration and the sequence (J (t)) converges to the
desired minimum.

Algorithm 1 Social Contextual Model ContextMF

Require: 0 < ↵
(t)
S

,↵
(t)
U

,↵
(t)
V

< 1, t = 0. Initialization
J (0) = J (S(0),U(0),V(0)).

Ensure: J (0) � 0, J (t+1) < J (t)

for t = 1, 2, · · · do
Calculate @J

@S

(t�1), @J
@U

(t�1), @J
@V

(t�1)

S(t)  S(t�1) � ↵
(t�1)
S

· @J
@S

(t�1)

U(t)  U(t�1) � ↵
(t�1)
U

· @J
@U

(t�1)

V(t)  V(t�1) � ↵
(t�1)
V

· @J
@V

(t�1)

J (t)  J (S(t),U(t),V(t))
end for

4.2 Model for Incremental Data �ContextMF

Our model can be applied in the real system to deal with
incremental data, answering the following questions.
First, how can we recommend items to new users with
social relations and their previous behaviors? Second,
how can we recommend new items to users with items’
content and historical data? We give an incremental
processing version �ContextMF based on ContextMF
to solve these two problems. It updates the influence
matrix and latent feature matrices from the relationships
between the increments and old matrices U, V and S.

If �M new users come: Suppose we know the in-
teractions and similarities between M users and the
�M new users, we aim at learning the influence matrix
�S 2 R�M⇥M and new users’ latent feature matrix
�U 2 Rk⇥�M . Let �F 2 R�M⇥M be the given in-
cremental interaction matrix. �W 2 R�M⇥M is the
incremental user-user similarity matrix. We obtain the
objective functions J�S

and J�U

and their gradients to
learn �S and �U. Note that we ignore the high-order
terms in the functions because of their small scales.

J�S

= ||�F��S||2
F

, @J
@�S = �2�F+O(�S)

J�U

= ||�W ��U>U||2
F

, @J
@�U = �2U�W> +O(�U)
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TABLE 1
Complexity comparison (suppose M � �M , N � �N ).

Incremental processing Offline recommendation
�ContextMF ContextMF�

�M users O(k2L�MM) O(k2LM(M +N))
�N items O(k2L�NN) O(k2LN(M +N))

TABLE 2
Statistics of datasets

Renren Tencent Weibo
Num. users (M ) 939,363 163,661
Num. items (N ) 1,625,689 529,615

Num. adoption behaviors 5,829,368 1,566,609

Therefore, the predicted item adoption matrix �R 2
RM⇥�N can be computed as �R = �SG> ��U>V.

If �N new items come: Let �G 2 R�N⇥M be the
given incremental item sender matrix. �C 2 R�N⇥N

is the incremental item-item similarity matrix: the topic-
level similarity between N items and the �N new items,
that learnt from topic distributions of item content. We
obtain J�V

and the gradient to learn the incremental
item latent feature matrix �V 2 Rk⇥�N .

J�V

= ||�C��V>V||2
F

,
@J
@�V

= �2V�C> +O(�V)

Therefore, the predicted item adoption matrix �R 2
RM⇥�N can be computed as �R = S�G> �U>�V.

Meanwhile, offline recommendation ContextMF�

that merges new users/items into old ones can be
applied. If �M new users come, ContextMF� needs
in each iteration O(k2(M +�M)2) to update S and
U, and O(k2(M +�M)N) to update V. However,
�ContextMF needs only O(k2�M(M +�M)) to com-
pute �S and �U. It is similar for the case of new
items. �ContextMF outperforms ContextMF� on both
time and memory efficiency (see Tab.1, in which L is
number of iterations). Note that the complexity of in-
cremental processing is linear to the size of users/items,
while the existing systems [2][3] usually cost quadratic
time. In subsection 5.7, with experimental results, we
show significant recommendation performance of our
incremental processing model �ContextMF . Thus we
demonstrate that our method has the capability of incre-
mental processing on new data.

5 EXPERIMENTS

5.1 Datasets Description
We conduct experiments on two large real datasets: Ren-
ren and Tencent Weibo. The statistics are summarized in
Tab.2. The density of Renren dataset is 0.59% and the
density of Tencent Weibo dataset is 0.09%. The sparsity
problem is typically serious in our case.

We collected data from Renren, a typical social net-
working service that enables users to put on their profiles
and add friends. One of the most popular actions on

Renren Tencent Weibo

(a) Distribution of number (b) Distribution of number
of posts on Renren of posts on Tencent Weibo

(c) Distribution of number (d) Distribution of number
of users on Renren of users on Tencent Weibo

Fig. 5. Long-tailed distributions of number of users’ posts
(a)(b) and number of users who share a post (c)(d) .

Renren is to share blogs, photos and external video links
(denoted as items in the paper). As an item is shared
by a user, the item will be sent to the user’s friends
and appear in their pages in real time. We crawled
relationships and shared items of nearly 1 million users
from February 2007 to December 2009.

Meanwhile, we crawled data from Tencent Weibo,
which allows users to follow and receive messages from
other users. Like Twitter, it also enables users to spread
information by retweeting the messages. We crawled
tweets, retweets and user relationships from more than
100,000 accounts in January 2011.

