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Abstract—Recommender systems can suffer from data sparsity and cold start issues. However, social networks, which enable users
to build relationships and create different types of items, present an unprecedented opportunity to alleviate these issues. In this paper,
we represent a social network as a star-structured hybrid graph centered on a social domain, which connects with other item domains.
With this innovative representation, useful knowledge from an auxiliary domain can be transferred through the social domain to a target
domain. Various factors of item transferability, including popularity and behavioral consistency, are determined. We propose a novel
Hybrid Random Walk (HRW) method, which incorporates such factors, to select transferable items in auxiliary domains, bridge cross-
domain knowledge with the social domain, and accurately predict user-item links in a target domain. Extensive experiments on a real
social dataset demonstrate that HRW significantly outperforms existing approaches.
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1 INTRODUCTION

A social networking service is a platform on which users
can create and adopt different types of items such as web
posts (e.g., articles and tweets), user labels, images, and
videos. The huge volume of items generates a problem
of information overload. Traditional web post recom-
mendation approaches suffer from data sparsity (i.e.,
limited interaction between users and web posts) and
the issue of cold start (i.e., giving recommendations to
new users who have not yet created any web posts). The
social connections and multiple item domains found in
social networks provide an unprecedented opportunity
to alleviate these issues in real applications.

One common type of approach to recommendations,
known as collaborative filtering techniques, character-
izes users’ latent features independently with user-item
interactions in a single item domain [1]. Similarly, the
type of approach provided in [2] does not consider the
question of multiple domains. However, users’ charac-
teristics relate both to social connections and to differ-
ent user-item interactions. For example, users read web
posts created by their community and may adopt similar
user labels to their friends. Therefore, an effective social
recommendation approach should acknowledge (1) so-
cial tie strength (henceforth, tie strength) between users
and (2) different user-item interactions. The problem of
how to incorporate a social domain and auxiliary item
domains (e.g., user labels and images) into a unified
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Fig. 1. Star-structured representation of a social network
connecting multiple item domains and one social domain.

framework remains open.
Frameworks exist that connect directly-related item

domains, such as a music album and tags on that album
[3], or web pages and queries to them [4]. However, these
cannot be applied to indirectly-related item domains in
social networks, such as tweets and user labels. The mul-
tiple item domains reflect users’ intrinsic preferences and
tend to be tightly connected among a massive number
of users. In this paper, we reconsider the representation
of social networks and propose a star-structured graph,
where the social domain is at the center and is connected
to the surrounding item domains, as shown in Figure 1.

The value of the cross-domain link1 weight represents
how often a given user adopts a given item, while the
value of the within-domain link2 weight in the social
domain represents the tie strength between users. Tie
strength can refer to homophily [5], circle-based influ-
ence [6][7][8], or social trust [9][10]. Users are more likely
to have stronger ties if they share similar characteristics.

1. Cross-domain links are user-item links (item adoptions), i.e., links
between the social domain and the item domains.

2. Within-domain links are user-user links in the social domain
(social connections) and the item-item links in each item domain.
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Cross-domain links reflect users’ characteristics in dif-
ferent ways. For example, a cross-domain link from a
user to a web post about iPhones shows his/her short-
term interest in iPhones, and a cross-domain link from
him/her to a label “iPhone Fan” implies his/her long-
term interest in iPhones. A basic assumption is that
the more auxiliary knowledge we have, the more we
know about the users, thereby enabling more accurate
estimates of tie strength. When a user and his/her
friend have many common user labels, we assume a
greater tie strength and expect them to be more similar
in terms of their web post adoption behaviors. Even
if the web post domain is extremely sparse, we may
still produce effective recommendations by transferring
auxiliary knowledge from other item domains through
the social domain.

Thus, knowledge transfer procedures among multi-
ple item domains in social networks should focus on
updating tie strength in the social domain, but this is
complicated by challenges associated with jointly mod-
eling multiple relational domains, discovering transfer-
able knowledge, and improving recommendations in the
target domain.

The following characteristics of the domains consid-
ered in this paper are challenging to deal with when
developing approaches to recommendation.

(1) The domains are relational. Social network data
provide social connections between users, semantic sim-
ilarity between two items of the same type, and item
adoptions by users. The issue of how to represent the
user-user links, item-item links, and user-item links
poses a challenge to method capability.

(2) The domains are heterogeneous. Heterogeneity is
a challenging issue in social recommendation. Within-
domain links can be directed (“following” links in the
social domain) or undirected (semantic similarity links
in the item domains). Cross-domain links can be signed
(indicating a positive or negative connotation, such as
web-post adoptions and rejections) or unsigned (user-
label adoptions). The issue of how to transfer knowl-
edge across heterogeneous domains poses a challenge
to method comprehensibility.

(3) The domains are variously sparse. This data spar-
sity is essentially caused by the large amounts of users
and items as well as the time and attention scarcity of
these users. It is challenging to try to use relatively dense
auxiliary information to help predict sparse links in the
target domain.

(4) Items in the domains have varying transferability.
Traditional literature often assumes that the most pop-
ular items have better transferability. However, later in
this work, we will show that this assumption is incorrect.
Therefore, transferable knowledge selection approaches
for enhancing performance constitutes a literature gap.

To address the above challenges, we propose an in-
novative Hybrid Random Walk (HRW) method for trans-
ferring knowledge from auxiliary item domains accord-
ing to a star-structured configuration to improve social

recommendations in a target domain. HRW estimates
weights for (1) links between user nodes within the
social domain, and (2) links between user nodes in the
social domain and item nodes in the item domain. The
weights respectively represent (1) tie strength between
users and (2) the probability of a user adopting or reject-
ing an item. Our proposed method integrates knowledge
from multiple relational domains and alleviates sparsity
and cold-start issues. The key contributions are:

(1) We discover counterintuitive transferability distri-
bution in auxiliary item domains. Besides popularity, we
find more meaningful factors, i.e., behavioral consistency
with web post adoptions and social connections. These
factors have been incorporated into our method.

(2) We propose a novel method to transfer knowledge
across multiple relational domains on social networks,
incorporating heterogeneous graphs with different types
of links. This method can be naturally applied to graph-
based applications such as social networks, information
networks, and biological networks.

(3) Extensive experimentation on a large real social
dataset demonstrates that HRW produces significantly
superior recommendations for web posts on social net-
works. In terms of providing recommendations to cold-
start users, only 30% of historical data from the web-
post domain is necessary to achieve a comparable per-
formance to that of an approach that makes use of user-
label data.

The remainder of this paper is organized as follows.
Section 2 discusses related works. Section 3 provides
some background and preliminary concepts regarding
transferability. Section 4 describes the methodology of
the HRW approach with Section 5 providing experimen-
tal results. Section 6 concludes.

2 RELATED WORKS

In this section, we survey related works and note the
literature gap that our research addresses.

