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ABSTRACT
Recently, as the applications of artificial intelligence gradually seep-

ing into some risk-sensitive areas such as justice, healthcare and

autonomous driving, an upsurge of research interest on model sta-

bility and robustness has arisen in the field of machine learning.

Rather than purely fitting the observed training data, stable learn-

ing tries to learn a model with uniformly good performance under

non-stationary and agnostic testing data. The key challenge of sta-

ble learning in practice is that we do not have any knowledge about

the true model and test data distribution as a priori. Under such

condition, we cannot expect a faithful estimation of model param-

eters and its stability over wild changing environments. Previous

methods resort to a reweighting scheme to remove the correlations

between all the variables through a set of new sample weights. How-

ever, we argue that such aggressive decorrelation between all the

variables may cause the over-reduced sample size, which leads to

the variance inflation and possible underperformance. In this paper,

we incorporate the unlabled data from multiple environments into

the variable decorrelation framework and propose a Differentiated

Variable Decorrelation (DVD) algorithm based on the clustering

of variables. Specifically, the variables are clustered according to

the stability of their correlations and the variable decorrelation

module learns a set of sample weights to remove the correlations

merely between the variables of different clusters. Empirical studies

on both synthetic and real world datasets clearly demonstrate the

efficacy of our DVD algorithm on improving the model parameter

estimation and the prediction stability over changing distributions.

CCS CONCEPTS
•Computingmethodologies→ Learning linearmodels; Semi-
supervised learning settings.

KEYWORDS
Stable Learning, Non-stationary Environments, Sample Reweight-

ing, Variable Decorrelation
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1 INTRODUCTION
With the prosperity ofmachine learning techniques in both academia

and industrial community, predicting a target value from several

obeserved variables becomes a very fundamental problem for re-

searchers. A large bunch of machine learning algorithms have been

proved to be very effective for such predictive task, provided the

testing data are drawn exactly from the same distribution as the

training data, or the correct learning model could be prescribed

by the expertise. In real scenarios, however, usually neither of the

above two assumptions could be easily satisfied due to the unseen

test data generated in the future and the potential over-complicacy

of the underlying mechanism. For instance, we may collect data

from different time spans and regions, or through different strate-

gies, and the heterogeneity of each subpopulation could probably

lead to the distribution shift between training and test data. To

make matters worse, as the recent literature [27] states, a little

perturbation on traning data could dramatically inflate the gen-

eralization error over changing environments once the model is

misspecified. Therefore, learning a predictive model with the guar-

antee of uniformly good performance across changing distribution

is of paramount importance, especially in the risk-sensitive appli-

cations such as justice [4, 26], healthcare [17] and autonomous

driving [13].

To alleviate the underperformance caused by the discrepancy be-

tween training and test distribution, a bunch of methods in transfer

learning (or domain adaptation) have been proposed [3, 5, 23]. The

key concept of these methods is to reweight the traning data by the

density ratio, so as to guarantee the optimality of learned model

on test distribution. Such methods usually achieve statisfactory

results under mildly experimental environments. However, as we

mentioned above, under the circumstances where one can hardly

ensure the availability of test data distribution or estimate den-

sity ratio accurately, domain adaptation methods cannot be readily

applied.

Recently, there are several strands of literature which have fo-

cused on a more applicable scenario where the test data distribution

is unknown during the training process. Domain generalization

[18, 22] is one of the popular learning paradigms developing rapidly

https://doi.org/10.1145/3394486.3403269
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these years. The notion behind domain generalization is to leverage

the heterogeneity in multiple traning subpopulations to learn a

domain-agnostic classifier or invariant feature representation. The

performance of these methods is highly dependent on the diver-

sity of training data and cannot generalize well to the agnostic

distribution shift which has not been captured by the traning data.

Another strand of literature investigates the distribution shift prob-

lem through the lens of causality, such as causal transfer learning

[25] and invariant causal prediction [24]. By incorporating struc-

tural causal model (SCM), a powerful and mature analytical tool,

one can identify causal variables using conditional independence

test, and therefore make reliable predictions. Despite the favor-

able analytical properties, these methods are rarely adopted in the

high-dimensional real applications due to their unacceptable com-

putational complexity on constructing huge causal graphs. More

recently, there are several researchers take the model misspcifica-

tion into account and try to learn a model with stability guarantee

by variable decorrelation through sample reweighting [16, 27]. They

try to remove the correlations between all the variables through a

new set of learned sample weights. However, such aggresive target

may cause the over-reduced sample size [21], which is often seen

as a nuisanse in machine learning.

Here, we adopt the framework of sample reweighting for vari-

able decorrelation. In contrast with previous methods which ag-

gressively decorrelate all the dependencies between variables, we

argue that not all the correlations are necessarily to be removed.

For example, when you want to recognize a dog in image clas-

sification task, although the nose, ear and mouth of dog may be

represented by different variables, they act as an integrated whole

and such correlations are stable across different envinronments.