To further demonstrate the problem caused by the
sparsity of data, we take a look at some statistical
analysis of Renren and Tencent Weibo data. In Fig.5 (a)
and (b), we plot the distribution of the number of users’
shared or forwarded posts (calculated by

P
i

G
ij

for user
u
j

). In Fig.5 (c) and (d), we plot the distribution of the
number of users who share or forward them (calculated
by

P
j

G
ij

for post p
i

). We can see that all the four
figures follow long-tailed distributions, which reflects
that adoption behavior made by the majority of users
over the majority of items is sparse on social networks.

5.2 Experimental Settings
We design our experiments with two typical tasks of
recommendation [37]: (1) predict user behaviors; (2) rank
received items. The first task requires the recommender
to predict whether a specific user will adopt a specific
item. Therefore, an appropriate measure is prediction
error (smaller is better). The second task requires a more
direct focus on actual recommendation and provides
users with a ranked list of received items, along with
predictions for how much the users would like them.
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We consider different ranking-based measures to show
how successfully we put the most favorite items on the
top of list (bigger is better). We will introduce all the
measurements in the next subsection. Here we focus
on experimental settings which should be fair for all
comparative algorithms.

Different from held-out data experiments on datasets
without time information, the recommendation on social
items, e.g., tweets, should be evaluated in a temporal
setting. The first reason is that users could make different
decisions on the same items in different contexts. A user’s
desire to adopt or refuse an item when he receives it
at time t1 may be different from that when he receives
the item at a later time t2, if his friends or followers
share or retweet the item during the time �t = t2 � t1.
The second reason is that our experiments demand both
positive (user adopts item) and negative (user refuses
item) instances of user behaviors. It is easy to detect the
positive instances according to user adoption behaviors
over items, but the negative instances cannot be simply
detected. There are two categories among the items
that users do not adopt. First, users were not online,
thus did not read these items. Second, users read these
items and refused them. Only the latter category could
be considered as the negative instances. For the above
reasons, we define online sessions for the duration that
the user is online and active on this social networking
service. We suppose the user reads all the items received
from his relationships during this session.

Given a user, a valid online session should have these
three properties: (1) the session length should be within
�t

max

(like 5 minutes); (2) in this session the user should
receive at least n

min

items (like 15) from his friends or
followees; (3) among the items in this session, the user
adopts (shares or forwards) at least 2 items. �t

max

and
n
min

are called online-session parameters. In other words,
in an online session as we defined, the user receives a
number of messages in a short time and gives at least
two positive behaviors (adoption). In Fig.6, we show the
difference between valid and invalid online sessions and
how we use valid online sessions as testing cases in our
experiments. We conduct all baseline algorithms and our
method ContextMF on those testing cases. Although
it cannot be guaranteed that the estimation of online
session is perfect, it is fair for all comparative algorithms
to use the experimental settings. We demonstrate the
advantages of our method ContextMF if it can better
accomplish the two tasks.

5.3 Comparative Algorithms

We implement the following baselines for comparison
with our social contextual model (ContextMF ).

• ContentBased [7]: This method recommends similar
items with ones that the receiver has shared or
forwarded before. It only considers individual pref-
erence and utilizes item content information instead
of social relation and interaction data.

Fig. 6. Valid online sessions as testing cases for experi-
ments: first we divide the dataset into training and testing
parts; second we select online sessions from the testing
part with a window (�t); at last we conduct experiments
on sessions within at least 2 adopted items.

• ItemCF [11]: The standard item-based collaborative
filtering assumes that users have common interests
with their close friends or followers. It only utilizes
user-item interaction information.

• FeedbackTrust [32]: This method improves the ba-
sic trust-based recommendation algorithm [31] with
feedback. It is accurate to compute user correlations
in trust network, but it only utilizes user-user inter-
actions information.

• InfluenceBased [25]: This method estimates influ-
ence as social utility based on a gradient ascent al-
gorithm. It uses information of user-user interaction,
but fails to discover individual correlations between
users and items.

• SoRec [2]: This method jointly analyzes social rela-
tion and user-item interaction data by extracting a
common latent factor from the shared mode, using
Probabilistic Matrix Factorization. User-user interac-
tion information is not considered.

• SoReg [3]: This method designs a matrix factor-
ization objective function with Social Regularization
to constraint user features. It does not consider
item content information, which truly builds the
users’ individual preference. Both user and item
features should be regularized with respect to the
understanding of item content.

Meanwhile, we implement different configurations of
our model to demonstrate the effectiveness of our pro-
posed ContextMF .

• InfluenceMF : This method considers interpersonal
influence, one of the social contextual factors in
our social recommendation model. The adjusted
function to minimize is

J = ||R� SG>||2
F

+ �||S� F||2
F

+ �||S||2
F

• PreferenceMF : This method only considers indi-
vidual preference. The degenerated function is

J = ||R�U>V||2
F

+ ↵||W �U>U||2
F

+�||C�V>V||2
F

+ ⌘||U||2
F

+ �||V||2
F

5.4 Evaluation Measures
Generally, we evaluate recommendation performance of
each algorithm with four typical groups of measure-
ments: (1) prediction error: how accurately the algorithm
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works to predict user behaviors (for task 1); (2) top K
performance: how successfully the algorithm offers top
K recommendation service (for task 2); (3) ranking-based
measure: how well the algorithm performs to rank items
(also for task 2); (4) stability measure: how resistantly the
gradient-based algorithm performs on the same piece of
data for 100 times.