2.1 Cross-Domain Collaborative Filtering
Collaborative filtering (CF) techniques are a common
approach to recommendation, and have been applied in
real recommender systems [11][12][13]. Based on prob-
abilistic matrix factorizations [1], approaches have been
proposed to improve recommendation by jointly factor-
izing a trust network and a user-item matrix [14][2].
One particular contextual model learns both individual
preference and interpersonal influence to estimate the
probability of item adoption [15]. However, when deal-
ing with information overload, CF does not consider the
interplay of users and multiple types of items, so it often
suffers from data sparsity and cold start issues.

Recommender systems benefit from new information
that goes beyond the user-item matrix [16][17][18][19].
Berkovsky et al. [20] deployed several mediation ap-
proaches for importing and aggregating user rating vec-
tors from different domains. Gao et al. [21] conducted
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recommendation via a cluster-level latent factor model.
A joint model of tensor factorization was proposed by
Chen et al. to simultaneously recommend users, movies,
and tags [22]. However, social applications are different
from movie recommenders. Social relation drives infor-
mation diffusion and adoption [23][24]. Only with the
consideration of tie strength can recommender systems
better understand users’ behavioral intentions. Social
Matchbox [25] proposed a latent factor matrix factor-
ization model that treats users’ side information (user
profiles) and social information as feature vectors to de-
termine user similarity. Facebook uses cross-domain data
(user profiles and new feeds) for their recommenders
[26]. Sedhain et al. noted that side information is very
important [27]. Auxiliary item domains are more compli-
cated than side information. Rich auxiliary user-item in-
teractions, including editing user labels, sharing videos,
and joining groups, should be incorporated into a more
relational, random walk-based model than factorization-
based methods. Fortunately, the advantage of random
walk models in utilizing auxiliary information has been
proved by empirical research [28].

2.2 Transfer Learning for Recommendation
Adomavicius and Tuzhilin [29] reviewed CF-based,
content-based, and hybrid recommendation methods.
Their work predicts that auxiliary information will play
an important role in the future of recommender systems.
Transfer learning provides the key idea of using knowl-
edge from auxiliary domains [30][31][32][33][34][35] and
has been used in various ways. Transferring collabora-
tive knowledge from MovieLens can reduce the sparsity
problem in recommending movies in Netflix [36]. Book
ratings and movie ratings can also be used collabora-
tively: transferring book ratings can improve movie rat-
ing prediction [37]. A recent work by Jing et al. provides
a probabilistic collective factorization model to handle
sparse data in different settings of knowledge transfer
[38]. Transfer learning methods often utilize users’ con-
sistent individual preference to bridge two domains by
the set of user nodes. However, in social networks, tie
strength between users is the key factor utilized to bridge
two item domains. We reconsider the representation of
social networks, using a hybrid star-structured graph
to incorporate within-domain and cross-domain links.
Using the social domain as the bridge between the item
domains is unique among existing works.

2.3 Random Walk Algorithms and Models
The random walk concept has been widely applied in
recommender systems. Random walk based approaches
effectively incorporate auxiliary information [28]. Tong
et al. [39] proposed a computationally efficient random
walk algorithm. ItemRank [40], a random walk-based
scoring algorithm, was used to rank products according
to expected user preferences. TrustWalker [10] defined
and measured the confidence of a recommendation with

TABLE 1
Dataset Statistics: Amount and Density

Domain Object Cross-domain link Within-domain
Accept (+) Refuse (–) link

user 1,427,214 - - 20,240,902
9.9×10−6

web post 3,023,609 18,249,207 33,608,036 -
4.2×10−6 7.8×10−6 -

user label 5,715 7,604,679 - -
9.3×10−4 - -

a random walk model to combine the trust-based and CF
approaches. Chen et al. [28] proposed a random walk al-
gorithm to handle both positive and negative comments
with the guarantee of convergence. In social networks,
social relations and multiple item domains naturally
form a star-structured high-order heterogeneous graph
[41][42]. In this paper, we develop a random walk-based
algorithm on such complex graphs to transfer knowl-
edge from rich, auxiliary domains to a target domain.
The biggest difference with respect to previous works
is that we use social ties as the fundamental bridge to
connect item domains in social networks.

3 PRELIMINARIES ON TRANSFERABILITY

In this section, we introduce our social dataset of multi-
ple item domains and demonstrate the existence of trans-
ferability from auxiliary domains to a target domain.

3.1 Dataset and Distributions
The dataset for this research was crawled in January
2011 from Tencent Weibo (t.qq.com). We crawled data
from users who own at least one user label. While the
website allows users to have, at most, 10 user labels,
the average number of user labels per user was 5.3. The
average number of web posts per user was 12.8. We did
not filter any social relationships. The average number
of friends per user was 14.2.

Table 1 summarizes the data statistics. We used a 5-
minute time window to derive negative links. That is,
if a user had two adopting behaviors (sharing the web
posts) in 5 minutes, we assumed that the user ignored
the rest of posts that he/she received in the time window.
Thus, besides the two positive user-post links, we noted
several negative links. The data indicates that although
both web-post and user-label domains are sparse, the
latter is denser.

Figure 2 shows (1) distributions of user and post
frequency, (2) distributions of user and label frequency,
and (3) distributions of follower and followee frequency.
We note that the data has smooth distributions, which
look like power law relationships in log-log scale. Our
dataset has no spiky outliers.

3.2 Symbols and Notations
A real-world example of a second-order hybrid star-
structured graph in our dataset is presented in Figure 3.
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Fig. 2. Smooth power-law-like frequency distributions; our
dataset has no spiky outliers. A user often adopts only
one or ten (the maximum) user labels.

web posts 

users 
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Fig. 3. Our social network data represented by a second-
order hybrid star-structured graph, where within-domain
links are between users, posts, and labels, and cross-
domain links are between user and post, user and label.

It differs from traditional star-structured graphs [41] that
do not include entity relationships within each domain.
Our hybrid graph considers both within-domain and
cross-domain entity relationships.

Table 2 summarizes the symbols used throughout the
paper to denote the five subgraphs in Figure 3:
• G(U) = {U , E(U)}, where E(U) represents the edge set

linking the nodes in U ;
• G(P) = {P, E(P)}, where E(P) represents the edge set

linking the nodes in P ;
• G(T ) = {T , E(T )}, where E(T ) represents the edge

set linking the nodes in T ;
• G(UP) = {U

⋃
P, E(UP)}, where E(UP) represents the

edges linking the nodes in U and P ;
• G(UT ) = {U

⋃
T , E(UT )}, where E(UT ) represents the

edges linking the nodes in U and T .
To conceptualize user relationships in G(U), consider

the relevance from user ui to uj as

w
(U)
ij =

{
1 if user ui is a friend of uj or follows uj ,
0 otherwise.