Similarly, there may exist another bunch of variables representing

backgrounds (i.e. grass). Due to the selection bias, we may observe

the strong correlations between these two bunch of variables in the

biased training data. However, such "spurious" correlations cannot

generalize to new envinronments. Therefore, for such case, we only

need to remove the spurious correlation between salient variables

and background variables to gain an accurate dog classsifier.

Following such intuition, the key challenge is how to capture the

spurious correlation during the training process. Inspired by the

discussion on connection between heterogeneity and invaraince

[6], we assume the availability of unlabeled data collected from

multiple distinct environments, apart from the biased labeled data.

In this paper, we propose a data-driven method called Differentiated

Variable Decorrelation (DVD) algorithm. Specifically, we first parti-

tion the variables into different clusters according to the stability

of their correlations, such that the correlations of variables in the

same cluster are stable accross different environments. Then the

variable decorrelation module decorrelates variables from differ-

ent clusters via learned sample weights. Compared with previous

weight learning methods, the proposed method is able to remove

the spurious correlation in biased data while maintaining higher

effective sample size. Empirical experiments on both synthetic and

real world datasets clearly demonstrate the efficacy of our DVD

algorithm on improving the model parameter estimation and the

prediction stability over changing distributions.

The main contributions of our paper are as follows:

• We investigate the stable learning problem under model

misspecification and agnostic distribution shift, which is

fundamental in both academia and industrial community.

• We propose a semi-supervised Differentiated Variable Decor-

relation (DVD) algorithm, which is more capable than previ-

ous methods in restraining the over-reduced sample size.

• Empirical experiments on both synthetic and real datasets

demonstrate the superiority of our algorithm in both esti-

mation accuracy and prediction stability under changing

distributions.

The rest of this paper is organized as follows. Section 2 reviews

the related work. Section 3 concretizes the stable learning problem

under model misspecification and changing environments. Section

4 revisits the variable decorrelation framework and further pro-

poses our differentiated variable decorrelation algorithm. Section

5 demonstrates the experimental settings and results on various

datasets. Finally, Section 6 involves some discussions and concludes

the paper.

2 RELATEDWORK
In this section, we investigate several strands of related literature

more thoroughly, including domain adaptation, domain generaliza-

tion and variable decorrelation.

Domain adaptation [23] is the most straightforward way to

achieve better performance over the changing distributions. The

intuition behind the domain adaptation methods is to leverage the

data from target domain to assist the model training on source

domain. Therefore the resulted model could capture the possible

distribution shift. Shimodaira [28] proposes a sample reweighting

scheme that assigns each training data a new weight equal to the

density ratio between source and target distribution, so as to guar-

antee the optimality of learned model on test distribution. Then

several techniques have been proposed to estimate the density ratio

more accurately, such as discriminative estimation [5], kernel mean

matching [8] and maximum entropy [12]. Apart from reweighting

methods, deep learning based methods [10, 11, 19] learn a trans-

formation in feature space to characterize both source and target

domain. However, under the circumstances where one can hardly

ensure the availability of data from target domain or estimate den-

sity ratio accurately, domain adaptation methods cannot be readily

applied.

Closely related to domain adaptation, domain generalization

techniques do not assume the availability of target domain distri-

bution and become more and more popular these years. The key

notion of domain generalization is to learn a domain-agnostic clas-

sifier with multiple traning domains. Muandet et al. [22] propose

a kernel-based optimization algorithm to learn an invariant repre-

sentation of data by minimizing the dissimilarity across training

domains. Li et al. [18] propose an end-to-end low-rank parametrized

CNN which consists of domain-specific part and domain-agnostic

part, and further alleviate the complexity problem through weight

sharing. Through the lens of causality, Rojas-Carulla et al. [25]

propose a causal transfer framework to identify invariant structure

at a multi-task setting. Peters et al. [24] propose an algorithm to

identify causal predictors by exploring the invariance of the condi-

tional distribution of the outcome with multiple training domains.



Overall, the performance of these methods is highly dependent

on the diversity of training domains and cannot generalize well to

the agnostic distribution shift which has not been captured by the

training data.

Correlation (a.k.a. collinearity) [1, 9] between predictor vari-

ables has long been an annoying problem in statistics. It brings

challenges to evaluate the individual importance of variables in a

linear model since their contributions are interchangeable. Recent

literature [16, 27] has reveal the connection between correlation

and prediction stability under model misspecification. Takada et al.

[29] propose a correlation penalty term in the regularized regres-

sion model to constrain the correlated variables not to be selected

at the same time. Shen et al. [27] design an oracle distribution

with independent variables and transfer the original distribution

through density ratio adaptation. Kuang et al. [16] propose a vari-

able decorrelation regularizer to reweight each sample, removes

the dependencies between variables on the weighted training data.

In practice, decorrelating all the variables is hard to accomplish and

may further cause the largely reduced sample size, which is often

seen as a nuisanse in machine learning.

3 PROBLEM FORMULATION AND
NOTATIONS

Notations. In this paper, we let n denote the sample size, p denote

the dimension of observed variables. For any matrix A ∈ Rn×p , let
Ai , and A, j represent the i

th
row and the jth column in A, respec-

tively. For any vector v = (v1,v2, · · · ,vm )⊤, let ∥v∥1 =
∑m
i=1 |vi |

and ∥v∥2
2
=

∑m
i=1v

2

i .