Prediction error: To measure the prediction quality
of our proposed approach in comparison with other
algorithms, we use two popular metrics including the
Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE). The metric MAE is defined as

MAE =
1

|R|
X

Rij2R
|Rij � SiGj

> �Ui
>Vj|

where R
ij

equals 1 if the i-th user adopts the j-th item
and 0 if not. The metric RMSE is defined as

RMSE =

vuut 1

|R|
X

Rij2R
(Rij � SiGj

> �Ui
>Vj)

2

Therefore, a smaller MAE or RMSE value means better
performance.

Top K performance: Compared to the prediction ac-
curacy of user behaviors, the top K recommendation
performance is also important because the recommen-
dation space on page is limited and only the top K
recommended items make sense in real applications. In
an online session, each algorithm provides a list of K
recommended items. We use Precision@K [11][38] and
NDCG@K [39] to evaluate the performance.

The precision at rank K (Precision@K) is defined as the
ratio of adopted items in the K-length recommended list
to K. Therefore, a higher Precision@K shows better per-
formance. NDCG is a normalization of the Discounted
Cumulative Gain (DCG) measure. DCG is a weighted
sum of “relevancy” of the ranked items. The DCG at
rank K (DCG@K) for a give session is computed as:

DCG@K =
KX

r=1

y(r)

log(r + 1)

where the “relevancy” of the item at rank r is y(r) and
the logarithmic discount is 1

log(1+r) . The “relevancy” y(r)
is a mapping from the item’s rank to a finite set Y =
{0, 1}, where 1 corresponds to an adoption behavior, i.e.,
the r-th item is shared or forwarded by the user, and 0
corresponds to the opposite. The Ideal DCG (IDCG) is
simply the maximum value of DCG results, i.e., DCG
measure of the best ranking result. NDCG normalizes
DCG by IDCG and thus it is always a number in [0, 1].
A bigger number of NDCG@K is better for the algorithm
to provide a top K recommendation service.

Ranking-based measure: We use two kinds of
ranking-based measures: (1) ⌧̂ and ⇢̂, which are Kendall’s
and Spearman’s ranking coefficients to measure order
accuracy; (2) ERR, which is suggested by Sanderson et
al. [40] as one of the best measurements for ranking

problem of user preference. All these four measures
share the same property that a bigger number means
better performance.

The ranking coefficients ⌧̂ and ⇢̂ start by defining this
intuitive statistics, that is, the number of ranking order
switches, which means how many of the pairs in the
testing case are ordered incorrectly by the model.

T =
X

r<s

I(y(r) > y(s))

where (r, s) is a pair of orders of ranked items, and
I(x) is a mapping function that returns 1 if event x is
true and 0 if x is false. y(r) has defined formerly as a
relevancy function. The weighted sum of order switches,
which weighs the incorrect ordered pairs by the ranking
difference:

R =
X

r<s

(s� r) · I(y(r) > y(s))

These two measures are then transformed linearly into
the range [-1,1], where 1 corresponds to perfect model
performance and -1 corresponds to the worst case, thus
attaining perfect reverse ranking. We have the non-
parametric correlation prevalent data analysis tools here:

⌧̂ = 1� 4T

n(n� 1)

⇢̂ = 1� 12R

n(n� 1)(n+ 1)

where the number of items to rank is n.
Chapelle et al. [41] propose Expected Reciprocal Rank

(ERR), a metric for graded relevancy based on a cascade
model, and demonstrate that this metric is better than
DCG, modeling user satisfaction. It can be computed as
follows:

ERR =
nX

r=1

1

r

r�1Y

i=1

(1� y(i))y(r)

From the equation, we know that the value of ERR is
in range [0, 1], and an algorithm returns a better ranking
list of items if its ERR result is bigger.

Stability measure: An algorithm that gives higher
probabilities on adopted items than refused items will
better help the recommender systems. In order to
demonstrate the distinguish ability, we conducted a
group of T-tests to compare numerical gaps between
good recommendations and bad ones for each method.
When the value of T-test is bigger, the classification is
more accurate on whether user adoption will happen.

5.5 Parameter Settings
The parameters in our model are meaningful and nec-
essary but not difficult to set. We tune the parameters
of our ContextMF model and all baseline algorithms
to reach their best performance. In this condition, both
the experiment settings and parameter settings are fair
so that the experimental results are reasonable. More-
over, we introduce how to easily and automatically set
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appropriate parameters for our ContextMF model from
insights of their tuning processes.

Trade-off parameters: The trade-off parameters ↵, �,
�, �, ⌘ and � in our model are supposed to adjust the
strengths of different terms in the objective function:
(1) ↵ and � regularize the terms of latent features of
users and items with user-user similarity and item-item
similarity on topical distribution, so they determine the
weight of individual preference in our recommendation
model; (2) � regularizes the term of user-user influence
with their interaction frequency, so this parameter deter-
mines the weight of interpersonal influence; (3) �, ⌘ and
� make sure that the scales of user-user influence S, user
latent features U and item latent features V change the
objective function little in our model.

We tune trade-off parameters ↵, �, �, �, ⌘ and � for our
ContextMF model with the “Controlling for a variable”
method to reach the best performance. As shown in
Fig.7, the RMSE can be reduced to the minimum when
the parameters are neither too big nor too small. We
suggest a way of automatic parameter settings for social
recommendation model ContextMF as insights from
this observation:

↵ 10�2 ⇥ ||R� SG> �U>V||2
F

||W �U>U||2
F

/ 10�2 ⇥ N

M

�  10�2 ⇥ M

N
, �  10�2 ⇥ N

M

�  10�4 ⇥ ||R� SG> �U>V||2
F

||S||2
F

/ 10�4 ⇥ N

M

µ 10�4 ⇥ N

k
,� 10�4 ⇥ M

k

where M and N are the number of users and items (see
Tab.2) and k is the number of latent features. We set k =
60 in this process while we introduce how to determine
k as follows.

