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General Knowledge Embedded Image
Representation Learning

Peng Cui, Member, IEEE, Shaowei Liu and Wenwu Zhu, Fellow, IEEE

Abstract—Image representation learning is a fundamental problem in understanding semantics of images. However, traditional
classification-based representation learning methods face the noisy and incomplete problem of the supervisory labels. In this paper, we
propose a General Knowledge Base Embedded Image Representation Learning approach, which uses general knowledge graph,
which is a multi-type relational knowledge graph consisting of human commonsense beyond image space, as external semantic
resource to capture the relations of concepts in image representation learning. A Relational Regularized Regression CNN (R3CNN)
model is designed to jointly optimize the image representation learning problem and knowledge graph embedding problem. In this
manner, the learnt representation can capture not only labeled tags but also related concepts of images, which involves more precise
and complete semantics. Comprehensive experiments are conducted to investigate the effectiveness and transferability of our
approach in tag prediction task, zero-shot tag inference task, and content based image retrieval task. The experimental results
demonstrate that the proposed approach performs significantly better than the existing representation learning methods. Finally,
observation of the learnt relations show that our approach can somehow refine the knowledge base to describe images and label the
images with structured tags.

Index Terms—image representation learning, knowledge base, multi-relational graph embedding
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1 INTRODUCTION
Image representation is a fundamental problem in various
image applications. In recent years, we have witnessed a
fast advancement of image representation learning from
hand-crafted features to learning image representation from
scratch through deep neural network models. As deep mod-
els are trained in an end-to-end fashion, the learned image
representations can perform much better than hand-crafted
features in the target applications, as long as the training
data is of sufficient quality and quantity. The side effect,
however, is that the goodness of the learned representations
heavily depends on the input training data, especially the
supervisory information of the target application. If the goal
is to learn image representations to bridge the semantic gap,
the completeness, preciseness and richness of the semantic
labels of images are decisive to the capability of the learned
image representations to bridge the pixel data and seman-
tics.

In existing image representation learning works, expert
annotated semantic labels (e.g. ImageNet) are commonly
used as the supervisory information. But the completeness
and the quantity of these expert labels cannot be guaranteed
due to expensive and limited human labors. Recently, a
paucity of works start to exploit social tags (e.g. in Flickr)
as the supervisory information. Although the problem of
completeness is alleviated to some extent, the noisy and
imprecise tags seriously affect the quality of the learned
representations. In order to tradeoff the completeness and
preciseness, [7], [17] consider to exploit the “isA” relations
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in image knowledge graph ImageNet to extend the labels
of images. However, very small improvement was achieved
over the methods without extending labels. One plausible
reason is that the richness of ImageNet is quite limited and
thus cannot bring much additional information. Meanwhile,
most images in ImageNet are with high-quality and single
salient object, which lead the learned image representations
hard to apply in wild image applications. How to learn
image representations from data guided by supervisory
information with satisfactory completeness, preciseness and
richness, is still an open problem.

In this paper, we explore the possibility of embedding
general knowledge graph into the representation learning of
wild images with multiple tags. Here the general knowledge
graph is referred to the multi-type relational knowledge
bases consisting of concept-level common-senses defined
beyond image space. Let us take ConceptNet [23], a general
commonsense knowledge base, as a representative. There
are 3.4 million concepts in English in total, and 56 kinds
of relations are included, such as “IsA”, “AtLocation”,
“PartOf”. By properly embedding these relational knowl-
edge into image representations, we can get two notable
benefits. First, the traditional supervisory information, like
tags, can be extended, filtered and relationally structured,
and thus can address the problem of completeness, precise-
ness and richness in supervisory information. Additionally,
through end-to-end training in deep models, the learned
image representations can well support relational reasoning
if the supervisory information consists of relational tags.
That is, we can predict precise tags for an image with
relational structure. In contrast with the traditional flat-
structured tags, the relational structured tags have larger
potential in deeply understanding images and inferring user
intents in different semantic levels or aspects.
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However, we face the following challenges in embed-
ding multi-type relational knowledge into image represen-
tations:

(1) The semantic spaces of images and the concepts
in knowledge graph are not consistent. We cannot simply
learn the image representations and concept embeddings
independently and then bridge them together because it
is very difficult to make the semantic spaces of images
consistent to the concepts in knowledge graph. First, there
are a lot of relations in knowledge graph that cannot be used
to describe images, thus they are not helpful in knowledge
embedding. Second, if the existed image representation has
lost some semantic information, bringing it to knowledge
embedding will confuse the model. Thus, we need to jointly
optimize image representation learning problem and knowl-
edge graph embedding problem in a framework.

(2) The multiple relations are not equally effective in
image representation learning. Different from traditional
semantic hierarchy, there are multiple types of relations in
a knowledge graph. However, they are not equally effective
to describe images. For example, the relations “CausedBy”
and “MotivatedByGoal” can hardly be applied to image
tagging. Thus, we cannot simply conduct image annotation
and then extend related tags. To solve this problem, we need
to consider the relations and their corresponding visual
contents at the same time.

(3) Both symmetric and asymmetric relations need to be
incorporated. Knowledge graph is a directed graph, which
includes asymmetric relations, such as “IsA”, “MadeOf”,
and symmetric relations, such as “RelatedTo” and “Syn-
onym”. We need to consider the types of relations and
incorporate all of them.

