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In recent years, we witnessed a huge success of Convolutional Neural Networks on the task of the image

classi�cation. However, these models are notoriously data hungry and require tons of training images to learn

the parameters. In contrast, people are far be�er learner who can learn a new concept very fast with only

a few samples. �e plausible mysteries making the di�erence are two fundamental learning mechanisms:

learning to learn and learning by analogy. In this paper, we a�empt to investigate a new human-like learning

method by organically combining these two mechanisms. In particular, we study how to generalize the

classi�cation parameters of previously learned concepts to a new concept. we �rst propose a novel Visual

Analogy Network Embedded Regression (VANER) model to jointly learn a low-dimensional embedding space

and a linear mapping function from the embedding space to classi�cation parameters for base classes. We

then propose an out-of-sample embedding method to learn the embedding of a new class represented by a few

samples through its visual analogy with base classes. By inpu�ing the learned embedding into VANER, we can

derive the classi�cation parameters for the new class.�ese classi�cation parameters are purely generalized

from base classes (i.e. transferred classi�cation parameters), while the samples in the new class, although only

a few, can also be exploited to generate a set of classi�cation parameters (i.e. model classi�cation parameters).

�erefore, we further investigate the fusion strategy of the two kinds of parameters so that the prior knowledge

and data knowledge can be fully leveraged. We also conduct extensive experiments on ImageNet and the

results show that our method can consistently and signi�cantly outperform state-of-the-art baselines.
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39:2 L. Zhou et al.

1 INTRODUCTION
�e recent progress of machine learning, especially the emergence of deep learning, has advanced

the image classi�cation performance into an unprecedented level. �e error rates on large-scale

benchmark datasets has been halved and halved again, even approaching human-level performance

on some object recognition benchmarks. Despite the success, the state-of-the-art models are

notoriously data hungry, requiring tons of samples for parameter learning. In real cases, however,

the visual phenomena follows a long-tail distribution [23] where only a few sub-categories are

data-rich and the rest are with limited training samples. How to learn a classi�er from as fewer

samples as possible is critical for real applications and fundamental for exploring new learning

mechanisms.

Compared with machines, people are far be�er learners as they are capable of learning models

from very limited samples of a new category and make accurate predictions and judgements

accordingly. An intuitive example is that a baby learner can learn to recognize a wolf with only a

few sample images provided that he/she has been able to successfully recognize a dog. �e key

mystery making the di�erence is that people have strong prior knowledge to generalize across

di�erent categories [9]. It means that people do not need to learn a new classi�er (e.g. wolf)

from scratch as most machine learning methods, but generalize and adapt the previously learned

classi�ers (e.g. dog) towards the new category. A major way to acquire these prior knowledge is

through learning to learn from previous experience. In the image classi�cation scenario, learning

to learn refers to the mechanisms that learning to recognize a new concept can be accelerated by

previous learning of other related concepts.

A typical image classi�er is constituted by representation and classi�cation steps, leading to

two fundamental problems in learning to learn image classi�ers: (1) how to generalize the repre-

sentations from previous concepts to a new concept, and (2) how to generalize the classi�cation

parameters of previous concepts to a new concept. In literature, transfer learning and domain

adaptation methods [10] are proposed with a similar notion, mainly focusing on the problem of

representation generalization across di�erent domains and tasks. With the development of CNN-

based image classi�cation models, the high-level representations learned from very large scale

labeled dataset, e.g. the fc7 layer in AlexNet, are demonstrated to have good transfer ability across

di�erent concepts or even di�erent datasets [19], which signi�cantly alleviate the representation

generalization problem. However, how to generalize the classi�cation parameters in deep models

(e.g. the fc7 layer in AlexNet) from well-trained concepts to a new concept (with only a few samples)

is largely ignored by previous studies.

In this paper, we target the following problem. Given a well-trained N-class CNN model for

N base classes, how to learn a binary classi�er for the (N + 1)th class with only a few samples?

More speci�cally, we constrain the se�ing to let (N + 1)th class share the same representation

space as N base classes, i.e. we directly copy the representation layers of the N-class CNN model

to the (N + 1)th class, which is a common way in deep representation transfer [8, 20, 21]. Such a

se�ing provides a reasonable and fair foundation for investigating how to optimally generalize

classi�cation parameters. Given a new class, the key problem is to identify which base classes’

classi�cation parameters should be transferred.