TABLE 2
Symbols and Notations

Symbol Notation
ui The i-th user
U = {u1, u2, · · · , um} The set of users
pi The i-th web post
P = {p1, p2, · · · , pn} The set of web posts
ti The i-th user label
T = {t1, t2, · · · , tl} The set of user labels
dij The j-th item in i-th domain
Di = {di1, di2, · · · , di|Di|} The set of items in i-th domain
D = {D1, D2, · · · , DN} The set of item domains

To compute web-post relationships in P , we use
a Term Frequency-Inverse Document Frequency (TF-
IDF) representation vector for each post bi =
[bi1, · · · , bik, · · · , biK ]> in matrix B (where K is the size
of vocabulary), and then measure the semantic similarity
between post bi and bj as

w
(P)
ij =

∑
k bikbjk√∑

k bik
2
√∑

k bjk
2

For user labels, we measure relationships using the
Jaccard similarity. Assume that labels ti and tj appear in
ci and cj tweets as a word, and co-appear in cij tweets.
Then, the semantic relationship is computed as

w
(T )
ij =

cij
ci + cj − cij

Thus, we have constructed three similarity matrices
W(U) = {w(U)

ij }, W(P) = {w(P)
ij } and W(T ) = {w(T )

ij } to
encode edge weights for three within-domain subgraphs.

Further, we have two cross-domain subgraphs G(UP)
and G(UT ), whose edge weights need to be estimated.
Since web posts can be adopted or rejected but user
labels are edited by users, both positive and negative
user-post links exist, but only positive user-label links
exist. These links are presented as undirected edges e(UP)ij

and e
(UT )
ij . Their weights are determined as follows.

w
(UP)+
ij =

{
1 if user ui adopts web post ρj ,
0 otherwise;

w
(UP)−
ij =

{
1 if user ui rejects web post ρj ,
0 otherwise;

w
(UT )+

ij =

{
1 if user ui adopts web post tj ,
0 otherwise.

Thus, we obtain the three weight matrices
W(UP)+={w(UP)+

ij }, W(UP)−={w(UP)−
ij }, and

W(UT )+={w(UT )+

ij }.

3.3 Transferability of User Labels
Here, we conduct data analysis to demonstrate that
(1) the auxiliary, user-label domain can be transferred
to predict a target web-post domain; that is, user-label
interactions are in some degree consistent with user-post
interactions; (2) user-label interactions are also consistent
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Fig. 4. Popular user labels do not transfer the most knowledge: different user labels have different consistency in
terms of adopting similar posts, sharing followers, and having the same followees. Surprisingly, the consistency is
often in reverse ratio with the popularity. Thus, selecting transferable user labels is important.

with user-user interactions in the social domain; and (3)
not every label can be transferred, and the most popular
labels are not the most transferable.

First, we define the popularity of a user label j as the
number of users who adopt the label as follows:

popularity(j) =
∑
i

w
(UT )+

ij

Second, we define three kinds of consistency for the user
label j: (1) consistency with users’ post contents, i.e., the
average similarity of the web posts between a pair of
users who have the label j, denoted by

conspost(j) =

∑
i 6=k;w

(UT )+

ij ,w
(UT )+

kj >0

w
(UP)+

i,: w
(UP)+

k,:

||w(UP)+

i,: ||||w(UP)+

k,: ||∑
i6=k;w

(UT )+

ij ,w
(UT )+

kj >0
1

(2) consistency with users’ followers, i.e., the similarity
of followers between a pair of users, denoted by

consfollower(j) =

∑
i6=k;w

(UT )+

ij ,w
(UT )+

kj >0

w
(U)
:,i w

(U)
:,k

||w(U)
:,i ||||w

(U)
:,k ||∑

i 6=k;w
(UT )+

ij ,w
(UT )+

kj >0
1

(3) consistency with users’ followees, i.e., the similarity
of followees between a pair of users, denoted by

consfollowee(j) =

∑
i 6=k;w

(UT )+

ij ,w
(UT )+

kj >0

w
(U)
i,: w

(U)
k,:

||w(U)
i,: ||||w

(U)
k,: ||∑

i 6=k;w
(UT )+

ij ,w
(UT )+

kj >0
1

Figure 4 plots user labels comparing their popularity
and three kinds of consistency. Surprisingly, the consis-
tency score is often in reverse ratio with the popularity.
To be more specific, users’ behaviors with respect to
tagging themselves with labels such as “Nokia’s fan”
and “Justin Bieber’s fan” are consistent with their behav-
iors on adopting web posts, while their behaviors with
respect to tagging themselves with psychological char-
acteristics, such as “traveling alone” and “optimist”, are
inconsistent. Users with labels such as “soccer”, “NBA”,
and “SEO” usually have similar followers since they
tend to be active users, who often post messages related
to these labels. Meanwhile, users with labels such as
“IT” and “e-commerce” have similar followees since they

often connect to accounts that are famous in the related
areas. Note that the most popular user labels such as
“love music” and “love reading” are not consistent with
user behaviors in the target domain and social domain.
These labels cannot generally enrich the knowledge in
users’ behaviors due to poor transferability. Thus, we
see that user labels can be transferred due to their
consistency with other behaviors of adopting posts and
sharing friends, and we find that selecting transferable
user labels is important for knowledge transfer.

4 HYBRID RANDOM WALK ALGORITHM

In this section, we introduce our random walk-based
method on social recommendation. Owing to data spar-
sity in the target domain, traditional Bipartite Random
Walk (BRW) algorithms cannot accurately derive user tie
strength to predict user behaviors in the target domain
[43] [44]. Fortunately, we have auxiliary domains in
which user ties are formed for the same reason as in
the target domain: homophily, trust, and influence. The
key idea is to utilize rich knowledge from the auxiliary
domains to better describe user tie strength and then
more precisely predict user behaviors. Thus, we derive
HRW algorithms on star-structured graphs.

4.1 On Hybrid Second-Order Star-Structured Graph
We derive a random walk algorithm to predict missing
links on G(UP) and G(UT ), which includes both within-
domain and cross-domain random walks. For G(U), G(P)
and G(T ), we derive steady-state distributions [39], in-
dicating the intrinsic relevance among users, posts and
labels. For a standard random walk model, a walker
starts from the i-th vertex and iteratively jumps to other
vertices with transition probabilities pi = {pi1, · · · , pin}.
After reaching the steady state, the probability of the
walker staying at the j-th vertex corresponds to the
relevance score of vertex j to i. Specifically, the tran-
sition probability matrices are computed as the row-
normalized weight matrices:

P(U) = (D(U))−1W(U)

P(P) = (D(P))−1W(P)

P(T ) = (D(T ))−1W(T )



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCROPT ID 6

where we denote the degree matrices of cross-domain
links by D(UP)+ , D(UP)− , and D(UT )+ .

