
A

Catching Synchronized Behaviors in Large Networks: A Graph
Mining Approach

MENG JIANG, Tsinghua University
PENG CUI, Tsinghua University
ALEX BEUTEL, Carnegie Mellon University
CHRISTOS FALOUTSOS, Carnegie Mellon University
SHIQIANG YANG, Tsinghua University

Given a directed graph of millions of nodes, how can we automatically spot anomalous, suspicious nodes judging only
from their connectivity patterns? Suspicious graph patterns show up in many applications, from Twitter users who buy fake
followers, manipulating the social network, to botnet members performing distributed denial of service attacks, disturbing
the network traffic graph. We propose a fast and effective method, CATCHSYNC, which exploits two of the tell-tale signs left
in graphs by fraudsters: (a) synchronized behavior: suspicious nodes have extremely similar behavior patterns because they
are often required to perform some task together (such as follow the same user); and (b) rare behavior: their connectivity
patterns are very different from the majority. We introduce novel measures to quantify both concepts (“synchronicity” and
“normality”) and we propose a parameter-free algorithm that works on the resulting synchronicity-normality plots. Thanks
to careful design, CATCHSYNC has the following desirable properties: (a) it is scalable to large datasets, being linear in
the graph size; (b) it is parameter free; and (c) it is side-information-oblivious: it can operate using only the topology,
without needing labeled data, nor timing information, etc., while still capable of using side information if available. We
applied CATCHSYNC on three large, real datasets 1-billion-edge Twitter social graph, 3-billion-edge and 12-billion-edge
Tencent Weibo social graphs, and several synthetic ones; CATCHSYNC consistently outperforms existing competitors, both
in detection accuracy by 36% on Twitter and 20% on Tencent Weibo, as well as in speed.

Categories and Subject Descriptors: H.3.5 [Information Systems]: Information Storage and Retrieval - On-line Information
Services; J.4 [Computer Applications]: Social and Behavioral Sciences

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: anomaly detection, suspicious behavior, graph mining, connectivity pattern

ACM Reference Format:
Jiang, M., Cui, P., Beutel, A., Faloutsos, C., and Yang, S. 2014. Catching Synchronized Behaviors in Large Networks: A
Graph Mining Approach. ACM Trans. Knowl. Discov. Data V, N, Article A (January YYYY), 26 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Given a directed graph within many millions of nodes, can we tell which nodes are suspicious just
based on the graph structure? For many real world applications, fraudsters try to manipulate net-
works for personal gain. For example, in social networks, like Twitter’s “who-follows-whom” graph,
fraudsters are paid to make certain accounts seem more legitimate or popular through giving them
many additional followers. The spammers deliver these purchases through either generating fake
accounts or controlling real accounts through malware and using them to follow their “customers1.”

1Buy Twitter Followers. http://www.buy-followers.org; Buy Twitter Accounts. http://www.buytwitteraccounts.org

Author’s addresses: M. Jiang, P. Cui and S. Yang, Department of Computer Science and Technology, Tsinghua University;
A. Beutel and C. Faloutsos, Computer Science Department, Carnegie Mellon University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM xxx-xxx/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.buy-followers.org
http://www.buytwitteraccounts.org

A:2 M. Jiang et al.

(a) Synchronized behavior (b) Twitter in July 2009 [Kwak et al. 2010]

(c) Tencent Weibo in January 2011 (d) Tencent Weibo in November 2011

Fig. 1: Suspicious followers and their footprints: (a) We spot synchronized behavior that millions
of Twitter accounts follow the same group of followees. (b) Synchronized behavior causes spikes in
the out-degree distribution; the distribution becomes smoother after the removal of our suspects. We
have the same results on Tencent Weibo graphs in both (c) January 2011 and (d) November 2011.

This phenomenon creates distorted images of popularity and trustworthiness, with unpleasant or
even dangerous effects to honest users.

In this case, the attack is strictly manipulating the Twitter graph to give certain accounts undue
credibility. Because the attack only requires adding edges to the graph, previous approaches for
finding spam on Twitter that analyze users’ tweets and profiles [Aggarwal 2011; Perez et al. 2011;
Cao et al. 2012] will often miss this dubious behavior. Rather, we take a strictly graph mining
approach, using exclusively the graph structure to find nodes that are suspicious because of their
position in the graph.

By abstracting the attack to a graph mining problem, we find that it covers a wide variety of sus-
picious behavior found in the real world. For example, botnets often control hundreds of thousands
of machines and use them to perform distributed denial of service (DDOS) attacks on websites,
creating a similar pattern in the “who-visits-whom” web traffic graph. Online, on sites like Amazon
or Yelp, spammers will create accounts to skew ratings for certain products or places, manipulating

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:3

edges in the “who-rates-what” graph. On Facebook, Page owners will pay spammers to “Like” their
page, distorting the “who-Likes-what” graph.

In this paper, we focus on the Twitter attack, looking for groups of accounts used to unfairly bol-
ster the popularity of their customers. Figure 1a illustrates the scenario: it shows a set of suspicious
followers and their followees. The followers, all 3 million of them, follow exactly 20 users from the
same group of followees, creating a strange, rare connectivity structure. The side information, like
the similarity of the login-names (@Buy AB22, @Buy BT27, @Buy BT68), is an extra reason
to suspect that they were created by a script.

Our main viewpoint: In more detail, suspicious nodes including suspicious followers and bot-
nets exhibit behavior that is (a) synchronized (cause to occur at the same rate): they often connect to
the very same 20, 64 or 100 targets and (b) abnormal/rare: their behavior pattern is very different
from the majority of nodes. In this paper, we propose a fast and effective method, CATCHSYNC,
to measure the two properties (synchronicity and the normality) of a group of nodes; we spot the
suspicious nodes and efficiently catch them in the synchronicity-normality plot. We study three real
social graphs from Twitter and Tencent Weibo (January 2011 and November 2011) (denoted by
TWITTERSG, WEIBOJANSG and WEIBONOVSG for abbreviation) and use them for evaluations.
Note that both have millions of nodes and billions of edges.

Figure 1 gives an elaborate illustration on the effectiveness of CATCHSYNC. As we mentioned
earlier, the distributions of the social network data have been seriously distorted by the volume of
suspicious followers. Here we plot the out-degree distribution of TWITTERSG, WEIBOJANSG and
WEIBONOVSG in log-log scale (black lines), which should have smooth, power-law-like distri-
butions [Faloutsos et al. 1999]. However, several spikes appear, which are presumably caused by
suspicious followers [Broder et al. 2000]. For example, as shown in Figure 1a, the 3 million follow-
ers on Twitter who connect to exactly 20 users create a spike at out-degree 20 on the distribution in
Figure 1b. After removing the nodes that CATCHSYNC flags as suspicious, the distributions become
much smoother and closer to a power law (red lines).

Main contributions: For catching the suspicous behavior in large graphs, our proposed method
CATCHSYNC has the following desirable properties:
— Effectiveness: it indeed spots groups of source-target groups, with suspicious behavior. We

demonstrate the effectiveness with a variety of strong evidence, including restoring degree distri-
butions and feature space, classification accuracy based on hand-labelled data, and case studies.

— Scalability: it is linear in the number of edges, and thus applicable to internet-scale graphs.
— Parameter free: the operator does not need to specify any parameters such as the density, the

number of groups and the scale of each group.
— Side information oblivious: it needs no side information. It is solely based on topology, and it

requires neither a training set, nor labeled nodes, nor node attributes, nor anything else, though
it can incorporate the above for better performance.

The rest of the paper is organized as follows. Section 2 surveys the related work. Section 3 gives
the problem definition and proposed method, and Section 4 introduces the details of the algorithm.
Experiments are given in Section 5. Section 6 concludes the paper.

2. RELATED WORK
There is a significant body on research related to our proposed problem, which we categorize into
three groups: graph-based anomaly detection, subgraph mining algorithms, social spammer detec-
tion. Table I has discussed the majority of them from aspects of effectiveness, parameter setting and
side information, and it shows the advantages of our new approach CATCHSYNC.

2.1. Graph-based Anomaly Detection
Many anomaly detection techniques have been developed based on graphs [Shekhar et al. 2001;
Noble and Cook 2003; Chandola et al. 2009]. AUTOPART [Chakrabarti 2004] groups similar nodes
into clusters, and tag the edges deviating from the overall structure as outliers. However, we often
have to face the lack of similarity between suspicious/normal behaviors on the graphs. Some re-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://twitter.com/Buy_AB22
http://twitter.com/Buy_BT27
http://twitter.com/Buy_BT68

A:4 M. Jiang et al.