Learning by analogy has been proved to be a fundamental building block in human learning

process [3], and share similar context with our problem. When we face a new situation, we recall

a similar situation by matching them up, and then we learn from it. Similarly, in the previous

example of dog and wolf, we have a plausible explanation on the fast learning of wolf that a

human learner selects dog from the base classes by visual analogy and transfers its classi�cation
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parameters for wolf classi�cation. In this sense, visual analogy provides e�ective and informative

clue for generalizing image classi�ers in a way of human-like learning. But the limited number of

samples in the new class would cause inaccurate and unstable measurements on visual analogy

in high-dimensional representation space, and how to transfer the classi�cation parameters from

selected base classes to a new class is also highly non-trivial for the generalization e�cacy.

To address the above problems, we �rst propose a novel Visual Analogy Network Embedded

Regression (VANER) model to jointly learn a low-dimensional embedding space and a linear

mapping function from the embedding space to classi�cation parameters for base classes. In

particular, we learn a low dimensional embedding for each base class with the constraint of

embedding similarity between two base classes being able to re�ect their visual analogy in the

original representation space. Meanwhile, we learn a linear mapping function from the embedding

of a base class to its previously learned classi�cation parameters (i.e. the logistic regression

parameters). �e VANER model enables the transformation from original representation space

to embedded space and further into classi�cation parameters. We then propose an out-of-sample

embedding method to learn the embedding of a new class represented by a few samples through its

visual analogy with base classes. By inpu�ing the learned embedding into VANER, we can derive

the classi�cation parameters for the new class. Note that these classi�cation parameters are purely

generalized from base classes (i.e. transferred classi�cation parameters), while the samples in the

new class, although only a few, can also be exploited to generate a set of classi�cation parameters

(i.e. model classi�cation parameters). �erefore, we further investigate the fusion strategy of the

two kinds of parameters so that the prior knowledge and data knowledge can be fully leveraged.

�e framework of the proposed method is illustrated in Figure 1.

We intensively evaluate the proposed method, and the results show that our method can reach

0.87 AUC in average in 200 new classes from ImageNet in one-shot se�ing (i.e. each new class

only consists of 1 image sample). In contrast, the AUC of logistic regression with only endogenous

parameters is 0.77. We also �nd that improvement margins (between our method and baselines) in

di�erent new classes have signi�cant positive correlation with the relative similarity ratio between

a new class and base classes, indicating that our method is consistent with human-like learning.

�e technical contributions of this paper are three folds.

• We study the problem of learning to learn from a new angle: given �xed representation

space, how to generalize the classi�cation parameters of base classes to a new class?

�is problem se�ing can promote new research a�empts towards human-like learning

mechanism.

• We propose to use visual analogy as the bridge for classi�cation parameter generalization

across di�erent classes, and propose a novel VANER method to achieve the transformation

from original representation to classi�cation parameters for any new class.

• We intensively evaluate the proposed method and the results show that our method consis-

tently and signi�cantly outperform other baselines, and, more importantly, our method is

more consistent with human-like learning.

�e rest of the paper are organized as follows. In Section 2, we brie�y review the related work

of the image classi�cation problem especially on low-shot problem and the network embeddings.

In Section 3, we present the framework of our VANER model. In Section 4, we discuss about the

experimental results. Finally, we conclude the paper with a discussion of our �ndings and open

issues in section 5.
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Fig. 1. The framework of learning to learn image classifiers. Training Base Classes with VANER: By training
base classes with VANER, we derive the embeddings of each base class and the common mapping function
from embeddings to classification parameters. Generalization to a New Class: Given a new class with only a
few samples, we can infer its embedding through out-of-sample inference, and then transform the embedding
into transferred classification parameters by the mapping function learned by VANER. A�er training the
classifier with new class samples and ge�ing the model classification parameters, we fuse the two kinds of
parameters to form the final classifier.

2 RELATEDWORK
�e related works can be categorized in three lines, including image classi�cation with deep

learning, one/low-shot image classi�cation and network embedding, which we brie�y review and

discuss as follow.