The final steady-state probability matrices can be ob-
tained by iterating the following updates:

R(U)(t+ 1) = αP(U)R(U)(t) + (1− α)I
R(P)(t+ 1) = βP(P)R(P)(t) + (1− β)I
R(T )(t+ 1) = γP(T )R(T )(t) + (1− γ)I

where R(U)(t), R(P)(t), R(T )(t), R(U)(t+ 1), R(P)(t+ 1)
and R(T )(t+1) are the state probability matrices at time
t and t+1; and 0 ≤ α, β, γ ≤ 1 are the prior probabilities
that the random walker will leave its current state. It
can be easily shown that the above iterations will finally
converge to the steady state matrices when t→∞.

R(U) = (1− α)(I− αP(U))
−1

R(P) = (1− β)(I− βP(P))
−1

R(T ) = (1− γ)(I− γP(T ))
−1

For cross-domain links, we compute the transition
probability matrices as

P(UP)+ = (D(UP)+)
−1

W(UP)+

P(UP)− = (D(UP)−)
−1

W(UP)−

P(UT )+ = (D(UT )+)
−1

W(UT )+

where elements p(UP)
+

ij and p
(UP)−
ij represent the transi-

tion probability that user ui will adopt/ignore post pj ;
and p(UT )+

ij represents the transition probability that user
ui will adopt label tj . Now, we simultaneously determine
relevance scores R(U) = {r(U)ij }, between each pair of
users, which finally reflects the tie strength on the real
user graph. Element r(U)ij represents the probability that
a random walker jumps from user ui to uj . Now, we
consider the above transition paths and estimate the
transition probabilities p(UP)

+

ij , p(UP)
−

ij , p(UT )+

ij , and r
(U)
ij

of one step random walk over G(UP), G(UT ), and G(U) as

p
(UP)+
ij = δ

∑
uk∈U

r
(U)
ik p

(UP)+
kj + (1− δ)

∑
pk∈P

p
(UP)+
ik r

(P)
kj

p
(UP)−
ij = δ

∑
uk∈U

r
(U)
ik p

(UP)−
kj + (1− δ)

∑
pk∈P

p
(UP)−
ik r

(P)
kj

p
(UT )+

ij = η
∑
uk∈U

r
(U)
ik p

(UT )+

kj + (1− η)
∑
tk∈T

p
(UT )+

ik r
(T )
kj

r
(U)
ij = τ (P)(µ

∑
pk∈P

p
(UP)+
ik p

(UP)+
jk

+(1− µ)
∑
pk∈P

p
(UP)−
ik p

(UP)−
jk )

+τ (T )
∑
tk∈T

p
(UT )+

ik p
(UT )+

jk + τ (U)
∑
uk∈U

r
(U)
ik r

(U)
kj

where 0 ≤ δ, η, µ, τ (P), τ (T ), τ (U) ≤ 1 are the parameters
for trading off different transition routes. Note that
for the update of cross-domain transition probability

i 

k j 

i k 

j 

Fig. 5. Transition routes we consider when updating a
cross-domain transition probability matrix.

k 

i j 

k 

i j k i j 

Fig. 6. Transition routes when updating a within-domain
transition probability matrix on social relation.

matrices, we consider the two types of routes shown
in Figure 5. We also assume that the update of the
cross-domain probability matrices will affect the within-
domain probability matrix of the user subgraph. The
updating rules the within-domain probability matrices
consider the three routes shown in Figure 6.

Our proposed model assumes that the update of cross-
domain transition probability affects only the within-
domain transition probabilities of the user graph, be-
cause the user tie strength is influenced by (1) common
posts, (2) common labels, and (3) social relationships. We
claim that the cross-domain links (adoption behaviors)
do not affect the within-domain transition probability of
other item domains. The rationale is that the transition
probability of items (posts, labels, videos, etc.) should be
derived by their semantic similarity, which would not
be changed by the users who adopt them. Therefore, the
HRW method updates cross-domain links between the
user and all types of items as well as within-domain
links between users (not items).

We can further give matrix formulations for the update
of transition probability from time t to t+ 1.

P(UP)+(t+ 1) = δR(U)(t)P(UP)+(t) + (1− δ)P(UP)+(t)R(P)

P(UP)−(t+ 1) = δR(U)(t)P(UP)−(t) + (1− δ)P(UP)−(t)R(P)

P(UT )+(t+ 1) = ηR(U)(t)P(UT )+(t) + (1− η)P(UT )+(t)R(T )

R(U)(t+ 1) = τ (P)(µP(UP)+(t)P(UP)+(t)
T

+(1− µ)P(UP)−(t)P(UP)−(t)
T

)

+τ (T )P(UT )+(t)P(UT )+(t)
T

+ τ (U)R(U)(t)R(U)(t)
T

With graphs G(U), G(UP), and G(UT ), the corresponding
transition matrices R(U), P(UP)+, P(UP)−, and P(UT )+

are computed for the next random walk step. Algorithm
1 summarizes the procedure of the second-order star-
structured graph-based iteratively random walk method
for predicting post and label adoptions. The space com-
plexity of this algorithm is O(m2+n2+l2+2m(n+l)), and
the time complexity is O((m2+4m(n+l)+2(n2+l2))mT ),
where m, n, and l are the number of users, posts, and
labels, respectively, and T is the number of iterations.
Since the matrices are usually sparse and m,n � l, the
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space complexity is O((m+n)2) and the time complexity
is O((m+n)ET ), where E is the number of links between
users and posts.

Algorithm 1 Iterative Adoption Prediction through Ran-
dom Walk over a Second-Order Star-Structured Graph

Require: 0 ≤ α, β, γ, δ, η, µ, τ (P), τ (T ), τ (U) ≤ 1
1: Construct graphs G(U), G(P), G(T ), G(UP), G(UT )

2: Compute transition probabilities P(U), P(P) and P(T )

3: Derive steady-state R(U), R(P) and R(T )

4: Initialize transition probability matrices P(UP)+(0),
P(UP)−(0) and P(UT )+(0)

5: for t = 1 : T do
6: Compute tie strength matrix R(U)(t) and transi-

tion probability matrices P(UP)+(t), P(UP)−(t) and
P(UT )+(t)

7: end for
8: Output: Final transition probability matrices R(U),

P(UP)+, P(UP)− and P(UT )+

As discussed in Section 3.3, items in auxiliary domains
have different degrees of transferability. Here, we adopt
a widely-used vote-counting scheme introduced in 1770
by Jean Charles de Borda to select the transferable items
for improving the transfer learning framework. We call
this variant of the HRW method HRW-Borda.

In particular, each feature, such as popularity, consis-
tency with users’ post contents, consistency with users’
followers, and consistency with users’ followees, pro-
vides a ranked voting system for user labels. The number
of points given to the label candidates for each ranking
is determined by the number of candidates standing in
the ranked list. The total number of points from all the
systems evaluates the transferability of the user label.
We select the labels with the largest 1,000 values of the
transferability and only use the partial user-label links.