Catch synchronized? Parameter free? Side-info-oblivious?
Proposed CATCHSYNC

√ √ √

Graph- AUTOPART ×, across k groups
√

, auto-decide k
√

based OUTRANK ×, high scoring nodes ×, threshold
√

Anomaly ODDBALL ×, near-cliques/stars
√ √

Detection COPYCATCH
√

, but temporally ×, seeds ×, timestamp
NETPROBE ×, fraudulent nodes ×, propagations ×, committed frauds

Subgraph METIS ×, k equal parts ×, k
√

Mining SPOKEN ×, well-connected ×, eigenvector
√

DSE ×, dG-dense ×, density dG
√

Spammer SPOT ×, spammers
√

×, text features
Detection SYBILRANK ×, sybils ×, seeds ×, early non-sybils

Table I: Compare CATCHSYNC with existing approaches. CATCHSYNC can catch synchronized
behaviors without the limitation of group number, subgraph density and initial credibilities. It does
not require any parameter or side information.

cent works based on graphs propose to detect suspicious nodes and edges by discovering structural
anomalies and propagating beliefs for fraudulent nodes [Sun et al. 2005; Chau et al. 2006; Eberle
and Holder 2007; Chen et al. 2009]. OUTRANK [Moonesinghe and Tan 2008] is a random walk
based approach using a graph to detect outliers with similarity of objects. ODDBALL [Akoglu et al.
2010] gives rules in density, weights, ranks and eigenvalues) that are related to “neighborhood undi-
rected sub-graphs”, assuming near-cliques and stars are suspicious. NETPROBE [Pandit et al. 2007]
uses a list of committed frauds to blame likely fraudulent nodes on the graph with a belief prop-
agation mechanism. COPYCATCH [Beutel et al. 2013] detects temporally bipartite cores that are
ill-gotten “Likes” of Facebook; however, they require side information such as edge creation time.
A guide for lockstep behavior inference [Jiang et al. 2014c] introduces how to catch dense blocks
and “staircases” that are formed by different types of lockstep behaviors. However, the fraudsters
often perform with camouflage and thus the density is usually not high [Jiang et al. 2014b; Jiang
et al. 2014a]. Note that our work is orthogonal to the above. We look for synchronized behavior,
which forms strange subgraph structure.

2.2. Subgraph Mining Algorithms
A number of subgraph mining algorithms have been investigated [Cook and Holder 2006]. METIS
[Karypis and Kumar 1995] is a popular system that can partition the nodes of a graph in k roughly
equal parts, such that the number of edges connecting nodes in different parts is minimized. CLOSE-
GRAPH [Yan and Han 2003] works on mining closed frequent graph patterns by pruning methods
(reducing unnecessary subgraphs). CROCHET [Pei et al. 2005] investigates the problem of mining
cross-graph quasi-cliques where each node in the subgraph is connected to at least a portion γ of the
other nodes in the same subgraph. CLOSEMINE [Liu et al. 2005] examines the relationship between
the frequent graph-based and the closed frequent graph-based classification. MUSE [Zou et al.
2010] is proposed to mine uncertain subgraph patterns for computing expected supports of a pat-
tern in an uncertain graph database. Recently, community detection has been a hot topic among the
modern science of networks. Communities can be considered as fairly independent compartments
of a graph [Fortunato 2010; Kumar et al. 2010]. EIGENSPOKES [Prakash et al. 2010] finds that
the singular vectors of graphs exhibit a “spoke” pattern and thus the spoke detection algorithm can
spot and extract tightly-knit communities. D-CORE framework [Giatsidis et al. 2011] for detect-
ing communities characterized by dense connections among their nodes has extended the classic
graph-theoretic notion of k-cores for undirected graphs to directed ones. A recent touch in dense
subgraph problem takes into account the fact that not every participating node in the graph needs

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:5

to belong to a community [Chen and Saad 2012]. DSE [Tsourakakis et al. 2013] shows that the
well-known densest subgraphs are typically large graphs, with small edge density and large diame-
ter, and presents an approximation algorithm based on a local-search heuristic. One weak point of
subgraph mining methods is that they usually require typical parameters like density and number of
clusters as input. The other point is that the suspicious nodes can easily evade high density detection
by reducing the number of targets and increasing the volume.

2.3. Social Spammer Detection
There are several recent works on detecting social spammers [Stringhini et al. 2010; Aggarwal
2011]. The deployment of social honeypots [Lee et al. 2010; De Cristofaro et al. 2014] can harvest
deceptive spam profiles from social networking communities and for future statistical analysis of
their properties for creating spam classifiers. SPOT [Perez et al. 2011] can catch suspicious Twitter
profiles, by learning content-based features from text and malicious URLs in tweets and scoring
their suspiciousness. SYBILRANK [Cao et al. 2012] relies on social graph properties to rank users
according to their perceived likelihood of being sybils. SSDM [Hu et al. 2013] is a sociological
framework that model social network information and content information for spammer detection.
Aggarwal et al. [Aggarwal and Kumaraguru 2014] noticed that purchased Twitter follower accounts
have difference in their interaction and content sharing patterns in comparison to random Twitter
users. However, our work is orthogonal to theirs when detecting the group attacks. We notice that
the zombie followers on Twitter or Twitter-like networks usually have very unique but synchronized
behavior patterns.

In summary, our new method CATCHSYNC is parameter-free, and side-information oblivious,
and effective in detecting suspicious nodes for their synchronized behaviors.

3. SYNCHRONIZED BEHAVIOR DETECTION
In this section, we first propose the problem of synchronized behavior detection and then present a
fast and effective solution called CATCHSYNC. We provide not only the algorithm but also theoret-
ical guarantees for the performance.

3.1. Problem Definition
Our goal is to find suspicious nodes on a directed graph and thus the problem is defined as:
Given: a directed graph of N nodes in the node set U
Find: a set of suspicious source nodes (fake followers, botnets, etc.) Usync, or a set of suspicious tar-
get nodes (followees, target hosts, etc.) Vsync, such that the nodes have synchronized and abnormal
connectivity patterns.

“Synchronized” means that the nodes have very similar behavior patterns, and “abnormal” means
that their behavior patterns are significantly different from the majority of nodes. Table II gives a
list of the symbols we use throughout the paper.

3.2. Proposed Approach
In this section, we introduce our approach towards the above problem. First, we give a feature
space for target nodes. Second, we show the definitions of synchronicity and normality that mea-
sure the nodes’ behavior patterns. Then we provide a general theorem of the normal shape of the
synchronicity-normality plot. Next, we detect the outliers on the plot, which are suspicious nodes
with synchronize behavior on the graph.

3.2.1. Feature space. It has been established by past works that many data mining approaches
on graphs benefit from exploiting the features from the nodes’ behavior patterns, including (a) out-
degree and in-degree, (b) HITS score (hubness and authoritativeness), (c) betweenness centrality,
(d) node in-weight and out-weight, if the graph is weighted, (e) the score of the node in the i-th left
or right singular vector, and many more. We denote k-dimensional feature vector of node u by p(u)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Jiang et al.

Symbol Definition and Description
U The set of nodes
N=|U| The number of nodes
I(u) The set of node u’s sources
O(u) The set of node u’s targets
di(u)=|I(u)| In-degree of node u (number of sources)
do(u)=|O(u)| Out-degree of node u (number of targets)
hub(u),aut(u) “Hubness” and “authoritativeness” of u
sync(u) “Synchronicity” of node u’s targets
norm(u) “Normality” of node u’s targets
p(u) k-dimensional feature vector of node u
c(u,v) Closeness of u and v in feature space

Table II: Symbols and Definitions

∈ Rk. We extract the feature vector from graph structure that somewhat reflects the node’s behavior
pattern. The features could be any from the above and the vector could have any dimensionality.

Plot Description
OutF-plot A heat map of source nodes in feature space:

typically, out-degree vs hubness
InF-plot A heat map of target nodes in feature space:

typically, in-degree vs authoritativeness
SN-plot A heat map of source nodes in

synchronicity vs normality of their targets

Table III: Plots and Descriptions

In this paper, we choose the degree values and HITS score. Besides easy computation and plotting
properties, for effectiveness of anomaly detection, we discuss the reasons of using them as follows.
— In-degree and out-degree (degree values): We denote a set of u’s source nodes by I(u) and a set

of u’s target nodes by O(u). The in-degree di(u) of node u is the number of its sources, i.e. the
size of I(u). The out-degree do(u) of node u is the number of its targets, i.e. the size of O(u).
In social networks, high in-degree indicates a large number of followers and the customers who
benefit from the follower selling services often have similar high in-degree that are bigger than
ordinary users, and smaller than real famous celebrities. The botnets, or zombie followers, often
have similar out-degree, because it is easy for the services to set the botnets to follow the same
number of customers. When the botnets’ out-degree value is smaller, they present smarter but
still synchronized behaviors. Furthermore, the degree values are related to the spike observation
that we have introduced.