Image Classi�cation with Deep Learning. �e �rst paper concentrating on the task of image

classi�cation using deep convolutional neural network on large-scaled image dataset dates back to

the AlexNet [7] in 2012, which reaches an error rate of 17.0% of top-5 prediction on the ILSVRC2010

dataset. A�er the huge success of the deep neural network on image classi�cation, more and more

complex network structures are constantly put forward. Among them, VGGNet[15], GoogLeNet[16]

and the ResNet[5] are well known and they reached an error rate of 6.8%, 6.67%, 3.57% on top-

5 prediction on the same dataset respectively. All of them are end-to-end models with tons of

parameters, leading to its disadvantage of data-hungry.

One/Low-shot Image Classi�cation. One/Low-shot image classi�cation problem mainly

focuses on how to learn much information about a category from just one, or a handful of images

instead of the large-scaled training dataset. Most of one/low-shot image classi�cation algorithms

take advantage of transfer learning. In the early work, [2] proposed a transfer method via a

Bayesian approach on the low-level feature of the images. Due to the e�ectiveness SVM in image

classi�cation, many methods are proposed to combine the SVM parameters of the base classes to

learn for the transfer parameter of one-shot classes. [11, 22] propose a transfer mechanism using

Adaboost method. �ey both construct a set of weak classi�ers through the data from the base

classes, and learn a new classi�er by linearly combining the weak classi�ers. [18] proposes an

adaptive Least-Square SVM method to directly combine the base classes SVM model and learn

the weights automatically. �ese methods cannot work well on one-shot problem, as they require
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su�cient supervised information to learn the weight of the combined model. Also these methods

are based on hand-cra�ed features, which seriously limits their performance.

A�er deep learning is introduced into the large-scale image classi�cation, researchers turn to

investigate the one-shot problem with deep learning. Some methods are proposed to learn a be�er

image representation to adapt to one-shot image classi�cation problem. [6] introduces a two-way

Siamese Neural Network to learn the similarity of two input images using base classes and predict

the most possible one-shot class for test images. [4] proposes a Squared Gradient Magnitude Loss

considering both the multi-class logistic loss and small dataset training loss. Some other methods

combine traditional deep neural network structures with new transfer learning algorithms. [14]

uses Memory-Augmented Neural Networks with a Least Recently Used Access module which can

be seen as an external memory storing previously learned information, and later [20] proposes an

improved method called Matching Network. �ey both capture the similarity of the novel classes

with base classes and utilize the information to do an cross-class transfer, but they optimize the

transfer process in representation learning step, rather than classi�cation step. [21] proposes a

Model Regression Network for intra-class transfer which learns a nonlinear mapping from the

model parameter trained by small-samples to the model parameter trained by large-samples. �is

mapping can be used to infer the classi�cation parameters via only low-shots (i.e. small-samples)

in the new classes. But the correlation pa�erns between small-sample and large-sample parameters

are not always notable, which is demonstrated in our experiments. More recently, a few works

exploit generative models to create more data for training. [12] takes advantage of the deep

generative models to give a method to produce similar images as a given image. [4] then proposes

another algorithm to complete the transformation analogy in high-level image features and use this

mechanism to expand the images in low-shot classes. Data generation is a feasible way to address

the problem of sparse training samples. Di�erently, our paper a�empts to address the problem

from the angle of new learning mechanisms.

Network Embedding. In this paper, we exploit network embedding to model visual analogy

among di�erent classes, so here we brie�y review the recent advances in network embedding.

Network Embedding is used to extract the formalized representation of each node in a large-scaled

graph. �e low-dimension hidden embeddings could capture not only the characteristics of the

whole network (e.g. the relationship between two nodes) but also the features of the each node

itself. Now the network embedding method is widely used in social network area to solve the node

clustering or link prediction problems etc. �ere are many algorithms issued to learn the embeddings

much be�er and much faster. [1] uses a matrix factorization technique which is optimized by SGD.

[17] proposes LINE method which preserves both the �rst-order and second-order proximities

of each node and improves the quality of the embeddings. Network embedding is proved to be a

e�ective method while dealing with graph analysis.

3 THE METHOD
3.1 Notations and Problem Formulation
Suppose that we have an image set I , and the set is divided into base-class set IB = IB

1
∪ IB

2
∪ · · · ∪ IBn

which have su�cient training samples, and novel-class set IN = IN
1
∪ IN

2
∪ · · ·∪ INm which have only

a few training samples in each class. We train an AlexNet [7] on IB as our base CNN model and

extract its fc7 layer as the high-level features of images. �e feature space is denoted as X ⊂ Rd .