In order to address the above challenges, we propose a
new framework to embed the multiple relational multi-type
relational knowledge into image representations, as shown
in Figure 1. In our approach, we design a Relational Regular-
ized Regression Convolutional Neural Network (R3CNN),
which jointly optimize the multi-label image representa-
tion learning problem and knowledge graph embedding
problem. In image representation learning task, a regression
CNN is adopted to learn image representation from image-
tag data. In knowledge graph embedding task, we map a
concept in knowledge graph into multiple hidden spaces
for different types of relations. The mapping functions of left
concept and right concept in a relation are different, which
makes the distance of two concepts asymmetric. Therefore,
both of visual contents of images and relations in knowledge
graph are involved in the model through joint optimization.
The learnt representation can capture the information of
not only labeled tags, but also relations of concepts in
knowledge graph. In addition, for zero-shot tags unseen in
training data, we can easily infer their representations based
on the existed tag embeddings in knowledge graph, and
then predict its relevance to the images.

It is worthy to highlight the contributions of the pro-
posed approach as follows:

(1) In order to address the problem of completeness, pre-
ciseness and richness of supervisory information in image
representation learning, we propose a new framework to
embed knowledge graph into image representations.

(2) We propose a novel R3CNN model to jointly optimize
the multi-label image representation learning problem and
knowledge graph embedding problem in a deep model,
where both symmetric and asymmetric relations are incor-
porated.

(3) Extensive experiments are conducted to demonstrate
the effectiveness of the proposed method in tag prediction,
zero-shot tag inference, and content-based image retrieval
tasks. The results demonstrate that our method significantly
outperforms state-of-the-art image representation learning
methods.

The rest of the paper is organized as follows: Section
2 gives a brief comparison of related works. Section 3
introduces some statics and observations of data and defines
our problem. In Section 4, we present the proposed R3CNN
model and introduce the applications of our approach.
Then, the experimental results are reported to demonstrate
the effectiveness of our approach in Section 5. Finally, Sec-
tion 6 summarizes the paper.

2 RELATED WORK
2.1 Deep Model based Image Representation Learning
To bridge the gap between low-level features and high-
level semantics, deep model based image representation
learning methods show their superiority to traditional hand-
crafted features. In these methods, Convolutional Neural
Network (CNN) [15], [22] is widely used and proved to be
very effective. These works usually use image classification
dataset with single label(such as ImageNet). To date, this
problem is well solved and its top-5 error is reduced to
less than 5% [11]. However, CNN based representation
learning methods rely on the supervisory information in
the dataset very much. The completeness and richness of
supervisory information determines the effectiveness of the
learned representations. The concept of the salient object is
not enough to cover the all the semantic information in an
image due to the lack of motion, attributes, background, etc.
In recent years, some researchers explore to learn image rep-
resentation based on the corresponding textual information
(e.g. tags and sentences) because such textual information
can cover more semantics in an image. Some of these works
treat each tag as an independent classifier, thus convert
this problem into a multi-label classification problem [1],
[8], [13], [32]. Also, [25], [30] [26] use multimodal methods
to bridge the visual modality and text modality, and [28]
proposes a novel deep relative attributes (DRA) algorithm
to learn visual features. In order to alleviate the intention
gap problem in image applications, [19] proposes an Asym-
metric Multi-task CNN model to embed social signals into
image representations. However, all the above solutions face
the the noisy and incomplete problems of the wild textual
data. Intuitively, only using image-text data cannot solve
this problem because such wild data cannot provide enough
clues to filter the noisy tags and complete the missing tags.

2.2 Image Understanding with Extra Semantic Re-
sources
Image annotation with noisy tags is a well-studied problem.
Traditional methods usually use nearest-neighbor-based ap-
proaches [2] [9], [18], where the semantic meaning of the
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Fig. 1. The framework of general knowledge embedded image representation learning.

words is ignored. In recent years, researchers explore to
consider the relation of labels with extra semantic resources
to capture the relation labels. Visual-semantic embedding
models [7], [17] to embed visual ontology ImageNet into
image classification task. It considers the ontology of the
1000 classes in ImageNet to make the results more seman-
tically reasonable and can be used for zero-shot prediction
(predict unseen categories). However, ImageNet ontology
cannot include all the semantic relations of the concepts,
such as property and location. To import general world
knowledge into image understanding, Xie et al. uses the
general knowledge base ConceptNet as semantic resources
to learn tags relations for image tagging [27]. However, in
this work, the tag relations is evaluated by simple similarity
in a common space, which cannot reflect the property of
multi-relation and single-direction in knowledge base. Im et
al. uses DBPedia [4] to extend the annotation results based
on the existed tags to improve recall [12]. [31] constructs a
semantic-visual knowledge base to encode the rich event-
centric concepts to enhance video event recognition. [20]
proposes a cross-domain learning method to classify web
multimedia objects by transferring the correlation knowl-
edge among different information sources. However, for
vision tasks, there are a lot of useless relations in knowledge
base. Besides, there are a lot of ambiguous tags. Thus, tag
extension should consider the visual content, which is better
to be conducted at representation learning stage rather than
tagging stage. More recently, knowledge graph embedding
and their combination with visual information arouse some
research interest [5] [10]. [29] borrows the idea of relation
representation in knowledge graph and propose a novel
visual translation network for visual relation detection. This
paper differs in that we exploit the semantic relationships
(e.g. UsedFor, IsA) among labels for representation learning
and tagging, while these works exploit the visual relation-
ships (e.g. ride-on, walk-to) among object labels for image
content understanding.