Number of latent features: We train U, V to find
the proper number of latent features k for users and
items. If k is too small, the recommender system cannot
make a distinction between any users or items. If k is
too large, users and items will be too unique for the
system to calculate their similarities and the complexity
will considerably increase. Therefore, we conduct exper-
iments with k ranging from 3 to 80 on both Renren
and Tencent Weibo datasets. The results are shown in
Fig.8, from which we can find that with the latent
feature number k increasing, RMSE reduces gradually.
It obviously shows that when k � 60, RMSE decreases
rather slow. Considering the recommendation effect and
time efficiency, we choose k = 60 as the latent space
dimension in our experiments.

Number of iterations: In Fig.9, we observe that both
RMSE and the objective function value J decrease grad-
ually with the number of iterations increasing. It shows
that, by incorporating effective regularizers, our method
successfully avoids the overfitting problem which often
occurs in gradient algorithms. On both datasets, it is
better to run 60 iterations in order to reach a converged

(a) Trade-off parameters for Renren dataset

(b) Trade-off parameters for Tencent Weibo dataset

Fig. 7. We tune and find the best settings of trade-
off parameters ↵, �, �, �, ⌘ and � in our ContextMF
model. We use the same training data, control for a single
parameter, plot the RMSE curve and choose the least.

(a) Renren (b) Tencent Weibo

Fig. 8. RMSE decreases with number of latent features k
and converges when the number is 60 in (a) Renren and
(b) Tencent Weibo datasets.

result with an acceptable time cost. We tune parameters
following the same method as above in our ContextMF
model for PreferenceMF and InfluenceMF . For other
comparative algorithms, we also search for the best
configurations while applying for our real datasets. It
is fair to report their best recommendation performance
in the next subsection.

Online-session parameters: Fig.10 shows the standard
variance of RMSE (�

RMSE

) according to the length of
time window �t

max

and the number of adopted items
n
min

, after we conduct the experiments for 100 times. If
�t

max

is too big, users may have stopped the session
and been offline; if it is too small, the user has little
time to adopt items. If n

min

is too small, the user is also
inactive in the time windows; if it is too big, the dataset is
held out too much. Therefore, we choose values of the
two parameters when �

RMSE

reaches the least. In our
experiments, we choose �t

max

=5 mins and n
min

=15.
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Renren Tencent Weibo

(a) Number of iterations (b) Number of iterations
vs RMSE vs RMSE

(c) Number of iterations (d) Number of iterations
vs Objective Function J vs Objective Function J

Fig. 9. RMSE (a)(b) and Objective Function Value J
(c)(d) decrease with the number of iterations and con-
verge at around 60 in Renren and Tencent Weibo.

Renren Tencent Weibo

(a) �t
max

vs �
RMSE

(b) �t
max

vs �
RMSE

(c) n
min

vs �
RMSE

(d) n
min

vs �
RMSE

Fig. 10. We choose �t
max

and n
min

that determine
online session for the least standard variance of RMSE.

5.6 Recommendation Performance

We judge recommendation performance of the men-
tioned models and algorithms in three ways: (1) perfor-
mance on user behavior prediction; (2) top K recommen-
dation; (3) stability.

First, we evaluate our ContextMF model and com-
parative algorithms with the measurements including
precision errors (MAE and RMSE), ranking coefficients
(⌧̂ , ⇢̂ and ERR) and stability measure (T-test). As shown
in Tab.4, our social contextual model recommends items
based on matrix factorization algorithm with social con-
textual factors. It provides reasonably accurate recom-

TABLE 3
Recommendation stability on two datasets

MAE RMSE ⌧̂ ⇢̂ ERR T-test
Renren Dataset

x 0.2416 0.3086 0.7783 0.7897 0.6987 4.2437
� 0.0001 0.0001 0.0006 0.0006 0.0008 0.6

Tencent Dataset
x 0.1514 0.2348 0.8571 0.8686 0.7529 13.989
� 0.0001 0.0002 0.0002 0.0001 0.001 0.8

mendations that are much better than baselines. On
Renren and Tencent Weibo datasets, we decrease the
MAE by 19.1% and 12.8%, RMSE by 24.2% and 20.7%,
and increase ERR by 19.7% and 11.4% over SoReg, a
state-of-the-art social recommendation algorithm with
social regularization. ContextMF improves the recom-
mendation performance with large margins over both
PreferenceMF and InfluenceMF : on Renren and Ten-
cent Weibo, it decreases MAE by 25.2% and 39.7%, RMSE
by 21.7% and 31.5%; it increases Kendall’s ranking coeffi-
cient by 12.1% and 2.27%, Spearman’s ranking coefficient
by 12.2% and 6.04%, ERR by 46.5% and 31.6%. All
these numbers prove that if a social recommendation
model considers both contextual factors (individual pref-
erence and interpersonal influence), it outperforms the
version that only considers one of them. To compare
the distinguish-ability of our method with baselines,
we report average value of prediction of positive and
negative instances, and thus report their ratio, i.e., T-
test results. Our model gives the highest T-test (1.78 and
1.26 times of the best baseline), which shows the social
contextual model has better distinguish-ability.