4.2 On Hybrid High-Order Star-Structured Graph
In previous discussions, we assumed that two types of
item domains, web post and user label, are associated
with each user. However, online social networks are an
unprecedented comprehensive platform with a number
of different types of User-Generated Content (UGC),
e.g., posts, labels, music, and movies. Figure 1 shows
a typical example of a hybrid high-order star-structured
graph with four different types of UGC. In this case, the
second-order graph is insufficient for describing all the
UGC. Our random walk strategy can be easily extended
to higher-order cases. We represent the following sub-
graphs contained in the high-order hybrid graph.
• G(U) = {U , E(U)}, where E(U) represents the edge set

linking the nodes in U
• G(Di) = {Di, E(Di)}, where E(Di) represents the edge

set linking the nodes in Di, i = 1, · · · , N
• G(UDi) = {U

⋃
Di, E(UDi)}, where E(UDi) represents

the edges linking the nodes in U and Di, i =
1, · · · , N

With respect to G(U) and {G(Di)}Ni=1, we construct
their corresponding edge weight matrices W(U) and
{W(Di)}Ni=1. Thus, the within-domain transition proba-
bility matrices can be obtained by (i = 1, · · · , N )

P(U) = (D(U))−1W(U)

P(Di) = (D(Di))−1W(Di)

where D(U) and {D(Di)}Ni=1 are the degree matrices
induced by W(U) and {W(Di)}Ni=1. The final steady-state
probability matrices can be iteratively calculated by

R(U)(t+ 1) = αP(U)R(U)(t) + (1− α)I
R(Di)(t+ 1) = βiP

(Di)R(Di)(t) + (1− βi)I

where i = 1, 2, · · · , N, 0 ≤ α, β1, · · · , βN ≤ 1.
For the cross-domain subgraphs {G(UDi)}Ni=1, we com-

pute the edge weight matrices {W(UDi)}Ni=1 based on the
user interactions with other item domains {Di}Ni=1. Thus,
the cross-domain transition probability matrices can be
computed as

P(UDi)
+

= (D(UDi)
+
)
−1

W(UDi)
+

P(UDi)
−

= (D(UDi)
−
)
−1

W(UDi)
−

where i = 1, · · · , N . When updating the cross-domain
transition probability matrices, we consider the transi-
tion routes shown in Figures 5 and 6, so that they can
be updated using the following rules:

P(UDi)
+
(t+ 1) = δiR

(U)(t)P(UDi)
+
(t)

= +(1− δi)P(UDi)
+
(t)R(Di)

P(UDi)
−
(t+ 1) = δiR

(U)(t)P(UDi)
−
(t)

= +(1− δi)P(UDi)
−
(t)R(Di)

R(U)(t+ 1) =
∑
Di∈D

τiµiP
(UDi)

+
(t)P(UDi)

+
(t)

T

+
∑
Di∈D

τi(1− µi)P
(UDi)

−
(t)P(UDi)

−
(t)

T

+τ (U)R(U)(t)R(U)(t)
T

where 0 ≤ δi, µi, τi ≤ 1 are the trade-off parameters and
i = 1, 2, · · · , N . For a domain Di without negative user-
item links, we set µi = 1 to update R(U).

Algorithm 2 summarizes the procedure of a random
walk on a high-order hybrid star-structured graph for
predicting user adoptions on different item domains. The
space complexity of this algorithm is O(m2+2m

∑
|Di|+∑

|Di|2) and the time complexity is O((m2+4m
∑
|Di|+

2
∑
|Di|2)mT ), where T is the number of iterations.

5 EXPERIMENTS

In this section, we give the experimental results of
applying our HRW methods to our dataset, which is
a social network with two item domains, web posts,
and user labels. We evaluate the performance on the (1)
social recommendation problem, i.e., predicting positive
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Algorithm 2 Random Walk over a High-Order Hybrid
Star-Structured Graph

Require: 0 ≤ α, {βi}Ni=1, {δi}Ni=1, {µi}Ni=1, {τi}Ni=1 ≤ 1
1: Construct G(U), {G(Di)}Ni=1, {G(UDi)}Ni=1

2: Compute P(U) and {P(Di)}Ni=1

3: Derive R(U) and {R(Di)}Ni=1

4: Initialize {P(UDi)
+

(0)}Ni=1 and {P(UDi)
−
(0)}Ni=1

5: for t = 1 : T do
6: Compute R(U)(t), {P(UDi)

+

(t)}Ni=1 and
{P(UDi)

−
(t)}Ni=1

7: end for
8: Output: Final transition probability matrices R(U),
{P(UDi)

+}Ni=1 and {P(UDi)
−}Ni=1

and negative user-post links, and the (2) user cold-
start problem, i.e., some users are new and the number
of training links is zero. The results demonstrate the
effectiveness of our approach.

5.1 Experimental Settings
Here, we present our experimental settings regarding
performance evaluation metrics, parameter settings, and
comparative algorithms.

5.1.1 Evaluation Metrics
We adopted three evaluation measures: reconstruction
error, prediction accuracy, and ranking-based metrics.
• Error-based metrics: Mean Absolute Error (MAE)

defined as
1

N

∑
ui,pj

(|p(UP)
+

ij − p̂(UP)
+

ij |+ |p(UP)
−

ij − p̂(UP)
−

ij |)

and Root Mean Square Error (RMSE) defined as

(
1

N

∑
ui,pj

(|p(UP)
+

ij − p̂(UP)
+

ij |2 + |p(UP)
−

ij − p̂(UP)
−

ij |2))
1
2

,

where p(UP)
+

ij and p(UP)
−

ij are the ground truth adop-
tion and rejection of user ui on item pj in the testing
set; p̂(UP)

+

ij and p̂
(UP)−
ij denote the prediction results,

and N denotes the size of the testing set. All p
values are ground truth values equal to either 0 or
1; p̂ values are probability scores in the range [0, 1].
The MAE and RMSE evaluate the error between the
prediction and ground-truth values.

• Accuracy-based metrics: Precision, recall, and F1
refer to the harmonic mean of precision and recall:

precision =
|{(ui, pj)|p̂(UP)

+

ij > p̂
(UP)−
ij , p

(UP)+
ij = 1}|

|{(ui, pj)|p̂(UP)
+

ij > p̂
(UP)−
ij }|

recall =
|{(ui, pj)|p̂(UP)

+

ij > p̂
(UP)−
ij , p

(UP)+
ij = 1}|

|{(ui, pj)|p(UP)
+

ij = 1}|

F1 =
2× precision× recall
precision+ recall

,

TABLE 3
Variants of Our HRW and Existing BRW Methods

Algorithm G(U) G(P) G(T )

HRW-Borda R(U) W(P) W(T ), combined
HRW-Popular R(U) W(P) W(T ), popularity
HRW-Cons-Post R(U) W(P) W(T ), conspost
HRW-Cons-Follower R(U) W(P) W(T ), consfollower

HRW-Cons-Followee R(U) W(P) W(T ), consfollowee

HRW-All R(U) W(P) W(T ), all
BRW-RU -P

R(U) W(P) ×(TrustWalker)
BRW-RU R(U) × ×
BRW-WU -P W(U) W(P) ×
BRW-WU W(U) × ×(ItemRank)
BRW-P × W(P) ×

where p(UP)
+

ij and p(UP)
−

ij are the ground truth adop-
tion and rejection of user ui on item pj in the testing
set, and p̂

(UP)+
ij and p̂

(UP)−
ij denote the prediction

result.
• Ranking-based metrics: Mean Average Precision

(MAP)@K. This involves, for the top K recom-
mended items, evaluating the mean of average pre-
cision. In our experiments, we set K as 1, 3, 5, 10
and 20.