3 PRELIMINARY STUDY

In this section, we preliminarily demonstrate the feasibility
of exploiting general knowledge graph in image represen-
tation learning by data statistics, and then give the formal
problem definition.

3.1 Statistics and Observation

In this work, we use two data resources, a visual resource
NUSWIDE and a semantic resource ConceptNet. NUSWIDE
includes 269,648 images crawled in Flickr 1 with 425,001 tags
labeled by users. ConceptNet is a knowledge graph consist-
ing of general common sense knowledge in multi-language.
There are 3.4 million concepts ,56 kinds of relations and
11 millon relations in total. We conduct statistics on the
above resources to answer the following two questions: 1)
Whether these two resources can be bridged? 2) Can the
relations in ConceptNet help to understand the tag relations
in describing images?

To answer the first question, we give statistics on how
many shared tags2 occur in the two resources. In the 425, 001
tags in NUSWIDE, there are 92, 595 tags also occur in Con-
ceptNet. Figure 2(a) illustrates the distribution of number of
tags versus the occurrence frequency in NUSWIDE among
all tags in NUSWIDE and the shared tags of NUSWIDE
and ConceptNet. We can observe that the higher occurrence
frequency of tags, the higher possibility of sharing between
NUSWIDE and ConceptNet. For the tags that occur more
than 50 times in NUSWIDE, more than 50% of them also
occur in ConceptNet. Thus, ConceptNet can encompass
most of the common tags in NUSWIDE, and the shared tags
can play the role of a bridge between these two resources.

For the second question, we use the most typical tag
relation in NUSWIDE, i.e., co-occurrence relation to observe

1. www.flickr.com
2. A word is called tag in NUSWIDE, and concept in ConceptNet. In

this paper, we denote a shared entity as tag or label without confusion.
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Fig. 2. Statistics of overlapped tags and relations in NUSWIDE and
ConceptNet.

whether it is enough to describe tag relations without Con-
ceptNet. Due to the fact that ConceptNet has multiple types
of relations, we use the relation types “IsA”, “AtLocation”,
and “InstanceOf” as representation, which are very useful
for image tagging in our observation. For any two over-
lapped tags, if they have at least one of the above relations
in ConcepNet, we conduct count their co-occur frequency in
NUSWIDE. The statistical histogram is illustrated in Figure
2(b). We can observe that most of the relational pairs do not
occur in ConceptNet. It indicates that co-occurrence relation
cannot include the above three relations in ConceptNet.
Besides, There are 33, 401 tag pairs occur more than 100
times in NUSWIDE. While only 3, 412 of them occur in
ConceptNet. It indicates that the relations in ConceptNet
and co-occurrence in NUSWIDE are complementary.

Based on the above statistics and observations, we can
find that bridging NUSWIDE and ConceptNet together and
incorporating the relations of these resources can help us
better understand image semantics.

3.2 Notation and Problem Defination
Our target is to jointly learn image representation xi for
image i and tag representation wj for tag j, which can
satisfy the requirements of two tasks: multi-label image
representation learning and knowledge graph embedding.
Definition 1. (Image Representation Learning) In image

representation task, out goal is to learn xi, wi to make
yij = f(xi, wj) for a given function f(·), where yij is the
ground truth that denote whether tag j belongs to image
i.

Definition 2. (General Knowledge Graph) A general knowl-
edge graph is a multi-type relational graph whose ver-
tices are concepts (one or several words), and edges are
the types of relations between two tags. A relation is
represented as a triplet < i, j, p >, which means concept
i and concept j has relation type p.

To be noted that if the relation type p is symmetric such
as “RelatedTo”, both of < i, j, p > and < j, i, p > will
occur in our knowledge graph. Thus, we can simply regard
the knowledge graph as a directed graph can consider the
asymmetric relations.
Definition 3. (Knowledge Graph embedding) Let dpij =

gp(wi, wj) denote the distance of concept i and j in the
space p. Knowledge graph embedding task is to find the

optimal concept embedding wi for tag i, which makes
the distance dpij consistent to the relations knowledge
graph, i.e., dpij is small when < i, j, p > exists in the
knowledge graph, and vise versa.

In image representation learning and knowledge graph
embedding, tag representation wi is a common variable,
which bridges these two tasks together for joint optimiza-
tion.

4 RELATIONAL REGULARIZED REGRESSION
CNN
In this section, we introduce the proposed model R3CNN,
where the image representation learning and knowledge
graph embedding are jointly optimized.