For each image in IB , we obtain its fc7 layer feature xBi j ∈ X where i = 1, 2, · · · ,n represents its

class and j = 1, 2, · · · , |IBi | represents its index in class i . We use the same CNN model to derive

high-level representations for images in novel classes, denoted by xNij .
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A typical binary classi�er can be represented as f ( · ;w|X) which is a mapping function f :

Rd −→ R parametrized by w. �e input is a d-dimensional image feature vector and the output

is the possibility that the image belongs to the class. We use wB
i to denote the parameters for

base class i andwN
i for novel class i . Based on the above notations, Our problem is de�ned as follows.

Problem 1 (Learning to learn image classifiers). Given the image features of base classes
XB , the well-trained base classi�er parameters WB , and the image features of a novel class i XN

i with
only a few positive samples, learn the classi�cation parameters wN

i for the novel class, so that the
learned classi�er f ( · ;wN

i |XB ,WB ,XN
i ) can precisely predict labels for the ith novel class.

Note that the problem of learning to learn image classi�ers di�ers from traditional image

classi�cation problems in that the learning of a classi�er for a novel class depend on the previously

learned base-class classi�ers and the image representations in base classes besides the image

samples in the novel class.

3.2 Framework of Learning to Learn Image Classifiers
�e main idea of our method is to generalize the classi�cation parameters of well-trained base

classes to a novel class with only a few training samples. In order to realize this, we propose a

framework for learning to learn image classi�ers (as shown in Figure 1), which consists of two

major steps including (1) learning the mapping function from representation space to classi�cation

parameters in base classes and (2) generalizing the base classi�cation parameters to a novel class.

For the �rst step, we propose a novel VANER model to learn the mapping function. A�er

acquiring the high-level representations from fc7 layer in AlexNet for all images in base classes, we

calculate the mean feature vector for each class, and generate a visual analogy network for base

classes by measuring their pair-wise class similarity. From the visual analogy network, we learn a

low-dimensional embedding for each base class with the constraints that the embeddings of classes

should preserve the visual analogy network structures, and, at the same time, the embedding of a

base class can be transformed into the classi�cation parameters of the base class through a linear

mapping function. By training in base classes, we can derive the embeddings of base classes, and a

mapping function from embeddings to classi�cation parameters.

Given a novel class with only one or a few samples, we get its high-level representations through

the same AlexNet trained in base classes. By comparing its feature vector with those of base classes,

we construct a visual analogy network incorporating the novel classes and base classes, from

which we can infer the embedding for the novel class through an out-of-sample embedding method.

With the inferred embedding of the novel class and the mapping function learned in VANER, we

obtain the classi�cation parameters generalized from base classes. Meanwhile, we also learn the

classi�cation parameters for the new class from its samples (although only a few). A�er that, we

conduct late fusions on these two kinds of parameters so that the knowledge from prior knowledge

and data are fully leveraged. Finally we use the fused classi�cation parameters to classify the novel

class.

�e notion of this framework is that the classi�er for a novel class should be similar as that for a

base class if and only if the novel class is visually analogous with the base class. In the example

of Figure 1, the novel class wolf is similar as the base class dog in high-level representations, so

the link between them will have a high weight in the visual analogy network. �is high-weight

link will enforce the embedding of wolf class to be similar with that of dog class, and the similar

embeddings will result in similar classi�cation parameters as they share the same mapping function.
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In this way, the classi�cation parameters of the dog class which is well trained with su�cient

training data can be successfully transferred to the new wolf class.

3.3 The VANER Model
We de�ne a networkG = (V ,E)whereV is the vertex set of the graph, with each vertex representing

a base class and |V | = n. E is the edge set of the graph, each edge represents visual analogy

relationship between two classes with the edge weight depicting the similarity degree. We use A to

represent the adjacency matrix of the network, and Ai j is the edge weight from vertex i to vertex

j. Ai, : and A:, j stands for the i-th row and the j-th column of A respectively. In our classi�cation

problem, we construct the visual analogy network as a undirected full-connected graph, and edge

weight (i.e. degree of visual analogy) between two classes is calculated by:

Ai j =
xBi · xBj

‖xBi ‖2 · ‖xBj ‖2
. (1)

Here xBi means the average feature vector for class i and this equation is the cosine distance

between two base classes. Note that our graph is an undirected graph, and the adjacency matrix A
is symmetric.