— Hubness and authoritativeness (HITS score): We denote by hub(u) the hubness of node u and
by aut(u) the authoritativeness of u, according to Kleinberg’s famous work [Kleinberg 1999]. If
we formulate the follower-followee network as an adjacency matrix, the first left-singular vec-
tor includes the follower nodes’ hubness, and the first right-singular vector includes the followee
nodes’ authoritativeness. A followee is very authoritative if it has many followers. Followers who
connect to “authoritative” celebrities weight more than followers who connect to ordinary users.
Zombie followers often have smaller hubness than the users who have the same out-degree, be-
cause their customers are not as famous as some top popular celebrities who are often connected

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:7

to by ordinary users. Customers have smaller authoritativeness than the users who have the same
in-degree, because most of their followers are botnets who are not important in the network.

These two clusters of features can indicate the users’ behavioral patterns in social networks. As our
experiments show, they work well in pin-pointing suspicious nodes. Note that if the side informa-
tion is available, it could be regarded as additional features that would be easily incorporated, and
hopefully, the performance would be better.

Here we present some plots of the feature spaces. For a source node u, we plot a heat map of the
2-D feature space of out-degree do(u) vs hubness hub(u) in log-log scale, called “OutF-plot”. Sim-
ilarly, for a target node u, the heat map of the feature space of in-degree di(u) vs authoritativeness
aut(u) in log-log scale is called “InF-plot”. Table III summarizes the description of all the plots.

(a) InF-plot on TWITTERSG (b) SN-plot on TWITTERSG

(c) InF-plot on WEIBOJANSG (d) SN-plot on WEIBOJANSG

Fig. 2: Synchronicity-normality plot: the source nodes X have synchronized and abnormal behav-
ior because their targets are coherent in the InF-plots (a) and (c), while Y’s targets are not. X has
large synchronicity and small normality in the SN-plots (b) and (d), while Y is near the parabolic,
theoretical lower limit.

Specifically, Figure 2a and 2c are InF-plots of TWITTERSG and WEIBOJANSG. On TWIT-
TERSG, we denote by X one of the suspicious followers we mentioned in Figure 1a and by Y

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Jiang et al.

an ordinary user whose out-degree is the same as X’s. We tag their targets (followees) in the Fig-
ure 2a and find out that X’s targets are coherent in the InF-plot, while Y’s targets are not. In other
words, X’s target nodes have similar in-degree and authoritativeness, but Y’s targets are diverse in
the feature space, ranging from top popular to ordinary users just like Y. Similar thing happens on
WEIBOJANSG. Figure 2c shows that X’s targets are located at a micro-cluster which is away from
the majority of followee nodes. They have large in-degree values from 1,000 to 100,000 but they
are not as authoritative as the ones who are followed by Y and of the same in-degree.

3.2.2. Synchronicity and normality. We propose two novel concepts to investigate the behavior
patterns of the source nodes: (a) “synchronicity” sync(u) to qualify how synchronized the node u’s
targets are in the feature space (in-degree vs authoritativeness); and (b) “normality” norm(u) to
qualify how normal u’s targets are relative to the rest of the data. These two measures consider the
relative position of u’s target nodes in the feature space. We denote by p(v) the normalized feature
vector of a target node v. We denote by c(v,v′) the closeness (similarity) between two target nodes
v and v′ in the feature space (InF-plot). Thus, we have

c(v, v′) = p(v) · p(v′)
To quickly compute the closeness of each pair of nodes, we divide the feature space into G grid

cells and map each node to a specific grid cell. If two nodes are in the same grid cell, they have
similar feature vectors, and they are close in the feature space. Thus, we have

c(v, v′) =

{
1 if nodes v and v

′
are in the same grid cell

0 otherwise

Then we have the definition of synchronicity and normality.

Definition 3.1. Synchronicity and Normality
We define synchronicity of node u as the average closeness between each pair of u’s targets (v,v

′
):

sync(u) =

∑
(v,v′)∈O(u)×O(u) c(v, v

′
)

do(u)× do(u)
(1)

We define normality of node u as the average closeness between each pair of u’s targets and other
nodes (v,v

′
):

norm(u) =

∑
(v,v′)∈O(u)×U c(v, v

′
)

do(u)×N
(2)

Both values of synchronicity and normality range from 0 to 1. We know that a suspicious source
node u has uncommonly large sync(u) and abnormally small norm(u):
— Uncommonly large sync(u): A large value of sync(u) indicates that in the feature space there

has been a large group of nodes that have the same features as the node u. In our settings, if a
follower node u has a big sync(u) value, u performs similar “following” behaviors (similar out-
degree and similar hubness) as many other nodes, say, connecting to the same group of followee
nodes. A zombie follower would give a uncommonly large synchronicity value.

— Abnormally small norm(u): A small value of norm(u) indicates that in the feature space the
node u is an outlier from the majority of nodes on the graph. In our settings, if a follower node u
has a small norm(u) value, u performs very different “following” behaviors (different out-degree
and different hubness) from the majority of followers in the social network, say, connecting to
a very different group of followee nodes who are rarely connected by the majority of nodes. A
zombie follower would give an abnormally small normality value.

For a source node u, we name u’s target nodes in the InF-plot as foreground points and name all
the nodes in the plot as background points. We provide a theorem of the normal shape of SN-plot,
which could be the basis for catching suspicious nodes. Symbols and their descriptions have ben
presented in Table IV.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:9

Symbol Description
G Number of grid cells in the feature space
g = 1, . . . , G Grid cell ID in the feature space
F Total count of foreground points
B Total count of background points
fg (f̂g) (Normalized) count of foreground points in the grid cell g
bg (b̂g) (Normalized) count of background points in the grid cell g
~f (~̂f) G-length probability vector of (normalized) count of foreground points
~b (~̂b) G-length probability vector of (normalized) count of background points
n “Normality” of the foreground points in ~f compared to background points in~b
s “Synchronicity” of the foreground points in ~f

Table IV: Symbols and Descriptions used in Theorem 3.2.

THEOREM 3.2. For any foreground/background distribution, there is a parabolic lower limit in
the synchronicity-normality plot.

PROOF. In order to find the lower limit of synchronicity when given a normality, we define the
problem as follows.

GivenG grid cells; ~f =< f1, . . . , fG > and~b =< b1, . . . , bG > are probability vectors of counts
of foreground and background points, where fg and bg are counts of points from the foreground and
background cloud in grid cells g (g = 1, . . . , G), and fg ≤ bg; the normality n of ~f ,

find values of ~f to minimize the synchronicity s.
Remind that (1) the synchronicity s is the synchronicity of foreground points, i.e., the dot product

of (unit sum) foreground with the same foreground: s =
∑

g

f2
g

F 2 ; (2) the normality n is the dot

product of (unit sum) foreground with (unit sum) background: n =
∑

g
fgbg
FB .

Let B(F) be the total counts:
∑
fg = F and

∑
bg = B. Let b̂g = bg/B and similarly f̂g =

fg/F . Thus, the resulting vectors sum up to one (“probability vectors”). The problem definition is
updated as follows.

Given a (probability) vector ~̂b with G entries,

find a (probability) vector ~̂f with given normality n =
~̂
f · ~̂b =

∑
(f̂g ∗ b̂g) and minimum

synchronicity s = ~̂
f · ~̂f =

∑
f̂2g ,

report both the optimal such vector ~̂fopt, as well as the minimum synchronicity smin.
The method of Lagrange multipliers is a well-known strategy for finding the local minima (max-

ima) of a function subject to equality constraints. Here the Lagrange function is

F(f̂g, λ, µ) = (
∑
g

f̂2g) + λ(
∑
g

f̂g − 1) + µ(
∑
g

(f̂g ∗ b̂g)− n) (3)

The gradients of the function are

∂F
∂f̂g

= 2f̂g + λ+ µb̂g = 0 g = 1, . . . ,M (4)

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Jiang et al.

and the two initial conditions are
∂F
∂λ

=
∑
g

f̂g − 1 = 0 (5)

∂F
∂µ

=
∑
g

(f̂g ∗ b̂g)− n = 0 (6)

From Eq 4 we have, after summing them all up:

2 +Gλ+ µ = 0 (7)

From Eq 4 we have, after multiplying each with b̂g and summing them all up:

2 ∗ n+ λ+ µsb = 0 (8)

where we call sb the synchronicity of the background: sb =
∑

g b̂
2
g =

∑
g

b2g
B2 . Solving for µ we get

µ = −2−Gλ (9)

and substituting µ and for λ we get

λ = 2(sb − n)/(1−G ∗ sb) (10)

We can substitute the values of µ and λ into Eq 4 and solve for each f̂g , or, even faster, we multiply
each of Eq 4 with the corresponding f̂g and we add, obtaining:

2 ∗ s+ λ+ µn = 0 (11)

which gives that the (optimal) sopt satisfies

sopt = 1/2(−λ− µn) (12)

If the Hessian matrix is positive definite at a point, then the function is a convex function and it
attains a local minima at the point. Here the Hessian is a diagonal matrix with “2” in the first M
positions, and zeros everywhere else. So eventually the minimum synchronicity is

smin(n) = (−Gn2 + 2n− sb)/(1−Gsb) (13)

That is, the minimum synchronicity smin for a given normality n, is a quadratic function of n.