It should be noticed that: (1) PreferenceMF and
InfluenceMF achieve better performance than SoRec,
which demonstrates the effectiveness of introducing ei-
ther individual preference or interpersonal influence. (2)
The large improvement margin achieved by ContextMF
over both PreferenceMF and InfluenceMF demon-
strates the importance of incorporating complete con-
textual information from both individual and interper-
sonal sides for social recommendation. We further give
showcases and discuss insights from this improvement in
Section 6, with real instances of unique users and items.
(3) The fact that our proposed ContextMF performs bet-
ter than SoReg proves the effectiveness of incorporating
the two social contextual factors from users’ motivations
on item adoption, instead of adding average-based or
individual-based regularization to user latent vectors.

Second, we compare our ContextMF model and other
algorithms on top K recommendation performance (Pre-
cision@K and NDCG@K) in Fig.11. The performance
increases regularly as we decreases the size of recom-
mended items K. Compared with the best of base-
lines SoReg, our Precision@5 (precision of top 5 rec-
ommended items) increases by 21.7% and Precision@10
increases by 10.8% on Renren dataset. Similarly, on Ten-
cent Weibo dataset, Precision@5 increases by 12.3% and
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TABLE 4
Recommendation performance on two datasets.

Method Prediction error Ranking measure T-test statistics
MAE RMSE ⌧̂ ⇢̂ ERR Adopted Refused T-test

Renren Dataset
ContentBased [7] 0.384 0.477 0.541 0.540 0.325 0.702 0.665 1.06

ItemCF [11] 0.360 0.451 0.590 0.599 0.397 0.360 0.268 1.34
FeedbackTrust [32] 0.376 0.468 0.543 0.547 0.378 0.363 0.343 1.06
InfluenceBased [25] 0.386 0.469 0.539 0.545 0.365 0.641 0.590 1.09

SoRec [2] 0.328 0.413 0.617 0.620 0.452 0.473 0.347 1.37
SoReg [3] 0.299 0.354 0.709 0.714 0.561 0.523 0.336 1.56

InfluenceMF 0.310 0.377 0.686 0.701 0.477 0.351 0.213 1.65
PreferenceMF 0.303 0.376 0.694 0.704 0.465 0.132 0.056 2.38
ContextMF 0.242 0.309 0.778 0.790 0.699 0.456 0.107 4.24

Tencent Weibo Dataset
ContentBased [7] 0.258 0.364 0.773 0.778 0.476 0.417 0.276 1.51

ItemCF [11] 0.238 0.337 0.787 0.805 0.544 0.637 0.244 2.62
FeedbackTrust [32] 0.283 0.389 0.709 0.712 0.492 0.792 0.610 1.30
InfluenceBased [25] 0.265 0.381 0.716 0.728 0.491 0.800 0.392 2.04

SoRec [2] 0.226 0.333 0.797 0.806 0.555 0.495 0.058 8.53
SoReg [3] 0.200 0.296 0.839 0.842 0.667 0.552 0.060 9.174

InfluenceMF 0.218 0.321 0.818 0.82 0.572 0.522 0.062 8.42
PreferenceMF 0.211 0.309 0.838 0.845 0.568 0.576 0.052 11.1
ContextMF 0.151 0.235 0.857 0.896 0.753 0.812 0.058 14.0

TABLE 5
Datasets for comparison between incremental

processing and offline recommendation

Dataset Resource �M M0=M -�M N0=N
R�M1000 Renren 1,000 938,363 1,625,689
R�M10000 Renren 10,000 929,363 1,625,689
T�M1000 Tencent Weibo 1,000 162,661 529,615
T�M10000 Tencent Weibo 10,000 153,661 529,615

�N M0=M N0=N -�N

R�N1000 Renren 1,000 939,363 1,624,689
R�N10000 Renren 10,000 939,363 1,615,689
T�N1000 Tencent Weibo 1,000 163,661 528,615
T�N10000 Tencent Weibo 10,000 163,661 519,615

Precision@10 increases by 6.85%. Also we take a look
at NDCG@K: NDCG@5 increases by 4.7% on Renren
dataset and 10.8% on Tencent Weibo dataset. The advan-
tage of our method ContextMF is much more obvious
when K is small. As the user adoption behavior is very
sparse, it is difficult to distinguish excellent methods
when K is rather large. That’s why all the baseline
algorithms tend to converge as K becomes larger.

Third, we conduct experiments to test the stability of
our model with different random starts of the gradients
for 100 times. As shown in Tab.3, the low variances of
MAE and RMSE (less than 0.001) show that our algo-
rithm not only performs well on both social networking
and microblogging datasets, but also runs without big
fluctuation.

5.7 Incremental Capability Analysis

In this subsection, we analyze incremental capability of
our ContextMF model. We create 8 copies of datasets
with combinations of the following properties, as shown

in Tab.5: (1) Renren or Tencent Weibo; (2) new users
or new items; and (3) the number of new users �M
and new items �N , 1,000 or 10,000. For example, in
dataset R�M1000, we first randomly select �M = 1000
users as new users from M Renren users. We hide the
historical data of the new users and then with the
data of the remaining M0 = M � �M users we train
the interpersonal influence matrix S and latent feature
matrices U, V. Third, we apply our incremental version
�ContextMF , retrain the offline model ContextMF�

and the baseline SoReg, and compare their performances
on solving the cold-start problem.