In order to make the visual analogy measurement robust in sparse scenarios, we need to reduce

the representation space dimensions. Our basic hypothesis in generalizing classi�cation parameters

is that if two class are visual similar, they should share similar classi�cation parameters. We realize

this by imposing a linear mapping function from the embedding space to classi�cation parameter

space, so that similar embeddings will result in similar classi�cation parameters. Motivated by this,

we propose a Visual Analogy Network Embedded Regression model.

Let V ∈ Rn×q be the embeddings for all nodes in the network, and each row of V with dimension

q is the embedding for each vertex. Let W ∈ Rn×p represent all parameters of the base classi�ers.

�ere is also a common linear transformation matrix for all base classes T ∈ Rq×p to convert the

embedding space to the classi�cation parameter space for all base classi�ers. �en the loss function

is de�ned as:

L (V,T) = ‖VT −W‖2F + λ‖A − VV>‖2F . (2)

where ‖ · ‖F is the Frobenius Norm of the matrix.

�e �rst term enforces the embeddings to be able to converted into the classi�cation parameter

through a linear transformation. �e second term constrain the embeddings to preserve the

structure of the visual analogy network. Our goal is to �nd the matrix V and T to minimize this

loss function.

�is is a common unconstrained two variables optimization problem and we use the alternative

coordinate descent method to �nd the best solution for V and T, where the gradients are calculated

by: 
∂L (V,T)
∂V

= 2(VT −W)T> + λ(−4AV + 4VV>V)

∂L (V,T)
∂T

= 2V>(VT −W).
(3)

3.4 Embedding Inference for Novel Classes
By training VANER model in base classes, we can get the embeddings for each base class and the

mapping function from embeddings to classi�cation parameters. Given a new class with only a few

samples, we need to infer its embedding.Suppose the embedding for the novel class is vnew ∈ Rq .
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We calculate the similarity of a novel class with all base classes by Equation 1, and we denote this

similarity vector by anew ∈ Rn .

�en we de�ne the objective function for the novel class embedding inference and our goal is to

minimize the following function:

L (vnew ) =




[ A a>new
anew 1

]
−

[
V

vnew

] [
V> v>new

]



2

F
. (4)

Equation 4 is in fact the extension of the second term in Equation 2. As we have li�le information

about the classi�cation parameters of the novel class, we omit the second term in Equation 2.

A�er we delete the independence term of vnew , the �nal minimization problem for us to solve is:

min L (vnew ) = 2



anew − vnewV>

2

2
+ (vnewv>new − 1). (5)

In fact, the second term of Equation 5 is a regular term. We omit the second term and thus the

�rst term is in the form of a linear regression loss. �en we can get the explicit solution for vnew
without using gradient descent. �e solution is represented as:

vnew = anew (V>)+, (6)

where M+ is the Moore-Penrose pseudo-inverse of matrix M de�ned by (M>M)−1M>. Note that

we could speed up the algorithm by pre-computing the pseudo-inverse of V>.

A�er deriving the embedding for the new class, we can easily obtain its transferred classi�cation

parameters by multiplying transformation matrix T:

wN
new = vnewT. (7)

3.5 Late Fusion
As mentioned above, we can also learn the classi�cation parameters of a new class from its samples

(although only a few), and we call them model classi�cation parameters. �en we need to fuse the

transferred classi�cation parameters and model classi�cation parameters into the �nal classi�er.

Here we present three strategies for late fusion: Initializing, Tuning, and Voting.

Let f (·,wN ) : Rd −→ [0, 1] be the binary classi�er for a new class. XT is the mixture set of positive

and negative samples, and y is the label with y = 1 indicating positive sample and y = 0 indicating

negative sample.