5.1.2 Parameter Settings
With regard to parameter settings, we have δ and η as the
relative weights of user tie strength over item similarity
on user-post and user-label links, µ as the relative weight
of positive samples over negative samples on user-post
links, and τ (P) and τ (T ) as the relative weights of cross-
domain links from web-post domain over user-label
domain on influencing user tie strength. All parameters
range from 0 to 1, which we tune according to greedy
search. We find the best 6 parameters δ, η, µ, τ (U), τ (P),
and τ (T ) to reduce the error metrics. In our parameter
settings, we find that when τ (U) is as small as 0.05, our
HRW achieves the best performance, which proves that
most user behaviors are influenced by direct friends or
some indirect friends. Meanwhile, the best settings of
τ (P) and τ (T ) that represent the relative weights of user
tie strength from item similarity on the post and label
domain are in the middle of the range.

5.2 Comparative Algorithms
We want to answer the following two questions through
our experiments: (1) Does our method, which transfers
knowledge from auxiliary domains, work better in social
recommendation and cold start scenarios than methods
that do not transfer this knowledge? (2) Does selecting
transferable items in the auxiliary domain work better
than using all the items or the most popular items?
Therefore, as shown in Table 3, we have two series of
baseline methods to prove the effectiveness of our HRW
methods. The methods use within-domain links in the
social domain, web-post domain, and user-label domain
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from W(U), W(P), and W(T ), and learn user tie strength
by updating R(U), i.e., weights on social links.

To answer the first question, we compare with baseline
methods of a BRW that predict user-post links without
rich knowledge from the user-label domain. We also
carefully implement a state-of-the-art matrix factoriza-
tion method. The algorithms tested were:
• BRW-RU -P (TrustWalker [10]), which predicts user-

post links, with post similarity utilized and user tie
strength updated.

• BRW-RU , which predicts links, with tie strength
updated on a bipartite graph but no post similarity.

• BRW-WU -P, which predicts links, with user relation
and post similarity but no tie strength.

• BRW-WU (ItemRank [40]), which uses only social
relations to compute the weights on user-post links.

• BRW-P, which learns only post similarity to predict
user-post links with a random walk model.

• TLLSM, a very recent method named Transfer
Learning with Latent Space Matching [18], which
incorporates rich user and item information into
recommendation, adding a “matching-based” reg-
ularization term on factorization:

min ||W � (P(UP)+ −UV)||2

+||W � (P(UT )+ −XY)||2

+λ(||U||2 + ||V||2 + ||X||2 + ||Y||2)
+β
∑
m

arctan(||U(m, :)−X(m, :)||2)

where W is the indicator, λ and β are regulariza-
tion parameters; U and X represent user preference
vectors; and V and Y represents item latent vectors.

For the second question, we have the following HRW
methods that select transferable labels.
• HRW-Borda, which uses Borda count to vote for the
ltop best labels in the following four ranking lists
made by features.

• HRW-Popular, which uses labels with the ltop high-
est values of popularity.

• HRW-Cons-Post, which uses labels with the ltop
highest values of consistency with users’ posts.

• HRW-Cons-Follower, which uses labels with the ltop
highest values of consistency with users’ followers.

• HRW-Cons-Followee, which uses labels with the ltop
highest values of consistency with users’ followees.

• HRW-All, which uses all user-label links.

5.3 Experimental Results
In this section, we first compare the performance of
our proposed HRW method and other comparable al-
gorithms on predicting missing user-post links for social
recommendation. Second, we discuss the transferability
of different items in the auxiliary domain and the perfor-
mance of our item selection method. Third, we discuss
the transferability across domains, i.e., (1) how user tie
strength works as a bridge, (2) how transferring auxiliary

information performs, and (3) how positive/negative
samples help. Finally, we show how our method solves
the cold-start problem and sheds light on the usefulness
of auxiliary information.

5.3.1 Social Recommendation Performance
Here, we demonstrate the method’s performance when
predicting missing links in social scenarios. We conduct
hold-out experiments by randomly selecting 80% of user-
post links for training and the remaining for testing,
while user-label links are completely utilized. This ran-
dom selection is carried out 20 times independently, and
we report the average and variance values.

Comparisons on accuracy: Table 4 compares the per-
formances of our method with its different configura-
tions and with the above baselines, respectively, on the
average results and standard deviations of evaluations
including the MAE, RMSE, precision, recall, and F1
scores. Note that (1) our method outperforms existing
approaches in experimental trials and is insensitive to
initialization; and (2) HRW-Borda, which uses Borda
count to select auxiliary items, performs best among all
methods. Specifically, compared with BRW, we observe
that:
• BRW-WU reduces MAE by 18.4% compared with

BRW-P, an item-based recommendation imple-
mented by the random walk algorithm. BRW-WU

exploits user dependent preferences from friend-
ships and performs better than the collaborative
approach on large social datasets. BRW-RU reduces
MAE by 10.5% compared with BRW-WU , which
updates user tie strength on the social domain with
user-post links. BRW-RU -P reduces MAE by 14.3%
compared with BRW-WU , which learns both within-
domain links (post similarities) and cross-domain
links (user-post links) to update user tie strength.
This is because the motivations of user behavior on
social networks are that (1) users like to adopt web
posts that highly correlate with those adopted be-
fore, and (2) users like to adopt posts recommended
by their friends or followers with high tie strength.
BRW-RU -P combines these two aspects to solve the
social recommendation problem.

• HRW-All reduces MAE by 22.1% compared with
BRW-RU -P. This is consistent with our assump-
tion that in social networks, user tie strength is
shaped by multiple relational domains such as web-
post and user-label domains. Our method effec-
tively utilizes auxiliary information to formulate the
weighted user graph, and performs better than BRW
in solving the sparsity problem of user-post link
prediction.