In Tab.6, running time of incremental processing
method �ContextMF is much less than that of offline
recommendation ContextMF� : it is reduced from the
level of hour to that of second. Improving efficiency
will reduce the effectiveness because the high-order
terms are ignored in �ContextMF . However, RMSE
of �ContextMF is only 2.33% bigger (worse) than that
of ContextMF� on the datasets from Renren, which is
applicable for real cases. On the other hand, the perfor-
mance of �ContextMF still outperforms that of SoReg
because it fully learns the social contextual information:
On Renren, RMSE of �ContextMF is 18.5% smaller (bet-
ter) than that of SoReg on average; on Tencent Weibo,
RMSE of �ContextMF is 16.9% smaller. Also, ERR of
�ContextMF is 11.7% and 11.9% bigger (better) on
Renren and Tencent than that of SoReg. We demonstrate
that on real social networks, our �ContextMF model,
carefully designed for incremental data, has significant
performance on both social network datasets.

5.8 Insights
Besides the above numbers, we provide unique instances
(users and items) to demonstrate the importance of in-
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Renren Tencent Weibo

(a) Precision@K on Renren (b) Precision@K on Tencent Weibo

(c) NDCG@K on Renren (d) NDCG@K on Tencent Weibo

Fig. 11. Top K recommendation performance on Renren and Tencent Weibo datasets: compared with baselines, from
(a)(b) we know Precision@5 increases by 21.7% on Renren and 12.3% on Tencent Weibo. Also from (c)(d), we know
NDCG@5 increases by 4.7% on Renren and 10.8% on Tencent Weibo.

TABLE 6
Recommendation performance of incremental method �ContextMF and offline recommendation ContextMF� .

Dataset RMSE (smaller is better) ERR (bigger is better) Time cost
SoReg �ContextMF ContextMF� SoReg �ContextMF ContextMF� �ContextMF ContextMF�

R�M1000 0.342 0.263 0.257 0.555 0.610 0.636 172s 41.7h
R�M10000 0.502 0.464 0.444 0.481 0.542 0.559 1610s 41.7h
T�M1000 0.168 0.122 0.105 0.652 0.764 0.783 54.2s 2.42h
T�M10000 0.342 0.333 0.317 0.534 0.611 0.651 531s 2.42h
R�N1000 0.335 0.276 0.276 0.570 0.663 0.680 97.3s 41.7h
R�N10000 0.546 0.478 0.465 0.514 0.587 0.609 941s 41.7h
T�N1000 0.218 0.192 0.173 0.726 0.824 0.864 17.8s 2.42h
T�N10000 0.427 0.376 0.355 0.658 0.720 0.751 160s 2.42h

corporating all kinds of social contextual information: so-
cial relation, item content, user-user interaction and user-
item interaction. An example of social recommendation
case on Tencent Weibo microblogging service is shown in
Fig.12 and Tab.7. In this scenario, user u1 follows u2 and
u3, and thus it is able to receive messages from them:
(1) Before time t, u1 adopted (retweeted) 18 messages
from u3 before but only 3 from u2. Our ContextMF
learns interpersonal influence between them: u1 prefers
interacting with u3; but PreferenceMF does not. (2) The
user u1 adopted posts including p1, . . . , p4: p1, p2 and
p3 have consistently high numbers on the 8th topical
distribution because their contents are mainly about pro-
gramming language, coding and computer engineering;

p4 tells about love and life and has a peak on the 3rd

topic. Our model also learns his preference as the second
contextual factor: u1 loves content in these unique fields;
but InfluenceMF does not. In this condition, at time t,
u1 receives p5 and p6 from u2 and p7 from u3. We focus
on recommendation task for user u1, i.e., ranking these
web posts with adoption behavior prediction of users.

In Tab.8, we give predicted values of user-item links
from user u1 to the posts p5, p6 and p7, i.e., probability
of event that user u1 adopts these posts. Post p5 is about
programming language java that u1 likes. From the past
behaviors of u1, ContextMF predicts that the probability
of his adopting is 88.4%, while InfluenceMF just knows
that he does not adopts many messages before from
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Fig. 12. An example of social recommendation case on
Tencent Weibo: user u1 follows u2 and u3 and thus is
able to receive messages from them; before time t, (1)
u1 retweeted 18 messages from u3 before but only 3 from
u2; (2) u1 adopted posts p1, . . . , p4. At the time t, user u1

receives p5 and p6 from u2 and p7 from u3. In this case,
our task is to predict whether u1 will adopt them nor not.

TABLE 7
Topic distribution and content of posts in our example of

social recommendation case (Fig.12).

Post ID Topic t3 Topic t8 Content
p1 0.00 0.86 I love java, I like code!!!
p2 0.00 0.72 Have you ever read this? The

Zen of Python by Tim Peter
p3 0.02 0.91 We want a web developer: 1.

know java 2. know HTML,CSS,
XML,AJAX,JavaScript (Beijing)

p4 0.65 0.09 Love starts with a smile develops
with a kiss and ends with a tear.

p5 0.12 0.68 I met...Exception in thread
main me.love.NoGirlFriendError

p6 0.71 0.00 I miss you. But I missed you.
p7 0.68 0.00 if you leave me please don’t

comfort me because each sewing
has to meet stinging pain

p5’s sender u2 and gives its answer 19.0%. Post p6 and
p7 have similar topic-level distributions. However, since
p7 is adopted by user u3 who has bigger impact on
u1 than p6’s sender u2 does (u1 has retweeted u3’s 18
messages), both ContextMF and InfluenceMF predict
that the user u1 will prefer p7, but PreferenceMF does
not. The prediction results of ContextMF are much
closer to ground truth than those of PreferenceMF and
InfluenceMF because ContextMF fuses all the social
contextual information into a single model.