Here we discuss the minimum synchronicity when the normality becomes small and approaches
zero. If n = 0, we know smin(0) = −sb

1−Gsb
. Since the synchronicity value of background points,

sb =
∑

g b̂
2
g =

∑
g

b2g
B2 ∈ [0, 1], we have smin(0) ∈ [0, 1

G]. If G is a big number, 100 or 1,000, we
know that smin(0)→ 0. The parabolic function is close to a “y = ax2” form.

Figure 2b and 2d show the SN-plots of source nodes in TWITTERSG and WEIBOJANSG. Note
that the source node X has synchronized and abnormal behavior and Y does not, as shown in Fig-
ure 2a and 2c. X has much bigger synchronicity and smaller normality than Y. The red parabola
is the theoretical lower limit of synchronicity with a given normality, which has been given in the
proof. Y is close to the parabola, while X is far away from the lower bound. The next step to find the
suspicious nodes like X is to detect the outliers in the SN-plots.

3.2.3. Outliers in SN-plot. Using Theorem 3.2, we can now define how to catch the outliers in
the SN-plot. Informally, a node is an outlier if it is too far away from the lower limit. Formally, we
define the residual score, rsource (u), as

rsource(u) = sync(u)− smin(norm(u)). (14)

The residual score captures how far above the theoretical minimum a node’s synchronicity is, and
thus indicates how suspicious it is. In details, given a node u, we compute its synchronicity value

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:11

sync(u) and normality value norm(u). Given the normality value norm(u), with Equation 13,
we know the lower bound of synchronicity value smin(norm(u)). Often an ordinary node has a
small synchronicity value, i.e., sync(u) − smin(norm(u)) = ε (ε is a tiny positive number). If
the node u has a uncommonly high synchronicity value, say, if sync(u) � smin(norm(u)), i.e.,
rsource(u)� 0, u is a very suspicious node with synchronized behavioral pattern.

The set of suspicious source nodes Usync includes the nodes whose suspiciousness is α = 3.0
standard deviations away from the mean:

Usync ← {u : rsource(u) > µ[rsource] + α× σ[rsource]} (15)

Note, here µ[rsource] is the mean residual score for all source nodes, and σ[rsource] is the standard
deviation of residual scores.

Similarly, we denote by rtarget(v) the residual score of a target node v, which captures how
suspicious its followers are. Then we could have the set of suspicious targets Vsync:

Vsync ← {v : rtarget(v) > µ[rtarget] + α× σ[rtarget]} (16)

The default value of α is chosen according to Tax’s classical outlier detection work in [Tax and Duin
1998]. In the experimental section, we will validate that the performance of our method is not too
sensitive to the choice of α.

4. CATCHSYNC ALGORITHM
In this section, we present the implementation of CATCHSYNC and analyze the complexity.

4.1. Implementation
The approach is outlined below in Algorithm 1. We first derive a feature space for target nodes. We
then compute synchronicity and normality of the source nodes’ behaviors, according to the relative
positions of their target nodes in the feature space. Finally, we use a distance-based outlier detection
method to detect the outliers in the synchronicity-normality plot.

ALGORITHM 1: CATCHSYNC: Catch suspicious nodes with synchronized behaviors in a large graph.
Input: A directed graph of N nodes in the set U .
Output: A set of source nodes Usync who have synchronized and abnormal behaviors and a set of targets in

Vsync .
Step 1: plot a (2-D) feature space of target nodes.
foreach node v as a target do

Compute in-degree di(v) and authoritativeness aut(v).
Give InF-plot di(v) vs aut(v) (see Figure 2a and 2c).
Step 2: plot synchronicity-normality of source nodes.
Divide the InF-plot into grids.
foreach node u as a source do

Compute synchronicity sync(u) and normality norm(u) with Eq. (1) and (2).
Give SN-plot sync(u) vs norm(u) (see Figure 2b and 2d).
Step 3:
Adapt a distance-based method to report suspicious sources Usync and targets Vsync.

To be precise, we choose 2-dimensional feature spaces and specifically out-degree vs hubness,
for each source node, and in-degree vs authoritativeness, for each target node. The hubness (author-
itativeness) is the first left- (right-) singular vector of the graph’s adjacency matrix. The algorithm
to compute these values is omitted for saving space. When we divide the InF-plot into a grid in
Step 2, we do so in log-space with base b, such that we specify a side length L and a grid cell goes
from baL to b(a+1)L for integer a. Setting L = 1 and b = 2, our grid is partitioned on powers of 2,
with hubness and authoritativeness, partitioned by 20, 2−1, 2−2, . . . , and with the out-degree and
in-degree partitioned by 20, 21, 22,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Jiang et al.

4.2. Complexity Analysis
Computing the degree and HITS score of each node is linear in the number of edges E. Second, the
process of computing synchronicity and normality is linear in the number of nodes N . We denote
by G the number of grid cells that we divided the InF-plot into, dependent on b and L. Therefore,
the total time complexity is O(E +NG), and CATCHSYNC is a scalable algorithm, able to process
huge, directed graphs.

4.3. Accuracy Guarantee for Speed-up
We denote by p(v) a normalized feature value in the feature vector p(v), while the distribution of
the feature is logarithmic. If the length of a grid cell on this feature axis is from powers of b, 2 as
default, there must be two integers a and a′ to estimate p(v) (the feature of node v) and p(v′) (the
feature of node v′), while

baL ≤ p(v) < b(a+1)L, ba
′L ≤ p(v′) < b(a

′+1)L(a ≤ a′ < 0)

Then the approximated closeness (similarity) is

c(v, v′) =

{
1 if a = a′

0 otherwise

Suppose the minimum integer among the nodes to estimate the feature is M , the range of the stan-
dard similarity is

c0(v, v
′) ∈ [b(a

′−M)L/b(a+1−M)L, b(a
′+1−M)L/b(a−M)L) = [b(a

′−a−1)L, b(a
′−a+1)L)

So the approximation error is

||c(v, v′)− c0(v, v′)|| ≤
{

0 if a = a′

b(M−|a−a
′|)L otherwise

According to the distribution of nodes in the feature space where the pair of nodes usually comes
from the same grid, we know that the approximation error is very small.

5. EXPERIMENTS
In this section we present an empirical evaluation of CATCHSYNC, demonstrating its effectiveness
in spotting suspicious behavior. Although much of the research on anomaly detection frames the
problem as a labelling task, in real world anomaly detection is a combination of machine learning,
manual verification, and discovering new types of attacks as they arise. Here, we provide evidence
that CATCHSYNC is effective at both the classic problem of labelling suspicious behavior, as well
as surfacing new patterns of unusual group behavior:
— Detection effectiveness: We demonstrate CATCHSYNC’s ability to accurately label suspicious

behavior and remove anomalies through three techniques.
(a) Injected attacks: We begin by testing the accuracy, precision, and recall on synthetic graphs
with injected group attacks. We compare our algorithm against state-of-the-art methods and show
that CATCHSYNC performs the best.
(b) Labelling task: We also test our accuracy, precision, and recall on two real datasets, where
we use the hand-labelled nodes from a random sample of accounts as ground truth.
(c) Restore normal patterns: For all of these cases we show that removing the suspicious nodes
restores the power law properties of the graph’s degree distribution, which when distorted is a
common sign of spam, and remove anomalous patterns in the feature spaces (OutF-plots and
InF-plots).

— CATCHSYNC properties: We test a number of properties of CATCHSYNC, including the ro-
bustness with respect to α, the speed and the scalability.

— Discovery: We demonstrate the effectiveness of CATCHSYNC as a discovery tool. We discuss a
number of the unusual accounts caught and patterns detected in the Twitter and Weibo datasets.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:13

5.1. Evaluation: Data and Ground Truth
We carry out experiments on synthetic and real datasets to evaluate the performance of CATCH-
SYNC. The synthetic datasets are described in Table V, while the real datasets are in Table VI.

5.1.1. Synthetic data. Description. We generate random power-law graphs, following the
Chung-Lu model 2 [Chung and Lu 2002], and with a power-law exponent −1.5 since most real-
world networks have been shown to have this value [Faloutsos et al. 1999]. Next we inject groups
of source and target nodes.

of # of # of Camouflage Camouflage
Nodes Injected Injected Type Ratio

Source Nodes Target Nodes
SYNTH-1M 1,034,100 31,000 1,000 - -
SYNTH-2M 2,034,100 31,000 1,000 - -
SYNTH-3M 3,034,100 31,000 1,000 - -
SYNTH-RAND1 3,034,100 31,000 1,000 Random +10%
SYNTH-RAND5 3,034,100 31,000 1,000 Random +50%
SYNTH-POP1 3,034,100 31,000 1,000 Popular +10%
SYNTH-POP5 3,034,100 31,000 1,000 Popular +50%

Table V: Synthetic data: we inject 5 different sizes of group attacks with or without camouflage on
random power law graphs of 1 million to 3 milion nodes.