4.1 Multi-label Image Representation Learning

Most existing CNN models are designed for single-label
classification task, which cannot be directly applied to multi-
label image representation learning problem. Let us take
AlexNet [15] as an example. In AlexNet, the activation
function for fc7 (the last fully connection) layer is softmax.
Softmax is a function considering multiple tags as a joint
probabilistic distribution, which makes different tags mutu-
ally exclusive. As wild images are often labeled with noisy
and incomplete tags, we can not know the real distribution
of multiple labels. Using the observed noisy tags instead
with softmax function will lead the learned distribution to
have a large discrepancy with the real distribution. There-
fore, the softmax function cannot work well in multi-label
image representation problem. To solve this problem, we
propose to use sigmoid function as in [16] to replace softmax
function, and regard each tag to be independent. In this way,
the influence of noisy and incomplete tags will be reduced
in the objective function by reducing the weight of negative
samples. In addition, the original loss function in AlexNet
is based on cross entropy, which is used to measure the
distance of two probabilistic distribution. In our case, as
the output is not a joint distribution of multi-labels but
independent probability for each label, we use L2 loss as
our loss function. In this model, the structure of the first 10
layers is the same with AlexNet, including 5 convolution
layers, 3 pooling layers, and 2 fully connection layers. Then,
we use sigmoid function as the activation function of fc7
layer and adopt Euclidean loss (L2 loss) instead of cross
entropy . Here the loss function is:

L1 =
N∑
i=1

(
∑
yij=1

1

2
(yij − tij)

2 + α
∑
yij=0

1

2
(yij − tij)

2), (1)

where N is the number of images, tij is the ground truth
of tags where yij = 1 denotes images i contains tag j, and
α is the parameter which balances the positive samples and
negative samples. y is the output of the fc7 layer, which is
calculated by:

yi = σ(Wx
(7)
i + b), (2)

where x
(7)
i is the input of fc7 layer, W and b are the pa-

rameters, and σ is the sigmoid activation function σ(xi) =
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1
1+e−xi

. By replacing [x
(7)
i , 1] by new xi and [W, b] by new

W , Equation 2 can be written as:

yi = σ(Wxi) (3)

In the rest of this paper, we use this formulation instead of
Equation 2.

In Equation 3, each tag can be regarded as an indepen-
dent classifier. Thus, for a single tag j, Equation 2 can be
written as:

yij = σ(wj · xi), (4)

where wj is the j-th row of the weight matrix W . Then, xi is
the representation of image i and wj is the representation of
tag j. Thus, the final output yij is determined by the inner
product of the representations of image i and tag j.

4.2 General Knowledge Graph Embedding

Graph embedding is to represent nodes in a hidden vector
space and maintain the graph edges by distance metric
in vector space. As general knowledge graphs consists of
multiple relation types, and these relation types have het-
erogeneous characteristics, we cannot use one vector space,
as usual, to reflect these multiple relation types. Also, there
are both symmetric and asymmetric relations in knowledge
graphs. Traditional similarity metric is inadequate to main-
tain direct relations.

In this paper, we use multiple hidden spaces to maintain
multiple types of relations. To address the problem of asym-
metric relations, we generate two mappings from original
concept representations to the hidden space p: Lp for the
left concept, and Rp for the right concept. Then, we calculate
the distance of concept wi and wj in hidden space p by the
Euclidean distance:

dpij = (Lpwi −Rpwj)
T (Lpwi −Rpwj), (5)

where Lp and Rp are k × m projection matrices (m is the
dimension of concept representation and k is the dimension
of hidden space). Then, the target of knowledge base em-
bedding learning is to learn mappings Lp and Rp for each
relation p, which make dpij small if concepts i and j have
relation p in knowledge graph, and vise versa. In order to
reduce down the dimensionality of the embedding space,
we impose orthogonal constraints on Lp and Rp as in [25]
which demonstrates that imposing orthogonal constraint on
the mapping functions can result in orthogonal embedding
representations. In this way, the redundancy of different
embedding dimensions can be largely reduced, leading to
fewer required embedding dimensions. Therefore, the loss
function is defined as:

L2 = − 1

|E|
∑

eij∈Ep

(dpij)
2 +

γ

N2 − |E|
∑

eij /∈Ep

(dpij)
2

+ λ
∑
p

(||LT
p Lp − I||2F + ||RT

p Rp − I||2F ),
(6)

where |E| is the number of edges in knowledge graph, N
is the number of vertices (tags) in the knowledge graph,
eij ∈ Ep means the edge from i to j is the pth type of
relation.

4.3 Joint Optimization
In order to jointly optimize image representation learning
and knowledge graph embedding, we combine the loss
function in Regression CNN (Equation 1) and the loss for
knowledge base (Equation 6) to formulate the final loss
function of the proposed R3CNN:

L = L1 + βL2, (7)

where β is the trade-off parameter to balance image tagging
and the constraints of knowledge base embedding. By using
the tag representation wi as bridge for joint optimization, the
learnt image representation can capture more precise and
complete semantics, and the tag representation can capture
not only semantic relations but also visual similarities.

In the loss function 7, there are two groups of variables:
1) The parameters in Regularized Regression CNN (weights
and biases of each layer) 2) The projection matrices Lp

and Rp. The parameters in Regression CNN are usually
optimized using back propagation with stochastic gradient
descent (SGD). Lp and Rp can be optimized by gradient
descent. Therefore, we can iteratively optimize these two
groups of parameters. First, in Regression CNN, the weights
W of output layer is special because it occurs in both two
terms in the loss function. Its gradient is calculated as:

∂L
∂wi

=

N∑
j=1

yji(1− σ(wi · x(7)
j )) + α(1− yji)σ(wi · x(7)

j )

− 2β

|E|
∑

eij∈Ep

LT
p (Lpwi −Rpwj)

+
2βγ

N2 − |E|
∑

eij /∈Ep

LT
p (Lpwi −Rpwj).