6 CONCLUSIONS
We proposed ContextMF , a novel social recommenda-
tion model utilizing social contextual factors, i.e., indi-
vidual preference and interpersonal influence. We con-
ducted extensive experiments on two large real-world
social network datasets, and showed that social contex-
tual information can greatly boost the performance of

TABLE 8
Predicted values of links from user u1 to items p5, p6, p7.

R(u1,p5) R(u1,p6) R(u1,p7)
Ground truth 1 0 1
ContextMF 0.884 0.112 0.845

PreferenceMF 0.901 0.354 0.323
InfluenceMF 0.190 0.094 0.854

recommendation on social network datasets. In particu-
lar, we have gained growth of 24.2% and 20.7% in predic-
tion accuracy and 21.7% and 12.3% in recommendation
Precision@K upon previous approaches on these social
networks, respectively. Also, the proposed algorithm is
general and can be easily adapted according to different
real-world recommendation scenarios.
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[7] M. Balabanović and Y. Shoham, ”Fab: Content-based, Collaborative
Recommendation,” Commun. ACM, vol.40, no.3, pp. 66-72, 1997.

[8] O. Phelan, K. McCarthy, and B. Smyth. ”Using twitter to recom-
mend real-time topical news,” in RecSys’09, pp. 385-388, 2009.

[9] K. Stefanidis, E. Pitoura, P. Vassiliadis, ”Managing contextual
preferences,” in Info. Sys., vol.36, iss. 8, pp. 1158-1180, 2011.

[10] H. Zhu, E. Chen, K. Yu, H. Cao, H. Xiong, and J. Tian, ”Mining
Personal Context-Aware Preferences for Mobile Users,” in ICDM
’12, pp. 1212-1217.

[11] B. Sarwar, G. Karypis, J. Konstan and J. Reidl, ”Item-based Col-
laborative Filtering Recommendation Algorithms,” in WWW’01.

[12] L. Si and R. Jin, ”Unified Filtering by Combining Collaborative
Filtering and Content-based Filtering via Mixture Model and Ex-
ponential Model,” in CIKM’04, pp. 156-157.

[13] Y. Koren, ”Collaborative Filtering with Temporal Dynamics,”
Commun. ACM, vol.53, no.4, pp. 89-97,2010.

[14] Y. Chen and J.F. Canny, ”Recommending Ephemeral Items at Web
Scale,” in SIGIR’11, pp. 1013-1022.

[15] Q. Liu, E. Chen, H. Xiong, C. Ding, and J. Chen, ”Enhancing
Collaborative Filtering by User Interest Expansion via Personalized
Ranking,” in TSMCB, vol.42, no.1, pp. 218-233, 2012.

[16] Y. Koren, ”Matrix Factorization Techniques for Recommender
Systems,” Computer, vol.42, no.8, pp. 30-37,2009.

[17] D. Kong, C. Ding, and H. Huang, ”Robust nonnegative matrix
factorization using L21-norm,” in CIKM’11, pp. 673-682.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCROPT ID 14

[18] F. Wang, H. Tong, and C.Y. Lin, ”Towards Evolutionary Nonneg-
ative Matrix Factorization,” in AAAI’11, pp. 501-506.

[19] Z. Zhang, K. Zhao, H. Zha. ”Inducible regularization for low-rank
matrix factorizations for collaborative filtering,” Neurocomput. 97,
pp. 52-62, 2012.

[20] M. Jiang, P. Cui, R. Liu, Q. Yang, F. Wang, W. Zhu and S. Yang,
”Social contextual recommendation,” Proc. ACM Int. Conf. on Inf.
and Knowledge Management (CIKM ’12), pp. 45-54, 2012.

[21] X. Liu and K. Aberer, ”SoCo: a social network aided context-aware
recommender system,” in WWW’13, pp. 781-802.

[22] J. Tang, X. Hu, and H. Liu. ”Social recommendation: a review.”
Social Network Analysis and Mining, 3(4), pp. 1113-1133, 2013.

[23] J. Tang, X. Hu, H. Gao, and Huan Liu. ”Exploiting Local and
Global Social Context for Recommendation,” in IJCAI’13.

[24] J. Leskovec, A. Singh, and J. Kleinberg, ”Patterns of Influence in
a Recommendation Network,” in PAKDD’06, pp. 380-389.

[25] J. Huang, X. Cheng, J. Guo, H. Shen, and K. Yang, ”Social
Recommendation with Interpersonal Influence,” in ECAI’10.

[26] A. Goyal, F. Bonchi, and L.V.S. Lakshmanan, ”Learning influence
probabilities in social networks,” in WSDM’10, pp.241-250.

[27] Y. Shen, R. Jin, D. Dou, N.A. Chowdhury, J. Sun, B. Piniewski, and
D. Kil, ”Socialized Gaussian Process Model for Human Behavior
Prediction in a Health Social Network,” in ICDM’12, pp. 1110-1115.

[28] P. Cui, F. Wang, S. Liu, M. Ou, S. Yang, and L. Sun, ”Who Should
Share What? Item-level Social Influence Prediction for Users and
Posts Ranking,” in SIGIR’11, pp. 185-194.