To demonstrate the effectiveness, we vary the following properties of the synthetic graphs:
— Size of graph: The random power-law graphs we generate contain approximately 1M, 2M, or

3M nodes, named as SYNTH-1M, SYNTH-2M and SYNTH-3M.
— Size of injection: We inject 5 source and target nodes groups of different sizes. The smallest

group has 1,000 new sources, connecting to 20 of 100 new targets, because of the real case that
the smallest number of fake followers a user can buy is often 1,000. The size of the injected
group doubles one by one (2,000, 4,000, 8,000) and thus the largest group has 16,000 sources
and 1,600 targets. The total number of injected sources is 31,000.

— Camouflage: The injected source nodes may try to use “camouflage” to evade the detection, for
example, the fake accounts can follow popular celebrities like President Obama, or some ran-
dom users, though they connect to tens or hundreds of customers. Inspired by this, we try two
different techniques on SYNTH-3M: for each injected node, let it connect to (a) some “random”,
ordinary targets; (b) some from the top 100 “popular” targets. We vary the weights of camouflage
dcamou: (a) dcamou = 10%, 18 injected targets and 2 for camouflage; (b) dcamou = 50%, 10 in-
jected ones and 10 for camouflage. Specifically, we denote by SYNTH-RAND1 (SYNTH-RAND5)
the injected graph with 10% (50%) “random” camouflage, and by SYNTH-POP1 (SYNTH-POP5)
the graph with 10% (50%) “popular” camouflage.

With the different settings above, we have the 5 synthetic datasets.
Evaluation. If we denote the injected nodes by positive samples, and the others by negative

samples, we can record the true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) rates, which we use the standard definition [Fawcett 2006] to calculate the three
popular metrics: accuracy, precision and recall. High accuracy, precision and recall will be a better
method.

2Following the model, we assign out-degrees do(u) and in-degrees di(v) to each node u and v respectively; we then create
edge (u, v) with probability proportional to do(v)di(u).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Jiang et al.

(a) InF-plot on SYNTH-3M (b) SN-plot on SYNTH-3M

(c) InF-plot on SYNTH-RAND1 (d) SN-plot on SYNTH-RAND1

(e) InF-plot on SYNTH-RAND5 (f) SN-plot on SYNTH-RAND5

Fig. 3: CATCHSYNC can catch injections, despite of “random camouflage”: The data set in (a)
has no camouflage and the SN-plot in (b) can easily catch the injections. Camouflage can hide the
injected nodes in or put them close to the dominating parts in (c) and (e), but the SN-plots still catch
them in (d) and (f).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:15

(a) InF-plot on SYNTH-POP1 (b) SN-plot on SYNTH-POP1

(c) InF-plot on SYNTH-POP5 (d) SN-plot on SYNTH-POP5

Fig. 4: CATCHSYNC can catch injections, despite of “popular camouflage”: Different from ran-
dom camouflage, popular camouflage can make the injected nodes too similar with the normal ones
to be distinguished with the feature space plot. The injected nodes have been merged into dominat-
ing parts in (a) and (c), but still well performing, SN-plots can catch them in (b) and (d).

5.1.2. Real data. Description. We use our three real world datasets, TWITTERSG, WEIBO-
JANSG and WEIBONOVSG, all of which are complete graphs of popular online social networks
with billions of edges.

Thanks to the public download links3, CATCHSYNC is reproducible on the TWITTERSG data. As
the webpage says, due to Twitter’s new Terms of Services, academic researchers cannot access the
side information like the tweet data. Fortunately, we can usually get the who-follows-whom data,
or directed graphs from different applications. Then we can operate our side-information oblivious
method CATCHSYNC.

WEIBOJANSG was crawled in January 2011 from Tencent Weibo, one of the biggest microblog-
ging services in China, while WEIBONOVSG was crawled in November 2011 from the same plat-

3http://an.kaist.ac.kr/traces/WWW2010.html

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Jiang et al.

form. For each dataset CATCHSYNC only uses the graph structure, but we have the user ID and name
associated with the nodes, so that we can provide real links to check the users’ profile information.

Nodes Edges Suspicious/Labeled source nodes
TWITTERSG 41,652,230 1,468,365,182 173 / 1,000
WEIBOJANSG 117,288,075 3,134,074,580 237 / 1,000WEIBONOVSG 353,509,867 12,168,482,951

Table VI: Real data from Twitter and Tencent Weibo: the real world graphs we study are complete
social graphs with multimillion nodes and billion edges. We have used human labor to label a small
piece of both of them for ground truth.

Evaluation. For TWITTERSG, WEIBOJANSG and WEIBONOVSG, we sample 1,000 nodes and
conduct a user study to label them as suspicious or normal accounts. Half of the nodes are randomly
selected from the set Usync and half are not. Although the average suspiciousness of samples is
higher than that of the entire dataset, it is fair for all the algorithms in our experiments. The 5
volunteers are all 20 to 25-year-old college students who have been social network users for at least
3 years. They are provided URL links directed to the 1000 users’ Twitter or Tencent Weibo pages,
and read their tweets and profile information. A user is labeled as a suspicious one if the volunteer
finds he or she matches too many of the following clues:
— Disabled account: It has been disabled by the services. For example, Weibo user

@marra xiao bai had 9 followers and 36 followees in 2011. Twitter user @wYWvk0310 had
666 followers and 926 followees in 2010. But both of them have been disabled now.

— Suspicious user name: They have strange self-declared information that follows a narrow pat-
tern such as Twitter names in the form of @“Buy XX##” (@Buy AB22, @Buy BT47), Weibo
names in the form of “a#####” (@a58444, @a70054).

— Many followees but few or zero tweets: It has hundreds of followees but it never posts a
single tweet. Twitter user @P8igBg801 had 923 followees in 2010 and @AjaurNYj2 had 869
followees, but both of them post nothing.

— Malicious tweet content: The account posts duplicated tweets or malicious links for monetary
purposes. For example, Twitter user @Buy BT66 posts only 3 messages but all of them are
about “bed flat for sale”. Weibo account @aa52011 posts hundreds of similar messages about
online games.

Finally, we give a user a “suspicious” label if 3 (more than a half) of the volunteers think it is
suspicious. Our task here is to detect the users with the “suspicious” labels. Similarly with the eval-
uation method on synthetic data, we use accuracy, precision and recall to evaluate the effectiveness.
A good detection algorithm will have high values of accuracy, precision and recall.

5.2. Competing Algorithms
We carefully implement the following state-of-the-art methods as competing algorithms: (a) ODD-
BALL [Akoglu et al. 2010], looking for near-cliques and stars that are suspected as strange nodes
in the graph; (b) OUTRANK [Moonesinghe and Tan 2008], using random walk model across the
similarity measure to give the outlierness of each node; (c) SPOKEN [Prakash et al. 2010], using
pairs of eigenvectors to find well-connected communities. When operating on the labeled real data,
we implement a content-based spammer detection method SPOT [Perez et al. 2011], which learns
the words and the number of malicious links in the accounts’ tweets.

As mentioned before, our CATCHSYNC is orthogonal to the text-based methods like SPOT.
Thus, we develop a hybrid method, CATCHSYNC+SPOT, that suspects the nodes detected by either
CATCHSYNC or SPOT. It learns from both the graph structure and text-based features from tweets.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://t.qq.com/marra_xiao_bai
http://twitter.com/wYWvk0310
http://twitter.com/Buy_AB22
http://twitter.com/Buy_BT47
http://t.qq.com/a58444
http://t.qq.com/a70054
http://twitter.com/P8igBg801
http://twitter.com/AjaurNYj2
http://twitter.com/Buy_BT66
http://t.qq.com/aa52011

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:17

All the algorithms are implemented with JAVA, and all experiments are performed on a single
machine with Intel Xeon CPU at 2.40GHz and 32GB RAM.

5.3. Detection Effectiveness on Synthetic Data
In this section, we conduct experiments to demonstrate the effectiveness of our proposed method
on synthetic data. We first show how we capture injected group attacks in feature space and
synchronicity-normality plot. Second, we give accuracy, precision and recall on detecting the in-
jected nodes. Finally, we show the observation of restoring the power low by removing suspicious
nodes.