• HRW outperforms the most recent matrix factoriza-
tion based approach TLLSM with side information
of posts and users (i.e., word distributions of posts
and user-label links) incorporated, reducing MAE
by 27.9%. User behaviors on social networks stem
from the interrelationships among users, tight or
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TABLE 4
Results of Our Methods and Baselines on Social Recommendation (Predicting Missing User-Post Links)

Algorithm MAE RMSE Precision Recall F1 measure
HRW-Borda 0.195±1.3e-3 0.226±2.6e-3 0.912±4.7e-3 0.771±3.5e-3 0.791±5.1e-4
HRW-Popular 0.278±3.7e-3 0.306±1.8e-3 0.866±6.7e-4 0.728±9.1e-4 0.729±2.8e-3
HRW-Cons-Post 0.215±3.2e-3 0.249±3.5e-3 0.900±4.7e-3 0.758±2.5e-3 0.774±3.8e-3
HRW-Cons-Follower 0.250±4.6e-3 0.285±3.7e-3 0.881±1.9e-3 0.741±9.5e-4 0.751±3.6e-3
HRW-Cons-Followee 0.227±2.2e-3 0.254±2.5e-3 0.891±8.1e-4 0.752±1.1e-3 0.764±3.0e-3
HRW-All 0.260±3.5e-3 0.296±3.4e-3 0.874±4.4e-3 0.738±2.8e-3 0.741±5.7e-4
BRW-RU -P 0.334±3.1e-3 0.357±1.5e-3 0.832±6.3e-4 0.699±4.1e-3 0.689±9.9e-4
BRW-RU 0.349±3.5e-3 0.371±1.5e-3 0.831±8.8e-4 0.696±1.5e-3 0.682±4.6e-3
BRW-WU -P 0.377±3.6e-3 0.403±3.9e-3 0.813±3.4e-3 0.677±1.7e-3 0.656±3.7e-3
BRW-WU 0.390±3.9e-3 0.419±4.0e-3 0.802±3.7e-3 0.668±4.4e-3 0.643±2.9e-3
BRW-P 0.478±3.5e-3 0.499±4.1e-3 0.754±6.3e-4 0.629±4.4e-3 0.583±3.6e-3
TLLSM 0.361±2.6e-3 0.385±1.7e-3 0.816±2.7e-3 0.685±4.0e-3 0.668±2.6e-3

K (top K recommended items)
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Fig. 7. The results of MAP@K for different K for HRW-
Borda, HRW-all, BRW-RU -P and TLLSM. The figure
shows that HRW methods have better MAP scores; HRW-
Borda outperforms any competitor. When K is smaller,
the improvement on MAP@K increases.

loose, that have been naturally shaped. However,
TLLSM fails to consider user tie strength.

Comparisons on ranking metrics: Figure 7 shows
MAP evaluations of our HRW-Borda and HRW-All
methods and baselines for recommending the top K
items. We observe that (1) our HRW methods produce
higher MAP scores than the best BRW method (BRW-
RU -P) and the matrix factorization method TLLSM, and
(2) the HRW-Borda outperforms all the competitors.
Though we note that the improvement on MAP@20 is
tiny when K is as big as 20, our HRW methods improve
MAP@1 by 16.9% and MAP@3 by 17.4%. These results
demonstrate that HRW methods significantly improve
the item ranking performance in social recommendation
scenarios.

Comparisons on insensitivity: Figure 8 compares the
RMSE of HRW-Borda method, with multiple settings
of tie strength matrix W(U) initialization, including (1)
Laplacian, i.e., the Laplacian matrix of degree matrix
of the social graph; (2) Rand(x), x ∈ {0.1, 0.5, 1.0}, i.e.,
initializing non-zero entries in W(U) with random values
from 0 to x; and (3) Unif(1.0), i.e., initializing all entries
in W(U) with fixed values 1. We observe that

W(U) Initialization
Laplacian Rand(0.1) Rand(0.5) Rand(1.0) Unif(1.0)

R
M

S
E
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0.1
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0.45

Fig. 8. HRW method is insensitive to tie strength initializa-
tions with RMSE remaining reasonably consistent across
different HRW-Borda configurations as follows. The left
four bars are HRW-Borda with different configurations of
W(U): the first uses the Laplacian matrix of the binary
graph; the other three randomize user-user weights in a
given range. The rightmost bar represents a configuration
of fixed 1 for every user tie (=BRW-WU -P).

• The first four bars show similar RMSE values, indi-
cating that HRW method is insensitive to tie strength
initializations. Moreover, the error bars show that
when x is bigger, the variance (error) of RMSE is
bigger. Our default setting, Laplacian, gives small
RMSE and small variance.

• The last bar represents the all-1 configuration, which
gives much larger RMSE. This representation is
equivalent to the BRW-RU -P method, showing that
neglecting social information decreases the predic-
tion accuracy.

These results demonstrate that incorporating social rela-
tions significantly improves the recommendation perfor-
mance and that the performance of HRW is insensitive
to the tie strength initializations.

5.3.2 Performance on Auxiliary Item Transferability

In addition to the comparison with BRW methods, we
compare different configurations of HRW algorithms
on selecting transferable items in the auxiliary domain.
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Android love music 

? 

× 

“…Justin Bieber in NBA 
All-Star Celebrity Game…” 

Justin Bieber’s fan 

× 

× 

soccer 

× 

Android 

(a) Popularity (b) Consistency with posts (c) Consistency with followers (d) Consistency with followees

Fig. 9. What user labels can reflect real tie strengths? Users with popular common labels do not have to be strongly
connected. However, the consistency of labels with posts reflects users’ common preferences, and the consistency of
labels with follower/followee sets reflects users’ social communities. These factors are illustrated in the above figure.
A combined strategy is applied in our method.
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Fig. 10. Precision vs. recall for several HRW meth-
ods. HRW-Borda gives better precision-recall results than
other HRW methods. Considering all the features, includ-
ing popularity and consistency, HRW-Borda improves the
prediction performance by selecting highly transferable
items in the auxiliary domain.

Table 4 shows that the MAE values of HRW-Cons-
Post, HRW-Cons-Follower, and HRW-Cons-Followee are
22.6%, 10.0%, and 18.3% smaller, respectively, than the
MAE of HRW-Popular. Further, in Figure 10, we plot
precision-recall curves for all the algorithms and find
that HRW-Borda reaches the best, almost perfect values.
All the above 5 methods select the same number of
auxiliary items (user labels). HRW-Popular assumes that
users with the same, more popular labels are often more
tightly connected. However, in Figure 9(a), while “love
music” is adopted by 815,166 users and “Android” is
adopted by 10,653 users, the social relations between
users with “Android” are much denser than those be-
tween users with “love music”. Although “love music”
is popular, it is ordinary in terms of appearing in users’
label sets and weak for reflecting users’ tastes on making
social friends and adopting posts. We further give case
studies to discuss how to select user labels with high
transferability in auxiliary domains.

• HRW-Cons-Post uses the consistency with users’
posts feature. It selects the labels based on post
similarity. For example, in Figure 9(b), users la-

beled “Justin Bieber’s fan” retweet messages about
Justin’s performance in NBA All-Star Celebrity
Game. HRW-Cons-Post assumes that they have
stronger tie strength because of their similar pref-
erences on post content.