(8)

The other parameters in Regression CNN can be easily
calculated by back propagation. After the parameters in
Regression CNN are converged, we optimize Lp and Rp

using gradient descent:

∂L
∂Lp

= − 2β

|E|
∑
p

∑
eij∈Ep

(Lpwi −Rpwj)w
T
i

+
2βγ

N2 − |E|
∑
p

∑
eij /∈Ep

(Lpwi −Rpwj)w
T
i

+ 4βλ
∑
p

Lp(L
T
p Lp − I),

(9)

similarly,

∂L
∂Rp

= − 2β

|E|
∑
p

∑
eij∈Ep

(Rpwj − Lpwi)w
T
j

+
2βγ

N2 − |E|
∑
p

∑
eij /∈Ep

(Rpwj − Lpwi)w
T
j

+ 4βλ
∑
p

Rp(R
T
p Rp − I).

(10)

We alternately optimize all these parameters until they are
converged. To be noted that when updating W , the all
of the parameters in CNN are also updated through back
propagation.
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4.4 Algorithm and Complexity

We summarize the algorithm general knowledge embedded
image representation learning as described in Algorithm 1.

Algorithm 1: General Knowledge embedded Image
Representation Learning

Require: Image-tag data with visual contents;
Knowledge base data in triplet form.

Ensure: The R3CNN model that includes tag presentations
and can be used to extract image representations.

1: Initialize the weights in R3CNN using the trained
AlexNet model in ImageNet.

2: Fine tune R3CNN using image-tag data, obtain the
weights of the last layer W .

3: Initial Lp and Rp with random value.
4: repeat
5: Use gradient descent to find optimal Lp and Rp w.r.t.

loss function (Equation 6) and gradients (Equation 9
and 10).

6: Fine tune the Regularized Regression CNN based on
the loss function (Equation 7).

7: until All variables converge.

The complexity of optimizing Lp and Rp in an iteration
in total is O(N2pkm), where N is the number of tags,
p is the number of relations types, k is the dimension of
hidden space and m is the dimension of tag representation.
The complexity of optimizing W for each epoch (a whole
iteration in CNN) is O(n(pm2+N2)), where n is the number
of training samples. The complexity of optimizing the whole
Regression CNN is difficult to analysis. But in our problem
pm2+N2 is much smaller than the whole scale of the param-
eters in CNN. Thus, optimizing the proposed Regularized
Regression CNN costs comparable time to AlexNet (less
than 2 times in practice). Besides, the time cost in optimizing
Lp and Rp is much less than tuning the CNN. Overall, the
time cost of our method is linear to the time cost of tuning
an AlexNet, which is acceptable for most GPU computing
environments.

4.5 Applications

The learned image representations can be used in the fol-
lowing application scenarios:

(1) Tag prediction. In our model, we can obtain the
representation of each tag and for any image, we can extract
its features using the activation of fc7 layer in our R3CNN
model. Thus, we can use Equation 4 to predict the probabil-
ity of a tag belonging to an image.

(2) Zero-shot tag inference. Tags of images always
evolve over time. It is impossible to cover all of the tags
in a given learning framework. For new tags, it takes a lot
of time to learn new classifiers. It is important to investigate
the problem of inferring unseen tags without training for
images, that is zero-shot tagging problem. In our method,
we can address this problem by exploiting knowledge graph
to infer the representation of the new tags if these tags
have relations to the trained tags for images, that is. For
a new tag wi, suppose that it has triplet < i, j, p > in the

knowledge graph and wj has been trained in our method.
From Equation 6, we know that a converged solution
should have Lpwi ≈ Rpwj . Besides, the regularizer requires
that:LT

p Lp ≈ I . Therefore, we have wi ≈ LT
p Rpwj . When

wi occurs on the right of a relation, the result is similar. By
averaging all the relations, we have:

wi ≈
1

Zi
(
∑

eij∈Ep

LT
p Rpwj +

∑
eji∈Ep

RT
p Lpwj), (11)

where Zi is the total number of edges that are related to i for
normalization. After we calculate wi by Equation 11, we can
infer that whether image i should have tag j by Equation
4. This procedure can be calculated very fast without any
training process.

(3) Content based image retrieval. Although we use
the image-tag as supervisory information to learn image
representations, we argue that the learnt representations
can also be applied into other image applications, such as
typical content based image retrieval. We can extract image
features using the proposed R3CNN model. Due to the fact
that the higher layers are more close to semantics, we use
the activation of fc6 or fc7 layer as image features. Then,
nearest neighbor based methods can be used for content
based image retrieval task.

5 EXPERIMENTS
5.1 Experimental Settings

We evaluate our approach in three applications, including
tag prediction, zero-shot tag inference and CBIR. Due to the
fact that our approach is a general representation learning
method to capture image semantics, we select the state-of-
the-art representation learning approaches with or without
extra semantic resources as baselines.

5.1.1 Datasets
There are two datasets in our experiments. One is
NUSWIDE [6] for image tagging and the other is Concept-
Net [23] for knowledge base embedding.