5.3.1. Injected group attacks shown in feature space and SN-plot. In Figure 3a we plot the feature
space of synthetic graph SYNTH-3M. The injected node groups are outliers from the majority.
The SN-plot in 3b in our method CATCHSYNC can easily catch them since they fall along the
synchronicity axis (with almost zero normality and very high synchronicity values). Next in Figure 3
and Figure 4, we show how well the SN-plots work in the cases of “random camouflage” and
“popular camouflage”.

For random camouflage, when the weight of camouflage becomes larger, from dcamou=10% in
SYNTH-RAND1 to dcamou=50% in SYNTH-RAND5, the injected target nodes becomes closer to
the dominating part in the InF-plot (see Figure 3c and Figure 3e). The SN-plots in Figure 3d and
Figure 3f show that the injected source nodes still have very large synchronicity and extremely small
normality values.

For popular camouflage, when the weight of camouflage becomes larger, from dcamou=10% in
SYNTH-POP1 to dcamou=50% in SYNTH-POP5, the injected target nodes becomes not only closer
to the dominating part in the InF-plot, but merged into the nodes, in other words, invisible for
traditional anomaly detection methods (see Figure 4a and Figure 4c). The SN-plots in Figure 4b
and Figure 4d show that the injected source nodes still have very large synchronicity and extremely
small normality values, though they have been closer to the majority.

In summary, our method CATCHSYNC can successfully catch the injected group attacks with
SN-plots that have smart strategies to hide themselves in InF-plots.

5.3.2. Accuracy, precision and recall on injected node detection.. Table VII shows the accuracy
on detecting the injected nodes from the 3 synthetic graphs with 1, 2 and 3 million nodes. When
there is no “camouflage”, CATCHSYNC reaches greater than 95% accuracy. Table VIII shows the re-
sults on synthetic graphs with different weights of “random” or “popular” camouflage. Our method
CATCHSYNC can outperform the best of the other methods by 29.6% accuracy on SYNTH-RAND1
and 27.5% accuracy on SYNTH-POP5. Figure 5 plots the precision-recall curves to test the perfor-
mance of ranking the suspiciousness of nodes. Our method CATCHSYNC (the red filled triangle)
can achieve both higher precision and recall values.

Synthetic graph SYNTH-1M SYNTH-2M SYNTH-3M
CATCHSYNC 0.998 0.987 0.956
ODDBALL 0.827 0.796 0.755
OUTRANK 0.805 0.777 0.725
SPOKEN 0.695 0.682 0.677

Table VII: CATCHSYNC consistently beats competitors: it reaches higher accuracy, nearly 100%,
on detecting injected nodes on different sizes of synthetic graphs (1, 2 and 3 million nodes).

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Jiang et al.

Synthetic graph SYNTH-RAND1 SYNTH-RAND5 SYNTH-POP1 SYNTH-POP5
Camouflage (dcamou) 10% 50% 10% 50%
CATCHSYNC 0.910 0.764 0.885 0.792
ODDBALL 0.702 0.525 0.657 0.433
OUTRANK 0.678 0.516 0.694 0.392
SPOKEN 0.586 0.470 0.553 0.351

Table VIII: CATCHSYNC consistently wins, despite “camouflage”: though the synthetic graphs
have been injected with 10% or 50% links as “random camouflage” or “popular camouflage”. Our
method CATCHSYNC reaches higher accuracy on detecting injected nodes.

(a) SYNTH-RAND1 (b) SYNTH-POP5

Fig. 5: CATCHSYNC achieves higher precision and recall when detecting injected nodes on synthetic
graphs with (a) 10% random camouflage and (b) 50% popular camouflage.

5.3.3. Restoring the power law. The injected source nodes connect to 20 from the same set of
targets. Due to this anomalous behavior pattern, the out-degree distribution has a spike at degree 20.
Figure 6 plots the out-degree distributions before and after we operate CATCHSYNC on the synthetic
graphs of different sizes. The spike on the distribution shrinks with the size of the graph increasing.
No matter how big the spike is, our method can detect the injected nodes and we see if we remove
them and their out-going edges, then the power-law degree distribution is restored.

(a) SYNTH-1M (b) SYNTH-2M (c) SYNTH-3M

Fig. 6: CATCHSYNC restores the power law: the degree distribution is recovered after the removal
of suspicious nodes.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:19

5.4. Detection Effectiveness on Real Data
In this section, we conduct experiments to demonstrate the effectiveness of our proposed method on
real data. We first give accuracy, precision and recall on detecting frauds in real data. Second, we
show how we restore the power low by removing suspicious nodes. Finally, we show our observa-
tions on changes in the feature space.

5.4.1. Accuracy, precision and recall on real data. Table IX shows the accuracy on detecting the
labeled suspicious nodes from the three real social graphs. Also in Figure 7, we plot the precision-
recall curves of CATCHSYNC, OUTRANK, SPOT and the hybrid algorithm CATCHSYNC+SPOT.
We examine the results and give the following observations and explanations.
— CATCHSYNC outperforms OUTRANK. CATCHSYNC learns graph-based features of synchro-

nized behavior that OUTRANK cannot capture using a random walk model with a data dedicated
threshold.

— CATCHSYNC outperforms SPOT. CATCHSYNC learns graph-based features from the struc-
tural information, and SPOT learns text-based features from users’ tweets. Since the main char-
acteristics of the suspicious users are group attacks, CATCHSYNC has high accuracy, precision
and recall than SPOT.

TWITTERSG WEIBOJANSG WEIBONOVSG
CATCHSYNC 0.751 0.694 0.654
OUTRANK 0.412 0.377 0.336
SPOT 0.597 0.653 0.611
CATCHSYNC+SPOT 0.813 0.785 0.709

Table IX: CATCHSYNC+SPOT outperforms every single other method: CATCHSYNC is better
than OUTRANK at learning the structure, while SPOT learns the text; the combination wins the last.

(a) TWITTERSG (b) WEIBOJANSG (c) WEIBONOVSG

Fig. 7: CATCHSYNC+SPOT is the best at ranking the suspiciousness: it reaches the highest
precision and recall when we are detecting suspicious nodes. (Better to be viewed in color.)

Actually, CATCHSYNC is complementary to SPOT: combining the flagged nodes, we get even
better performance (purple line on Figure 7). The hybrid algorithm uses both of them to catch
the different types of attackers. CATCHSYNC+SPOT consistently outperforms the competitor in
detection accuracy by 36% on TWITTERSG, 20% on WEIBOJANSG and 16% on WEIBONOVSG.
We analyze CATCHSYNC’s False Positives and False Negatives as a clue to further improve the
performance of catching suspicious behaviors for social networking services.
— CATCHSYNC’s FNs can often be caught by SPOT. CATCHSYNC’s false negatives post a large

number of messages with links directed to online game or shopping websites. However, they have
few followers and followees, and thus, CATCHSYNC, with poor structural information, cannot
score their suspiciousness, but SPOT can.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Jiang et al.

— CATCHSYNC’s FPs are group attacks that are difficult to label. The supposedly false pos-
itives have common user names and profile information, so the volunteers consider them as
normal accounts. However, CATCHSYNC detects their synchronized behaviors and reports that
they operate in group, consistently following the same group of users. This demonstrates that
group attacks are difficult for humans to label.

We suggest the social network administrators use our CATCHSYNC on their who-follows-whom
graphs, while also using methods like SPOT that learn text-based features from tweets and profiles.

5.4.2. Restoring the power law. While in the synthetic datasets the recovery of the power law
followed directly from our high recall, this is not necessarily the case on real world datasets because
we can only measure our accuracy on the subset of nodes we label. Looking at the out-degree distri-
bution of TWITTERSG in Figure 1b, WEIBOJANSG in Figure 1c, and WEIBONOVSG in Figure 1c,
we see that removing the millions of caught suspicious nodes from the graph does leave only a
smooth power law distribution on the remaining part of the graph. Because a power law distribution
has been found to be typical of social networks and because the original distribution is not directly
used in CATCHSYNC, this is strong evidence that our recall on the full datasets is high and that
CATCHSYNC is effective.

5.4.3. Observations in the feature space. We provide interesting observations from the change of
feature space before and after we operate CATCHSYNC on WEIBOJANSG. Figure 8a, 8b and 8c are
OutF-plots arranged as an equation: all nodes minus suspicious nodes with synchronized behaviors
equals normal nodes. Figure 8b shows the suspicious source nodes look synchronized and abnormal
in the OutF-plot: they are coherent in red clusters or on blue stripes that deviate from the majority.
The red clusters and blue stripes disappear in Figure 8c after we remove them from the graph.
Figure 8d, 8e and 8f show a similar equation of InF-plots. Figure 8e shows that the suspicious
targets are in a purple cluster in Figure 8f the cluster disappears after we remove them. The above
observations provide evidence of the suspiciousness of the nodes who have synchronized behaviors.
Our method CATCHSYNC can remove the strange patterns in the feature space.