• HRW-Cons-Follower uses the consistency with
users’ followers feature. It selects the labels based on
the possession of common followers. In Figure 9(c),
the famous accounts with label “soccer” like Ten-
cent Soccer and CCTV5 UEFA have 13,522 common
followers (soccer fans), who are strongly connected
and often interact. Although both CCTV News and
CCTV5 UEFA are hosted by CCTV, they have no
common label and they do not often interact.

• HRW-Cons-Followee uses the consistency with
users’ followees feature. It selects the labels based on
the possession of common followees. For example,
in Figure 9(d), users with “Android” connect to
a few big accounts such as Android Forum and
Android Market. They are tightly connected and
often retweet messages about new Apps from fa-
mous accounts. HRW-Cons-Followee has better per-
formance than HRW-Cons-Follower, because it gives
weights to user relations among a large population
of ordinary users, while HRW-Cons-Follower can
only reflect tie strength between famous users.

In our final version of the HRW method, HRW-Borda
combines all the above features of user labels and uses
the standard Borda count to select the most transferable
user labels. Compared with HRW-All, which uses all the
items in the auxiliary domain, HRW-Borda reduces the
MAE by 25.0%. Further, compared with the best results
from BRW methods and previous approaches, our HRW-
Borda reduces MAE by as much as 41.6%.

5.3.3 Performance on Domain Transferability
Here, we use the experimental results to answer the
three questions below related to the transferability across
different domains.

(1) Are item similarity and tie strength important in
predicting user-post links?

On the web-post domain, δ is the weight of the tie
strength over web-post similarity. If δ increases, users
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Fig. 11. Charts of MAE against parameters. These charts provide the following insights: (a) Tune weights of tie
strength and item similarity on cross-domain link prediction. (b) Tune weights of knowledge from web-post and user-
label domains transferred to tie strength. (c) Tune weights of positive and negative user-post samples on tie strength.

are more likely to accept the recommended posts for
their social relationships than for their preferences. η
is the corresponding weight on the user-label domain.
Figure 11(a) shows the performances when varying δ
and η from 0 to 1. For δ, δ = 0 means the prediction
without considering item similarity, while δ = 1 means
the prediction without considering tie strength. From the
figure we can clearly observe a valley when δ is around
0.4, which means that incorporating both tie strength and
post similarity can significantly improve performance.

(2) Are user-post and user-label links important in
influencing user tie strength?
τ (P) and τ (T ) correspond to the weights of knowledge

learned from user-post and user-label links on calcu-
lating the tie strength, with τ (P) + τ (T ) = 1. Figure
11(b) shows the MAE when varying τ (P) from 0 to 1.
When τ (P) = 1, i.e., when we discard the knowledge
transferred from user-label links on tie strength, MAE
is around 0.37. When τ (P) = 0, i.e., τ (T ) = 1, MAE
is around 0.31, which may indicate that the user-label
domain is more helpful in predicting tie strength since it
is easier for friendly users to share the same user labels
than the same posts. The minimum MAE (τ (P) = 0.6)
suggests that knowledge from user-label links provides
potential clues on user-post link prediction through user
tie strength; thus, recommender systems should incor-
porate these two kinds of links.

(3) Are negative samples of web-post domain helpful?
µ is the relative weight of positive samples from web-

post domain that influences user tie strength, while 1−µ
is the relative weight of negative samples. Figure 11(c)
shows the changing curve of MAE when varying µ from
0 to 1. When µ = 1 (only train positive samples) and
µ = 0 (only train negative samples), the MAE is higher
than when taking both samples for training (µ = 0.6).
This means that considering both positive and negative
samples in the recommendation is helpful for algorithm
performance. MAE is lower when we have only negative
samples than when we have only positive ones.

The above discussion proves that our method is rea-
sonable and effective, which considers comprehensive
factors on user behavior and user tie strength, while
considering both positive and negative samples.
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Fig. 12. MAE vs. density for HRW-Borda, HRW-all, and
BRW-RU -P. HRW-Borda needs only 27.6% of the histori-
cal data and HRW-All needs only 35.5% of the historical
data in the target domain to reach the same performance
as BRW-RU -P, which does not transfer knowledge from
user-label links. Our HRW gives promising insights to
support the solving of the cold-start problem.

5.3.4 Performance on User Cold Start Problem

In this section, we conduct experiments to test the per-
formance of three methods on recommending items for
cold-start users: (1) BRW-RU -P, which has performed the
best in predicting missing links among all BRW methods;
(2) HRW-All, which uses all auxiliary user-label links to
help predict users’ behaviors in the target domain; and
(3) HRW-Borda, which selects highly transferable items
from the auxiliary domain to transfer strong and proper
knowledge. We control the density of training entries
of testing users (the percentage of training user-post
links per testing user, testing item). The experimental
results are shown in Figure 12. If no training entry is
hidden, where the density of training entries of testing
users is 1.2× 10−5, HRW-Borda reduces MAE by 41.6%
compared with the baseline (0.195 over 0.334). If we hide
all training entries, i.e., the density of training entries
of testing users is zero, which means the testing users
are new in the application, without previous behaviors
in the historical data, our method still reduces MAE by
27.4% (0.417 over 0.574). Furthermore, from Figure 12,
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we observe that:
• Our transfer learning methods HRW-Borda and

HRW-All need only 27.6% and 35.5% of the training
entries (3.31× 10−6 and 4.26× 10−6 dense) to reach
the same level performance of BRW-RU -P with the
whole training set (1.2 × 10−5 dense). With user
labels of a new user, our method needs only 3-day
historical data to reach the same recommendation
performance of 10-day data without labels. There-
fore, if we motivate new users to add several user la-
bels, the transferred knowledge from the user-label
domain would greatly improve user experience on
personal recommendation services.

• When the training data set is empty, HRW-All per-
forms a bit better than HRW-Borda, mainly because
it uses more rich information to evaluate users’
tie strength. With the number of user-label links
increasing, the consistency of user labels becomes
important, and thus, HRW-Borda, which selects
transferable labels, performs much better than HRW.

6 CONCLUSION

In this paper, we addressed the problems of data sparsity
and cold start in social recommendation. We reconsid-
ered the problem from the transfer learning perspective
and alleviated the data sparsity problem in a target
domain by transferring knowledge from other auxiliary
social relational domains. By considering the special
structures of multiple relational domains in social net-
works, we proposed an innovative HRW method on
a star-structured graph, which is a general method to
incorporate complex and heterogeneous link structures.

We conducted extensive experiments on a large real-
world social network dataset and showed that the pro-
posed method greatly boosts the social recommendation
performance. In particular, we gained improvement in
web-post recommendation by transferring knowledge
from the user-label domain for the user tie strength
updating process, compared with the recommendation
methods, which only use information from the web-post
domain. In addition, we demonstrated that, by using
only 27.6% of the available information in the target
domain, our method achieves comparable performance
with methods that use all available information in the
target domain without transfer learning. The proposed
method and insightful experiments indicate a promising
and general way to solve the data sparsity problem.
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