NUSWIDE contains 269, 648 images with 425, 001 tags,
which are collected from Flickr. ConceptNet is a general
knowledge base with multiple languages. In our experi-
ments, we only select concepts from ConceptNet53 in En-
glish language, which has millions of concepts and 56 types
of relations. In NUSWIDE and ConceptNet, there are 92, 595
common tags (including words and phrases). To bridge
them together, we sampled 1, 000 overlapped tags with
the highest frequency. And then, we select the images in
NUSWIDE, which has at least three selected tags. After
filtering the images that cannot be crawled from Flickr at
present, there are 86, 035 images left. Referring to [27], we
first filter some relations that are intuitively not recognizable
in images (e.g. Causedby, HasSubevent) and some negative
relations (e.g. NotIsA, Antonym). Finally, there are 15 types
of relations selected, including IsA, HasA, RelatedTo, UsedFor,
AtLocation,DefinedAs, InstanceOf, PartOf, HasProperty, Capa-
bleOf,SymbolOf, LocatedNear, ReceivesAction, MadeOf and Syn-
onym. Compared to [27], we add Synonym because we found

3. http://conceptnet5.media.mit.edu
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it is positive in our experiments. There are 27, 440 edges
in these 15 types among the 1000 selected concepts. In
summary, the scale of our dataset is shown in Table 1. In
our experiments, we randomly sampled 50, 000 images for
training and rest 36, 035 images for testing.

TABLE 1
The scale of the dataset.

tags images relation types relations
number 1000 86,035 15 27,440

5.1.2 Model Implementation
We train the R3CNN using the training dataset following
algorithm in Section 4.4. In training data, each image is
resized to 224 × 224 with horizontal flipping. Following
AlexNet [15], dropout with probability 0.5 is used in fc6
and fc7 layers in training process. When fine-tuning the
R3CNN, we fix the weights of first 3 convolutional layers
by setting the learning rate to be 0; set learning rate of the
last regression layer to be 0.1; and the learning rate of other
layers to be 0.01. The learning rates are decreased by 0.1
times after 10, 000 iterations. When fine-tuning the Regu-
larized Regression CNN with knowledge base embeddings,
we also fix the first 3 convolutional layers and set the other
learning rates to be 0.01. Our model is implemented by
matlab toolbox MatConvnet [24]. It is trained on a single
GeForce Tesla K40 GPU with 12GB memory.

In the loss function Equation 7, there are 5 parameters:
α, β, γ, λ, and the dimension of projection hidden space k.
In our experiments, we tune these parameters alternatively
by grid search. We get an acceptable performance when γ =
0.5, λ = 0.1, k = 100 and β = 0.02. When k is larger than
100, the performance improves a little, but it costs more
time.

5.2 Tag Prediction

We use image-tag associations in NUSWIDE dataset as
ground truth and use 50, 000/36, 035 images for train-
ing/testing. After training, we use the probability produced
by Equation 4 to rank the 1, 000 tags for a given image.
We use Precision and MAP (Mean Average Precision) to
evaluate the ranking performance.

We use the following image tagging methods as base-
lines:

• Neighbor Voting (NV) [18] It is a nearest neighbor
based method, which evaluates tag relevance for
an image w.r.t the tags of its nearest neighbors. In
our experiments, we use: 1) Bag-of-Words feature
provided by NUSWIDE (denoted as NV-BoW) and
2) the CNN feature extracted by AlexNet fc7 layer
for nearest neighbor selection (denoted as NV-CNN).
We use 100 as the number of nearest neighbors.

• SVM We use SVM as the classifiers of the tags based
on CNN features from AlexNet.

• Regression CNN (RegCNN) We use the Regression
CNN introduced in Section 4 without knowledge
base embedding. It can be regarded as a fine-tuned
deep model for image tagging.
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Fig. 4. Histogram of the relations on distance regions.

• Linked Tag (LinkTag) [12] This method uses DBPe-
dia to extend the tags. In our experiments, we use
ConceptNet instead.

• DeViSE [7] DeViSE first learns words embeddings
and then learns a CNN model which can trans-
fer the visual representations to word embeddings.
This method is designed for ImageNet classification.
When implementing the algorithm, in order to make
the learned representations fitting for our data, we
use the tags in NUSWIDE and ConceptNet instead.
As in [7], we use the ConceptNet as an indirected
similarity graph.

The comparison with these baselines can demonstrate
the advantages of our methods in different aspects. The first
three methods do not use external semantic resources: NV is
knn-based, SVM is a shallow-structured classification model
and RegCNN is a deep-structured classification model. The
rest two methods exploit knowledge base, LinkTag fuse tags
and knowledge base in the late stage rather than represen-
tation stage. DeViSE is a deep model based method with
semantic ontology embedding for classification. However, it
learns word embedding and CNN independently without
joint optimization, and it is based on semantic ontology
(WordNet) rather than multiple kinds of relational knowl-
edge.

The experimental results are shown in Table 2. We have
the following observations:

(1) Our method performs significantly better than base-
line methods in all cases. Especially, it has 26% improvement
in MAP.

(2) The improvement of R3CNN over DeVISE demon-
strates that directly mapping image space to general knowl-
edge space is inadequate, due to the inconsistency of these
two spaces. The relation regularization imposed to deep
model can help to solve this problem. Also, exploiting dif-
ferent kinds of relations rather than treating them uniformly
can bring much more additional useful information to image
space.