5.5. CatchSync Properties
In this section, we demonstrate properties of our proposed method. First, we show its robustness
with repect to paramter α. Next, we show its robustness with repect to the number of grid cells G.
Finally, we demonstrate that the method has high speed and scalable to the data.

5.5.1. Robustness with respect to α. Within the synthetic data, we conduct experiments on the
robustness to changes in α, the number of standard deviations from the mean for a node to be
labelled as suspicious. In short, α=3.0 gives either the best result, or very close to it, and so do
nearby values of α. In more detail, we test the sensitivity of precision and recall with respect to α,
on the synthetic graphs of 3 different sizes. Figure 9 plots precision-recall curves: the ideal point is,
of course, (1.0, 1.0); although α changes from 0.5 to 5.0, both precision and recall are still over 0.8.
The performance of our algorithm is rather robust on α. We set α = 3.0 as the default value for all
of our other experiments. Note that approximately 99.7% of the observations fall within 3 standard
deviations of the mean in the normal distribution. The suspicious nodes take the small percentage
(0.3%) but still a big number since the graphs often contain millions of nodes, which makes this
detection problem rather challenging.

5.5.2. Robustness with respect to the number of grid cells G. For ensuring the scalability of com-
puting synchronicity and normality values, we make an approximation algorithm inside our method
CATCHSYNC. With the number of grid cells in the feature space G decreasing from 10002 to 5002,
2002 . . . , we test the performance (the accuracy of detecting suspicious nodes). We plot the number
of grid cells versus accuracy in Figure 10a for synthetic data including SYNTH-1M, SYNTH-2M
and SYNTH-3M, and in Figure 10b for real data including TWITTERSG, WEIBOJANSG and WEI-
BONOVSG. We can see the robustness with respect to G when G is larger than 502, though the
accuracy will decrease a lot when G is smaller than 202. Note that if we choose 2 as the default

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:21

(a) All sources (b) Caught sources (c) Normal sources

(d) All targets (e) Caught targets (f) Normal targets

Fig. 8: Sources and targets caught by CATCHSYNC are outliers: (a,b,c) and (d,e,f) form two equa-
tions of OutF-/InF-plots. (a) minus (b) equals (c); (d) minus (e) equals (f), where (a,d) show all
nodes, (b,e) show suspicious nodes and (c,f) show normal ones.

(a) SYNTH-1M (b) SYNTH-2M (c) SYNTH-3M

Fig. 9: Robustness is near ideal: Although the performance of CATCHSYNC is insensitive, we
suggest α = 3.0 as the default.

value for b, while in our cases, the default number of grid cells is 40 × 80, the performance is as
good as the complex settings like G = 10002.

5.5.3. Speed and scalability. We measure the run time on synthetic graphs with 1-3 million nodes.
Figure 11a plots processor time vs graph size, showing that CATCHSYNC (the red filled triangles)
scales linearly with the graph size and runs faster than alternatives. Figure 11b shows the run time

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Jiang et al.

(a) Synthetic data

(b) Real data

Fig. 10: Robustness to grid size: Note that with the number of grid cells G decreasing from 10002

to 5002, 2002, . . . , the detection performance remains high in the accuracy evaluation. b = 2 is a
good setting for generally applying CATCHSYNC. However, when G has been as small as 20 × 20,
10 × 10, CATCHSYNC suddenly fails to detect the injected nodes and suspicious accounts.

in each step. The measures, synchronicity and normality, could be computed very fast, taking only
10% time of the features (degree and HITS score), while the features can be previously chosen and
calculated. Therefore, CATCHSYNC performs fast online for large graphs.

5.6. Discovery: A Case Study
As was mentioned earlier, detecting suspicious behavior is not merely a labeling problem. In the
real world there are always new types of attacks that arise and distort the service being provided.
While we have demonstrated that CATCHSYNC is successful at detecting classic spammy behavior,
it also discovers more subtle types of suspicious behavior that a simpler labeling analysis would
miss.

Looking online, it is easy to see that fraud on Twitter is much more complex than individual
users posting tweets for money. In general users can get paid to tweet and the amount is based
on how many followers they have45. As a result, this has created marketplaces for buying Twitter

4PaidPerTweet - Get Paid For Tweets. http://paidpertweet.com
5Twitter Advertising: Sponsored Tweets. http://sponsoredtweets.com

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://paidpertweet.com
http://sponsoredtweets.com

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:23

(a) Scalability (b) Run time in two steps

Fig. 11: CATCHSYNC is fast and scalable: (a) Run time to detect injected nodes as the graph
grows. (b) Run time for feature space computation and synchronicity-normality plot.

Fig. 12: CATCHSYNC at work: using only structure information, we examine the biggest group that
CATCHSYNC flagged (91,035 followers, 667 followees); we show 3 of the former and 4 of the latter.
Side information corroborates our findings, raising several red flags: (a) the 3 shown followers have
∼0 tweets, and near-identical counts of followers and followees, (b) the 4 shown followees mainly
tweet urls, one of which is flagged by Twitter as unsafe.

followers, which besides providing politicians the appearance of popularity6, also raises the value
of the “Tweeter.” Additionally there are marketplaces7 to buy and sell Twitter accounts, again with
the number of followers being the primary value. Because the market is complex, labeling accounts
can be difficult with only a subtle red flags raising eyebrows. Here we examine closer some of the
Twitter accounts we caught and we use side information to explain the range of suspicious behavior
detected by CATCHSYNC.

Figure 12 shows a tiny subset (3 followers and 4 followees), from a large, suspicious group of
91K followers and about 700 followees), that was caught by CATCHSYNC. We see 3 accounts on
the left that follow the 4 accounts on the right (and many others). Overall, each account, on its own,
raises a few small suspicions, but our point is that, collectively, these accounts raise many more
suspicions. Below we break down the types of accounts we find:

5.6.1. Dedicated Followers. Looking in Figure 12, we see on the left three followers:
@AjaQwX1Z3, @AjaurNYj2 and @mastertwitlist. All three accounts have a slightly unusual
name, few or no tweets, follow approximately 700 other accounts, and are surprisingly followed by
approximately 400 accounts. Alone, each account may look slightly unusual but none of this evi-
dence looks truly incriminating. As a group, however, the accounts are clearly suspicious because,

6Newt Gingrich’s Twitter follower count under scrutiny - Faster Forward - The Washington Post. http://www.washingtonpost.
com/blogs/faster-forward/post/newt-gingrichs-twitter-follower-count-under-scrutiny/2011/08/02/gIQAVQ33pI blog.html
7Buy, Sell, and Trade Twitter accounts. http://socialsellouts.com

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://twitter.com/AjaQwX1Z3
http://twitter.com/AjaurNYj2
http://twitter.com/mastertwitlist
http://www.washingtonpost.com/blogs/faster-forward/post/newt-gingrichs-twitter-follower-count-under-scrutiny/2011/08/02/gIQAVQ33pI_blog.html
http://www.washingtonpost.com/blogs/faster-forward/post/newt-gingrichs-twitter-follower-count-under-scrutiny/2011/08/02/gIQAVQ33pI_blog.html
http://socialsellouts.com

A:24 M. Jiang et al.

along with them all having the same red flags, they all follow the same group of slightly unusual
people.

5.6.2. Surprising Followees. On the right side of Figure 12 we see four of the accounts being fol-
lowed. Within the group of followees, we find a few common patterns of obviously spam accounts,
“SEO experts” tweeting suspicious content, and small business owners with an unusual number of
followers. In the first case, @AaronMartirano is slightly suspicious with a most recent gibberish
tweet (with words “auto follower”, “follback”) linking to an empty Blogger that had been labeled
“Unsafe” by Twitter. Slightly different to the right we see @aaronseal, whose profile offers the
GPS coordinates of a Bell Credit Union in Kansas and tweets to free Wordpress themes or asks users
to “Like our Facebook Page” for a restaurant. Similarly we observe @biz2day, a self described
“webmaster in the advertising and SEO business,” who does not tweet “Unsafe” content, but links
to other suspicious content like get-rich-quick schemes. For both @aaronseal and @biz2day, the
consistent odd linking raises a red flag, and paired with the synchronized followers suggests that
these are possibly purchased tweets and followers were bought to inflate the price. Last we see
@HousingReporter a real estate agent with 164,700 followers - more than Massachusetts Senator
and U.S. Presidential Hopeful Elizabeth Warren. A small red flag, but of course it is possible for a
small business owner to want to appear more popular and thus buy followers.

In all of these cases it is of course impossible to know for sure how their followers were obtained
or why they tweet the way they do. However, given that CATCHSYNC found these very different
accounts based only on the graph structure, all of these other contextual red flags provide strong
additional evidence that the followees caught are in fact very suspicious and that CATCHSYNC is
effective at catching even subtle or hidden suspicious behavior.