Initializing We use the transferred classi�cation parameters as an initialization and then re-learn

the parameters of new classi�er by the new class samples. �e training loss function is de�ned as

the common loss function for classi�cation. �at is:

L (wN ) =
{ ∑
x∈XT

L(f (x,wN ),y)
}
+ λ · R(wN ), (8)

where L(·, ·) is the prediction error and we use cross-entropy loss in our experiment. R(·) is a

regularization term and we use L2-norm in our experiment. For learning wN
, we use the batched

Stochastic Gradient Descent (SGD) and the wN
is initialized with the transferred classi�cation

parameters wN
trans .
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Tuning We train the model classi�cation parameters with new class samples, while adding a loss

term to constrain the similarity of the transferred classi�cation parameters and the �nal parameter:

L (wN ) =
{ ∑
x∈XT

L(f (x,wN ),y)
}
+ λ ·



wN −wN
trans



2

F . (9)

Here, wN
trans is the transferred parameter we obtain from the previous steps (i.e. wN

new in Equation

7). We still use the batched SGD method with a random initialization to solve for wN
.

Voting �is method is a weighted average for the transferred classi�cation parameters and the

learned model classi�cation parameters. First, we learn a wN
model using the Equation 8 with random

initialization. �en we get the �nal parameter by:

wN = wN
trans + λ ·wN

model . (10)

�e hyper-parameter λ serves as a voting weight.

3.6 Complexity Analysis
During the training process of our VANER model, the main cost is to calculate the gradient of the

loss function L (V,T). For calculating the �rst derivative of L with respect to V, the complexity per

iteration is O(nq ·max(p,n)). As to the �rst derivative of L with respect to T, the complexity per

iteration isO(nq ·max(p,q)). While predicting the novel class, if we use Equation 6 for accelerating,

we are able to pre-compute the (V>)+ for O(nq2) and for each novel class, the complexity of the

predicting process is O(q ·max(p,n)).

4 EXPERIMENTS
4.1 Data and Experimental Se�ings
In our experiments, we mainly use the ILSVRC2015 dataset [13], whose training set contains over

1.2 million images in 1,000 categories. We randomly divide the ILSVRC training dataset into 800

base classes and 200 novel classes. We retrain the AlexNet on the 800 base classes as our base CNN

model. Before training, each image is cropped into 227 × 227 size and all of the training se�ing is

the same as [7] except that we do not use the data augmentation method. A�er training, we use

the fc7 layer of AlexNet as the high-level representations for images.

Our goal is to learn the classi�er for a new class given the base classi�ers. So we set our problem

to be a binary classi�cation problem, where the new classi�er is learned to classify the novel class

(as positive samples) and all the base classes (as negative samples). In training phase, we randomly

select k images as the training set for each novel class to simulate k-shot learning scenario. In

testing phase, given a novel class, we randomly select 500 images (with no overlap with the training

set) from it as the positive examples and randomly select 5 images from each base class of the

ILSVRC2015 validation set as negative samples. To eliminate randomness, for any k-shot se�ing,

we run 10 times and report the average result in the following experiments.

�e evaluating metric in our experiment is the Area Under Curve (AUC) of the Receiver Operating

Characteristic (ROC) and the F1-score, which are widely used in binary classi�cation.

4.2 Baseline
We compare our method with the baselines below. We divide these algorithms into three categories:

�e �rst algorithm is the traditional method used for image classi�cation; the next two algorithms

are the methods mainly used in one-shot image classi�cation, in accordance with our algorithm’s

se�ing, we choose those algorithms which learn a new classi�er while keeping the features of
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the image unchanged and among them MRN[21] is state-of-the-art; the last three algorithms are

within our framework but certain parts of the whole algorithm are excluded for comparison. In

order to demonstrate the characteristics and advantages of our method, we also implement these

variational versions of our method.

Logistic Regression (LR) We directly use the the novel class images as positive training samples

and the randomly selected base class images as negative samples to train a logistic regression

classi�er. It is regarded as the null model without any generalization from the base classi�ers.

Weighted Logistic Regression (Weighted-LR) Here we use the weighted average of the base

classi�ers’ parameters as the classi�cation parameters for the new class. �e weights are calculated

by a L2-normalization of cosine similarities between the feature vector of the novel class and those

of all base classes. �is method share a similar notion to transfer base classi�ers to novel classes,

but the transferring process is heuristic.

Model RegressionNetworks (MRN) [21] �is method suppose that there is a mapping function

from the classi�cation parameters trained with small samples to those trained with large samples

within the same class, and this mapping function can be learned from base classes. �en, given a

new classi�er trained with small samples, the learned MRN is reused to predict the classi�cation

parameters trained with large samples.