(3) LinkTag performs much worse than DeVISE, indicat-
ing that the late fusion of image labels and knowledge space
will bring many erroneous labels that are not related with
the image content. Embedding the knowledge into image
representation stage is an effective way.

(4) The RegCNN performs better than SVM, NV-CNN
and NV-BoW, demonstrating the advantages of end-to-end
representation learning over hand-crafted features and the
AlexNet representations cannot work well in wild images.
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Fig. 3. MAP of zero-shot tag inference task, including 20 example tags and the average of 100 unseen tags.

TABLE 2
Performance of tag prediction task on NUSWIDE dataset.

NV-BoW NV-CNN SVM RegCNN LinkTag DeViSE R3CNN
MAP 0.0651 0.1627 0.1726 0.1890 0.0932 0.1863 0.2388
P@5 0.1030 0.3000 0.3182 0.3854 0.1891 0.4835 0.5587
P@10 0.0890 0.2758 0.3163 0.2970 0.1456 0.3001 0.3951
P@50 0.0704 0.1206 0.1805 0.2071 0.0610 0.1900 0.2109

Useless relations:  Omissive relations: 

Concept1 Concept2 Relation Concept1 Concept2 Relation 

holiday book InstanceOf love action RelatedTo 

nature artist IsA cat dog isA 

country field RelatedTo Paris capital AtLocation 

stop fast RelatedTo airplane large HasProperty 

space cold HasProperty police tourist RelatedTo 

sheep female RelatedTo apple phone isA 

fence metal MadeOf job work InstanceOf 

cat feline isA sunset sky RelatedTo 

cemetery house part of park warm HasProperty 

 

Fig. 5. Showcase of “useless relations” and “omissive relations”.

5.3 Zero-shot Tag Inference
We randomly sampled 100 unseen tags with the require-
ment that each one should occur in both NUSWIDE and
ConceptNet and have at least 5 relations with the seen
tags. For each unseen tag, we use Equation 4 to evaluate
its relevance to the testing image, and give it a ranking
score. The images that are eventually labeled by the unseen
tag are ground truth. Then, we use MAP to evaluate
the performances. Zero-shot problem cannot be solved by
classification basedl methods because there is no training
process for the unseen tags. Therefore, only LinkTag and
DeViSE can be used as baselines.

We randomly select 20 unseen tags and report the per-
formances of different methods on these selected tags in
Figure 3. From left to right, the unseen tags are ordered by
the number of relations do they have with the trained tags.
We also report the average performances for the 100 unseen
tags at the last. From the results, we have the following
observations.

(1) Our method consistently and significantly outper-
form the baselines in all these unseen tags. On average,

our method has more than 100% relative improvement over
other baselines in MAP.

(2) The more relations do the unseen tag has with the
trained tags in ConceptNet, the higher MAP and relative
improvement can be achieved by our method. This demon-
strates the values of general knowledge in benefiting image
representation learning.

(3) In addition, we retrain the R3CNN model with the
data including unseen tag information. Then we use the
retrained R3CNN to predict the unseen tags for images, and
report the prediction performance in the last column in each
group. Here we use this performance as the higher bound
of unseen tag inference. We can see that, in average, the
performance in inferring unseen tags by our method can
get about 70% of the performance in predicting trained tags.
Also, the more relations an unseen tag has with trained tags
in ConceptNet, the smaller the margin becomes between
unseen tag inference and trained tag prediction in our
method. This once again demonstrates the importance of
introducing general knowledge graph into image represen-
tation learning.

5.4 Content based Image Retrieval

In order to demonstrate that the learned representations can
be widely used in multiple application scenarios with good
generalization ability, we evaluate the proposed approach
in content-based image retrieval task.

Holidays [14] is a commonly used dataset in content
based image retrieval tasks, which contains 1491 high res-
olution personal holiday photos. 500 images are used as
queries and the remaining 991 images are labeled as ground
truth. For each query image, we use Euclidean distance as
the metric to rank the testing images. Then, we evaluate the
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TABLE 3
Performance of CBIR on Holidays.

BoW AlexNet RegCNN DeViSE R3CNN-fc6 R3CNN-fc7
MAP 0.540 [3] 0.642 [21] 0.6709 0.6876 0.7254 0.7445

ranking results by MAP. There are four baselines in this ex-
periment, including two typical representations, including
BoW (Bag-of-Words based on SIFT discriptors) and AlexNet
(CNN feature extracted from AlexNet), RegCNN in Section
4.1 for multi-label image representation learning (note that
RegCNN is eventually a fine-tuned AlexNet by NUS-WIDE
in a multi-label setting), and DeViSE (the representations
derived from DeVISE). In our method, we have two vari-
ants: R3CNN-fc6 and R3CNN-fc7. R3CNN-fc6 corresponds
to fc6 layer (the layer before the last fully connected layer)
and R3CNN-fc7 corresponds to the last fully connected fc7
layer.

The experimental results are shown in Table 3. The
results of BoW and AlexNet are respectively reported by
[3] and [21]. We can see that both of the R3CNN-fc6 and
R3CNN-fc7 representations perform better than baseline
representations. This demonstrates that the representation
learned from our model has good generalization ability
in different datasets and different application scenarios.
The result that R3CNN-fc7 performs better than R3CNN-
fc6 indicates that the higher-level representations perform
better when transferring to a different dataset. A plausible
reason is that the higher-level representations are closer to
semantics and thus have better transferability across these
two datasets.