[29] P.Cui, F. Wang, S. Yang, and L. Sun, ”Item-Level Social Influence
Prediction with Probabilistic Hybrid Factor Matrix Factorization.”
in AAAI’11.

[30] F. C. T. Chua, H. W. Lauw, E. Lim, ”Generative Models for
Item Adoptions Using Social Correlation,” in TKDE, vol.25, no.9,
pp.2036-2048, 2013.

[31] P. Massa and P. Avesani, ”Trust-aware Recommender Systems,”
in RecSys’07, pp. 17-24.

[32] S. Moghaddam, M. Jamali, M. Ester, and J. Habibi, ”Feedback-
Trust: Using Feedback Effects in Trust-based Recommendation
Systems,” in RecSys’09, pp. 269-272.

[33] M. Jamali and M. Ester, ”TrustWalker: a Random Walk Model
for Combining Trust-based and Item-based Recommendation,” in
KDD ’09, pp. 397-406, 2009.

[34] B. Carminati, E. Ferrari, J. Girardi, ”Trust and Share: Trusted
Information Sharing in Online Social Networks,” in ICDE’12.

[35] A. Bandura, ”Social Cognitive Theory of Mass Communication,”
Media Psychology, vol.3,pp. 265-299,2001.

[36] L.S. Benjamin, ”Structural Analysis of Social Behavior,” Psycho-
logical Review, vol.81, no.5, pp. 392-425, 1974.

[37] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T. Riedl, ”Evalu-
ating Collaborative Filtering Recommender Systems,” in ACM TIS,
vol.22,no.1,pp. 5-53, 2004.

[38] D. Agarwal, M. Gurevich. ”Fast top-k retrieval for model based
recommendation,” in WSDM’12, pp. 483-492.

[39] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.
Hamilton, and G. Hullender. ”Learning to rank using gradient
descent,” in ICML’05, pp. 89-96.

[40] M. Sanderson, M.L. Paramita, P. Clough, and E. Kanoulas, ”Do
user preferences and evaluation measures line up?,” in SIGIR’10.

[41] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, ”Expected
reciprocal rank for graded relevance,” in CIKM’09, pp. 621-630.

Meng Jiang received the B.E. degree from the
Department of Computer Science and Technol-
ogy of Tsinghua University, Beijing, in 2010. He
is pursuing the Ph.D. degree and his main re-
search interests include data mining and social
network analysis. He was sponsored by China
Scholarship Council to visit Carnegie Mellon
University, US, from Aug. 2012 to May 2013. He
has published papers on social recommendation
in top conferences of the relevant field.

Peng Cui received the Ph.D. degree in computer
science in 2010 from Tsinghua University and
he is an Associate Professor at Tsinghua. He
has vast research interests in data mining, mul-
timedia processing, and social network analysis.
Until now, he has published more than 20 papers
in conferences such as SIGIR, AAAI, ICDM,
etc. and journals such as IEEE TMM, IEEE TIP,
DMKD, etc. Now his research is sponsored by
National Science Foundation of China, Sam-
sung, Tencent, etc. He also serves as Guest

Editor, Co-Chair, PC member, and Reviewer of several high-level inter-
national conferences, workshops, and journals.

Fei Wang is a Research Staff Member in Health-
care Analytics Research Group, IBM T.J.Watson
Research Center. Before his current position, he
has been a postdoc in the same group from 2010
to 2011, and he was a postdoc in Department of
Statistical Science, Cornell University from 2009
to 2010. His major research interests are data
mining, machine learning, and how to make use
of those technologies in heathcare and social in-
formatics. He has been serving on the Program
Committee Members of major data mining and

machine learning conferences such as ICDM, SDM, KDD, CIKM and
IJCAI, and referee of major journals such as JMLR, Machine Learning
journal, AI journal, IEEE TPAMI, IEEE TKDE, ACM TKDD, DMKD.

Wenwu Zhu received the Ph.D. degree from
Polytechnic Institute of New York University in
1996. He is now a Professor at Tsinghua Uni-
versity. His research interest is wireless/Internet
multimedia communication and computing. He
worked at Bell Labs during 1996 to 1999. He was
with Microsoft Research Asia’s Internet Media
Group and Wireless and Networking Group as
research manager from 1999 to 2004. He was
the director and chief scientist at Intel Commu-
nication Technology Lab, China. He was also a

senior researcher at the Internet Media Group at Microsoft Research
Asia. He has published more than 200 referred papers and led 40
patents. He participated in the IETF ROHC WG on robust TCP/IP
header compression over wireless links and IEEE 802.16m WG stan-
dardization. He currently serves as Chairman of IEEE Circuits and
System Society Beijing Chapter and advisory board on the International
Journal of Handheld Computing Research.

Shiqiang Yang received the B.E. and M.E. de-
grees from the Department of Computer Science
and Technology of Tsinghua University in 1977
and 1983, respectively. He is now a Professor
at Tsinghua University. His research interests in-
clude multimedia technology and systems, video
compression and streaming, content-based re-
trieval for multimedia information. multimedia
content security, and digital right management.
He has published more than 100 papers and
MPEG standard proposals. Prof. Yang has orga-

nized many conferences as program Chair or TPC member, including
PCM05, PCM06 Workshop On ACM Multimedia05, MMM06, ICME06,
MMSP05, ASWC06, etc.