VANER We only use the classi�cation parameters transferred from base classes to classify the

new classes, and do not consider the parameters generate by new class samples. �is method is

designed to demonstrate the importance of late fusion.

VANER(−Mapping) We directly learn the embedding by Equation 2 without the �rst regression

term. �en we use the above weighted-LR method in the embedding space instead of the original

feature space. �is method is used to evaluate the e�ectiveness of the mapping function.

VANER(−Embedding) We directly train a regression model from the original feature space to the

classi�cation parameter space without the network embedding. �is method is used to demonstrate

the e�ectiveness of class node embedding on the visual analogy network.

4.3 Results
4.3.1 Classification Performance on Novel Classes. In this section, we evaluate how well the

classi�ers learned by our method and other baselines can perform in new classes. �e results

are shown in Table 1. We can see that in all the low-shot se�ings, our method VANER +Votinд
consistently performs the best in both AUC and F1 metrics. In contrast, LR performs the worse in

1-shot se�ing, which demonstrate the importance of generalization from base classes when the

new class has very few samples. MRN does not work well in most se�ings, demonstrating that

its basic hypothesis that the classi�cation parameters trained by large samples and small samples

respectively are correlated do not necessarily hold in real data. By comparingVANER+Votinд with

the other three variational versions of our method, we can safely draw the conclusion that the major

ingredients in our method, including network embedding for low dimensional representations,

mapping function for transforming embedding space to classi�cation parameter space, as well as

the late fusion strategy are necessary and e�ective. We also compare di�erent late fusion strategies.

From the results shown in Table 2 we �nd that the Voting strategy is more �t for our scenario.

Furthermore, we compare the performances of these methods in di�erent low-shot se�ings, and

the results are shown in Figure 2. We can see that our method consistently performs the best in all

se�ings, and the advantage of our method is more obvious when the new classes have less training

samples. In particular, by comparing our method and LR, we can see that LR need about 20 shots

to reach AUC 0.9, while we only need 2 shots, indicating that we can save 90% training data. An
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Table 1. Performance of di�erent algorithms for k-shot problem

Algorithm

1-shot 5-shot 10-shot 20-shot

AUC F1 AUC F1 AUC F1 AUC F1

VANER +Votinд 0.8718 0.5671 0.9425 0.7039 0.9543 0.7343 0.9607 0.7510
VANER 0.8556 0.5292 0.9271 0.6491 0.9379 0.6721 0.9432 0.6850

VANER(−Mappinд) 0.8261 0.4551 0.8526 0.4807 0.8726 0.5179 0.8897 0.5394

VANER(−Embeddinд) 0.7922 0.4335 0.9032 0.6015 0.9183 0.6347 0.9393 0.6788

LR 0.7705 0.3994 0.8885 0.5882 0.9134 0.6421 0.9341 0.6877

Weiдhted − LR 0.8338 0.4680 0.8350 0.4691 0.8374 0.4711 0.8411 0.4726

MRN 0.8083 0.4511 0.9175 0.6653 0.9361 0.7133 0.9474 0.7388

Table 2. Performance of di�erent late fusion mechanism for k-shot problem

Algorithm

1-shot 5-shot 10-shot 20-shot

AUC F1 AUC F1 AUC F1 AUC F1

VANER 0.8556 0.5292 0.9271 0.6491 0.9379 0.6721 0.9432 0.6850

VANER + Initializinд 0.7662 0.3941 0.9030 0.6185 0.9338 0.6887 0.9461 0.7237

VANER +Tuninд 0.7923 0.4244 0.9098 0.6307 0.9365 0.7012 0.9466 0.7268

VANER +Votinд 0.8718 0.5671 0.9425 0.7039 0.9543 0.7343 0.9607 0.7510

interesting phenomenon is that the performance ofWeiдhted − LR do not change with the shot

number increasing. �e main reason is that the heuristic rule is not �exible enough to incorporate

new information. �is demonstrate the importance of learning to learn, rather than rule-based

learning.
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Fig. 2. The change of performance as the shots number increases.
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Table 3. Comparison of the our method and LR over in novel classes with 1-shot se�ing

Category LR (No Transfer) VANER (Transfer)

Jeep 0.8034 0.9469
Zebra 0.8472 0.9393
Hen 0.7763 0.8398

Lemon 0.6854 0.9583
Bubble 0.7455 0.7041

Pineapple 0.7364 0.8623
Lion 0.8305 0.9372

Screen 0.7801 0.9056
Drum 0.6510 0.6995

Restaurant 0.7806 0.8787

4.3.2 Insightful Analysis. Although our method performs the best in various se�ings, the failure

cases are easy to �nd. We are interested in the following questions: (1) what are the typical failure

cases? (2) what is the driving factor that controls the success of generalization? and (3) is the

generalization process explainable?