5.5 Insight Analysis

Till now, we have demonstrated the advantages and effec-
tiveness of embedding general relational knowledge into
image representation learning. In this section, we will fur-
ther analyze how the image representation learning and
knowledge graph embedding reenforce each other, and
what kinds of relational knowledge can benefit the image
representation learning.

In our method, the image representation learning and
knowledge graph embedding are jointly optimized. Thus
for any pair of concepts i and j, there are two sources of
constraints on the similarity of their representation. If they
are related in ConceptNet with relation type p, they should
share similar representation in space p through knowledge
graph embedding. However, if the images with tag i and
images with tag j are visually different, their representations
should be quite different in image representation learning.
After the model converges, the distance of the output repre-
sentations of wi and wj in p− th space dpij can be calculated
by equation 5, and the distance can tell us: 1) If concept i
and j are related in ConceptNet with relation type p, but
dpij is relatively large, that means the knowledge < i, j, p >
cannot be reflected or supported in image space. 2) If i and
j are not related in ConceptNet with relation type p, but dpij
is relatively small, that means the knowledge < i, j, p >
might be an image-specific knowledge and can possibly
supplement ConceptNet. Thus, we temporarily define that:
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Fig. 6. Average distance for each relation type.

• if the distance dpij > δ, and relation ⟨ci, cj , rp⟩ exists
in ConceptNet, this is a “useless” relation in image
representation learning;

• if the distance dpij < ϵ, and relation ⟨ci, cj , rp⟩ does
not exist in ConceptNet, this is an “omissive” relation
in the knowledge base.

Here δ and ϵ are two parameters, which are determined
according to the distribution of the distances.

For the 27, 440 relations in our training data, we calculate
their histogram on distance regions, which is shown in
Figure 4. According to the distribution of the distances, we
define δ = 0.08 and ϵ = 0.03. Then, we select some rep-
resentative “useless” relations and “omissive” relations as
showcase in Figure 5. We can observe that useless relations
are usually caused by: 1) word ambiguity, such as “holiday
is an instance of book”; 2) abstract or invisible concepts,
such as “stop is related to fast”; 3) true but rarely-used tags,
such as “cat is a feline”. For omissive relations, we just select
the space which makes them the nearest. From the results,
we can observe that, except several failed cases, most of
the pairs of tags in omissive relations are truly related, and
there are many reasonable relations that can supplement
ConceptNet.

In addition, we also calculate the average distance of
each relation type (as shown in Figure 6 to observe which
type is the most helpful in image representation learning.
From the results, we can observe that ”AtLocation”, “isA”
and “InstanceOf” are the most important relation types in
image representation learning, which is quite reasonable. In
contrast, “MadeOf” and “SymbolOf” are the most useless
relation types. The main reason is that such relations can
hardly be reflected in image space. For example, “paper
is made of wood” is a common knowledge. However, we
rarely tag “wood” on a picture of papers.

By properly embedding the general relational knowl-
edge into image representation learning, the learnt repre-
sentation is endowed with the ability of reflecting the struc-
tured semantics. We further explore this merit and evaluate
whether the learnt representation can generate structured
tags for images. We first predict tags for an image as in
section 5.2. Then, for the top tags, we use the previous
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Tags in Flickr 

blue, europe, aircraft, 

canon, airport, lamp, 

sunset, blackwhite, 

hangar  

pet, toy, dog, animal, 

garden  

beautiful, reef, fish, 

tropical, aquarium, 

crab, marine, coral  

 

Our results 

Fig. 7. A showcase of structured image tagging results. The first two
rows are successful cases and the last row is a failure case.

definition: if dpij < 0.03, we think tag i and tag j have
relation p. Figure 7 is a showcase of our results. The first
two rows are successful cases and the last row is a failed
case. From these examples, we can see the contrast between
traditional tags and the structured tags generated by our
method. It is obvious that the structured tags with relational
knowledge can significantly help to understand the image
content. Also, it can well support reasoning on the images,
which is crucial in various image applications.

6 CONCLUSION

In this paper, we propose a novel approach, which embeds
the relations in general knowledge graph into multi-label
image representation learning task to make the learnt rep-
resentation involving more precise and complete seman-
tics of images. A Relational Regularized Regression CNN
(R3CNN) model is designed to jointly optimize the image
representation learning problem and knowledge graph em-
bedding problem. In image representation learning prob-
lem, a Regression CNN model is adopted to learn image
representation from multi-label image-tag data. In knowl-
edge graph embedding task, we map a concept in knowl-
edge graph into multiple hidden spaces and consider the
asymmetric relations. The experimental results in tag pre-
diction and zero-shot tag inference tasks demonstrate that
our approach can better embed the general knowledge in
representation learning. Experiments in CBIR show that
the learnt representation is transferable to other semantic
related tasks and performs better than traditional deep
features. The observations of the learnt tag relations demon-
strate the potential of our approach in building vision-based
concept relationships.

In this work, we just give some simple observations of
the learnt relationships. In the future, we can go further
in building vision-based concept relations based on the
user tagging behavior and discover the difference between
language-level knowledge and vision-level knowledge.
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