6. CONCLUSION
We propose a novel method called CATCHSYNC that exploits two signs of artificial and non-organic
behavior, synchronicity and normality, to automatically report and catch suspicious nodes on large
directed graphs. CATCHSYNC has desirable properties:
— Effectiveness: it spots synchronized behavior and indeed catches suspicious source-target

groups.
— Scalability: its complexity is linear in the number of edges.
— Parameter free: the operator can easily implement the algorithm without specifying any param-

eters such as the density, the number and scale of groups.
— Side information oblivious: it needs no side information. It is solely based on topology, and

it requires neither labeled nodes nor node attributes, though it can incorporate them for better
performance.

Experimental results using both real and synthetic datasets demonstrated that CATCHSYNC can
catch the suspicious behavior patterns that previous approaches cannot capture.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of China, No. 61370022, No. 61210008, and No. 61303075;
International Science and Technology Cooperation Program of China, No. 2013DFG12870; National Program on Key Ba-
sic Research Project, No. 2011CB302206; NExT Research Center funded by MDA, Singapore, WBS:R-252-300-001-490.
Thanks for the support of National Science Foundation, No. CNS-1314632; Army Research Laboratory under Coopera-
tive Agreement Number W911NF-09-2-0053; U.S. Army Research Office (ARO) and Defense Advanced Research Projects
Agency (DARPA), No. W911NF-11-C-0088; and the National Science Foundation Graduate Research Fellowship, Grant
No. DGE-1252522.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation, DARPA, or other funding parties. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

http://twitter.com/AaronMartirano
http://twitter.com/aaronseal
http://twitter.com/biz2day
http://twitter.com/aaronseal
http://twitter.com/biz2day
http://twitter.com/HousingReporter

Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach A:25

REFERENCES
Anupama Aggarwal and Ponnurangam Kumaraguru. 2014. Followers or Phantoms? An Anatomy of Purchased Twitter Fol-

lowers. arXiv preprint arXiv:1408.1534 (2014).
Charu C Aggarwal. 2011. An introduction to social network data analytics. Springer.
Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. Oddball: Spotting anomalies in weighted graphs. In Ad-

vances in Knowledge Discovery and Data Mining. Springer, 410–421.
Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. CopyCatch: stopping

group attacks by spotting lockstep behavior in social networks. In Proceedings of the 22nd international conference on
World Wide Web. International World Wide Web Conferences Steering Committee, 119–130.

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins,
and Janet Wiener. 2000. Graph structure in the web. Computer networks 33, 1 (2000), 309–320.

Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding the Detection of Fake Accounts in Large
Scale Social Online Services.. In NSDI. 197–210.

Deepayan Chakrabarti. 2004. Autopart: Parameter-free graph partitioning and outlier detection. In Knowledge Discovery in
Databases: PKDD 2004. Springer, 112–124.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Computing Surveys
(CSUR) 41, 3 (2009), 15.

Duen Horng Chau, Shashank Pandit, and Christos Faloutsos. 2006. Detecting fraudulent personalities in networks of online
auctioneers. In Knowledge Discovery in Databases: PKDD 2006. Springer, 103–114.

Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and S Yu Philip. 2009. Graph OLAP: a multi-dimensional framework for
graph data analysis. Knowledge and Information Systems 21, 1 (2009), 41–63.

Jie Chen and Yousef Saad. 2012. Dense subgraph extraction with application to community detection. Knowledge and Data
Engineering, IEEE Transactions on 24, 7 (2012), 1216–1230.

Fan Chung and Linyuan Lu. 2002. The average distances in random graphs with given expected degrees. Proceedings of the
National Academy of Sciences 99, 25 (2002), 15879–15882.

Diane J Cook and Lawrence B Holder. 2006. Mining graph data. John Wiley & Sons.
Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon, Mohamed Ali Kaafar, and M Zubair Shafiq. 2014. Paying for

Likes? Understanding Facebook Like Fraud Using Honeypots. arXiv preprint arXiv:1409.2097 (2014).
William Eberle and Lawrence Holder. 2007. Discovering structural anomalies in graph-based data. In Data Mining Work-

shops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on. IEEE, 393–398.
Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law relationships of the internet topology. In

ACM SIGCOMM Computer Communication Review, Vol. 29. ACM, 251–262.
Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters 27, 8 (2006), 861–874.
Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3 (2010), 75–174.
Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. D-cores: measuring collaboration of directed

graphs based on degeneracy. In Data Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE, 201–210.
Xia Hu, Jiliang Tang, Yanchao Zhang, and Huan Liu. 2013. Social spammer detection in microblogging. In Proceedings of

the Twenty-Third international joint conference on Artificial Intelligence. AAAI Press, 2633–2639.
Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014a. CatchSync: catching synchronized

behavior in large directed graphs. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 941–950.

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014b. Detecting suspicious following behavior
in multimillion-node social networks. In Proceedings of the companion publication of the 23rd international conference
on World wide web companion. International World Wide Web Conferences Steering Committee, 305–306.

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014c. Inferring Strange Behavior from Con-
nectivity Pattern in Social Networks. In Advances in Knowledge Discovery and Data Mining. Springer, 126–138.

George Karypis and Vipin Kumar. 1995. Metis-unstructured graph partitioning and sparse matrix ordering system, version
2.0. (1995).

Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 46, 5 (1999),
604–632.

Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2010. Structure and evolution of online social networks. In Link mining:
models, algorithms, and applications. Springer, 337–357.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news media?.
In Proceedings of the 19th international conference on World wide web. ACM, 591–600.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. Jiang et al.

Kyumin Lee, James Caverlee, and Steve Webb. 2010. Uncovering social spammers: social honeypots+ machine learning. In
Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval.
ACM, 435–442.

Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and S Yu Philip. 2005. Mining Behavior Graphs for” Backtrace” of Non-
crashing Bugs.. In SDM. SIAM, 286–297.

HDK Moonesinghe and Pang-Ning Tan. 2008. Outrank: a graph-based outlier detection framework using random walk.
International Journal on Artificial Intelligence Tools 17, 01 (2008), 19–36.

Caleb C Noble and Diane J Cook. 2003. Graph-based anomaly detection. In Proceedings of the ninth ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM, 631–636.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. 2007. Netprobe: a fast and scalable system for
fraud detection in online auction networks. In Proceedings of the 16th international conference on World Wide Web.
ACM, 201–210.

Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-cliques. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining. ACM, 228–238.

Charles Perez, Marc Lemercier, Babiga Birregah, and Alain Corpel. 2011. Spot 1.0: Scoring suspicious profiles on twitter.
In Advances in Social Networks Analysis and Mining (ASONAM), 2011 International Conference on. IEEE, 377–381.

B Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and Christos Faloutsos. 2010. Eigenspokes:
Surprising patterns and scalable community chipping in large graphs. In Advances in Knowledge Discovery and Data
Mining. Springer, 435–448.

Shashi Shekhar, Chang-Tien Lu, and Pusheng Zhang. 2001. Detecting graph-based spatial outliers: algorithms and appli-
cations (a summary of results). In Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 371–376.

Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. 2010. Detecting spammers on social networks. In Proceed-
ings of the 26th Annual Computer Security Applications Conference. ACM, 1–9.

Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. 2005. Neighborhood formation and anomaly
detection in bipartite graphs. In Data Mining, Fifth IEEE International Conference on. IEEE, 8–pp.

David MJ Tax and Robert PW Duin. 1998. Outlier detection using classifier instability. In Advances in Pattern Recognition.
Springer, 593–601.

Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria Tsiarli. 2013. Denser than the
densest subgraph: Extracting optimal quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 104–112.

Xifeng Yan and Jiawei Han. 2003. CloseGraph: mining closed frequent graph patterns. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM, 286–295.

Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. 2010. Mining frequent subgraph patterns from uncertain graph
data. Knowledge and Data Engineering, IEEE Transactions on 22, 9 (2010), 1203–1218.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Related Work
	Graph-based Anomaly Detection
	Subgraph Mining Algorithms
	Social Spammer Detection

	Synchronized Behavior Detection
	Problem Definition
	Proposed Approach
	Feature space
	Synchronicity and normality
	Outliers in SN-plot

	CatchSync Algorithm
	Implementation
	Complexity Analysis
	Accuracy Guarantee for Speed-up

	Experiments
	Evaluation: Data and Ground Truth
	Synthetic data
	Real data

	Competing Algorithms
	Detection Effectiveness on Synthetic Data
	Injected group attacks shown in feature space and SN-plot
	Accuracy, precision and recall on injected node detection.
	Restoring the power law

	Detection Effectiveness on Real Data
	Accuracy, precision and recall on real data
	Restoring the power law
	Observations in the feature space

	CatchSync Properties
	Robustness with respect to
	Robustness with respect to the number of grid cells G
	Speed and scalability

	Discovery: A Case Study
	Dedicated Followers
	Surprising Followees

	Conclusion