In order to answer the above questions, we further conduct insightful analysis. Firstly, we

randomly select 10 novel classes, and list the performance of our method and LR in one-shot se�ing

on these classes, as shown in Table 3. We can see that the e�ect of generalization is very obvious in

9 classes, while in the bubble class, the generalization plays a negative role.

To discover the driving factor controlling success and failure, we de�ne and calculate the similarity

ratio (SR) of a novel class with the base classes by:

SR =
Averaдe Top-k Similarity with Base Classes

Averaдe Similarity with Base Classes
(11)

Here the similarity of two classes is calculated by Equation 1. Intuitively, if a new class is very

similar with the top-k base classes, while dissimilar with the remained base classes, its Similarity

Ratio will be high.

In this experiment, we do a linear regression of the relative improvement in AUC of our method

over the non-transfer method LR in 1-shot se�ing on the Similarity Ratio for each novel class.

�e dependent variable indicates the success degree of generalization. And we use k = 10 as our

experiment se�ing. We plot the similarity ratio and relative improvement of all new classes in

Figure 3. We can see the relative improvement in a new class is positively correlated with the

similarity ratio of the new class, with 95% con�dence interval for the correlation coe�cient range

between 0.124 and 0.169.

�e results fully demonstrate that our method is consistent with human-like learning: First, the

faster we can learn a new concept if it is more similar with some previously learned concepts. (i.e.
Leading to the increase of the numerator of the Similarity Ratio). Second, the faster we can learn

a new concept if we have learned more diversi�ed concepts (i.e. Leading to the decrease of the

denominator of the Similarity Ratio). �is principle can also be used to guide the generalization

process and help to determine whether a new class is �t for generalization.
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Fig. 3. AUC improvement v.s. Similarity ratio for all novel classes
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Fig. 4. Top-3 most similar base classes to novel class on embedding layer in 5-shot se�ing.

Finally, we validate whether the generalization process is explainable. Here we randomly select

6 novel classes, and for each novel class, we visualize the top-3 base classes that are most similar

with the novel class, as shown in Figure 4. In our method these base classes have large impact on

the formation of the new classi�er. We can see that the top-3 base classes are visually correlated

with the novel classes, and the generalization process can be very intuitive and explainable.

4.3.3 Parameter Analysis. In our method, there are two important parameters: voting parameter

and the number of embedding dimension. �e voting parameter decides the relative weights of the

transfer parameters and model parameters in the fusion stage. Here we �x an 1-shot/5-shot/20-

shot se�ing and observe the change of the performance as we tune the voting parameter. �e

result is shown in Figure 5. We can see that the voting parameter is relatively stable consisting in

di�erent se�ings, so we use 0.2 as the parameter for all k-shot se�ings. We also tune the number of

embedding dimensions and observe the performance change. �e results are shown in Figure 6. We

can see that there is a large stable range that we can select, and we select 600 in our experiments.
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Fig. 5. Parameter analysis on the voting parameter. Top: 1-shot se�ing, Middle: 5-shot se�ing, Bo�om:
10-shot se�ing.
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Fig. 6. Parameter analysis on the number of embedding dimensions.

5 CONCLUSIONS AND FUTUREWORKS
In this paper, we investigate the problem of learning to learn image classi�ers and a�empt to explore

a new human-like learning mechanism which fully leveraged the previously learned concepts to

assist new concept learning. In particular, We organically combine the ideas of learning to learn and

learning by analogy and propose a novel VANER model to ful�ll the generalization process from

base classes to novel classes. From the extensive experiments, we can safely draw the conclusion

that the proposed method performs much be�er than baselines, complies with human-like learning

and provide insightful and intuitive generalization process.
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