We first introduce the stable learning problem [27] as follows:

Problem 1. (Stable Learning) : Given the target value y and p
input variables x = [x1, . . . , xp ] ∈ Rp , the task is to learn a predictive
model which can achieve uniformly small error on any data point.

Different from the traditional machine learning paradigm which

assumes the homogeneity of training data and test data, stable

learning problem actually offers a more broad definition of stability

and robustness even when the heterogeneity exists in the non-

stationary environments. Specifically, let X denote the space of

observed features and Y denote the outcome space. We define an

environment to be a joint distribution PXY on X × Y, and let E

denote the set of all possible environments. In each environment

e ∈ E, we have dataset De = (X e ,Y e ), where Xe ∈ X are predictor

variables and Y e ∈ Y is a target variable. The joint distribution of

predictors and target on Xe × Ye
can vary across environments:

PeXY , Pe
′

XY for e, e ′ ∈ E.
In concert with the above notion, the evaluation criterion of a

predictive model in stable learning should not only focus on the

accuray of single population but also the stability accross multiple

changing environments. Here, we adopt the Averaдe_Error and

Stability_Error in [14] with following definitions:

Averaдe_Error = 1

|E |

∑
e ∈E Error (D

e ), (1)

Stability_Error =
√

1

|E |−1

∑
e ∈E (Error (D

e ) −Averaдe_Error )2, (2)

where |E | refers to the number of environments, and Error (De )

represents the predictive error on a specific environment De
. Ac-

tually, Averaдe_Error and Stability_Error refer to the mean and

variance of the predictive error over all possible environment e ∈ E.
To sum up, the target of Problem 1 is to learn a predictive model

with uniformly good performance under arbitrary distribution shift

in terms of small Averaдe_Error and Stability_Error .
In this paper, we study the stable learning problem in the scope

of linear models for regression tasks, and introduce two basic as-

sumptions as [16] in our problem settings.

Assumption 1. There exists a decompsition of all the variables
X = {S,V}, where S represents the stable variable set and V rep-
resents the unstable variable set. Specifically, for all environments
e ∈ E,E (Y e |Se = s,Ve = v) = E (Y e |Se = s) = E (Y |S = s)1.

Although the joint distrbution PXY may vary accross different

environments, Assumption 1 shows that there exists an invariant

structure which can be leveraged for stable learning. However, as

we will show later, one can hardly tease out such structure under

misspecified model, which happens commonly in the real situations.

Assumption 2. The true generation process of target variable Y
contains not only the linear combination of stable variables S, but
also the nonlinear transformation of the original signals and the
interaction between stable variables.

Based on the above assumptions, we can now formalize the data

generation process as follow:

Y = f (X) + ϵ = ST βS + VT βV + д (S) + ϵ, (3)

where βT =
[
βTS , β

T
V
]
are the linear coefficients to be learned by the

traditional regression model, д (·) is the nonlinear transformation

function of stable variables and ϵ is the independent random noise.

From Assumption 1, we know that coefficients of unstable variables

V are actually 0 (i.e. βV = 0).
In standard least square regression techniques of linear model

(e.g. OLS) , if the misspecification term д (S) = 0, then the coeffi-

cients β could be accurately estimated and stable learning problem

is solved. Otherwise, the coefficients of both stable variables and

unstable variables would be biased. Taking OLS as an example, we

aim at minimizing the square loss:

LOLS =

n∑
i=1

(
STi βS + VTi βV − Yi

)
2

.

Previous study [16] has shown that:

ˆβVOLS − βV =

(
1

n

n∑
i=1

VTi Vi

)−1 (
1

n

n∑
i=1

VTi д (Si )

)
+

(
1

n

n∑
i=1

VTi Vi

)−1 (
1

n

n∑
i=1

VTi Si

) (
βS − ˆβSOLS

)
,

(4)

ˆβSOLS − βS =

(
1

n

n∑
i=1

STi Si

)−1 (
1

n

n∑
i=1

STi д (Si )

)
+

(
1

n

n∑
i=1

STi Si

)−1 (
1

n

n∑
i=1

STi Vi

) (
βV − ˆβVOLS

)
.

(5)

1
We omit environment superscript

e
when describing rules which can be applied into

all the environments



To sum up, we assume the true generation model is mis-specified

in terms of the standard linear model. Under traditional I.I.D. set-

tings, model misspecification may not hurt the performance much.

However, in the context of non-stationary environments, the learned

model would be extremely vulnerable to the changing distribution

and suffer from under-performance. So the main goal of stable

learning methods is to control the misspecification error by esti-

mating the coefficients of stable variables as accurate as possible

and partial out the influence of unstable variables.

4 ALGORITHM
4.1 Revisiting on Variable Decorrelation
From the analysis in previous section, we can find the estimation

error is mainly induced by two sources: the correlation between

unstable variable V and misspecified term д(S) (or S)2, and the cor-

relation between stable variable S and misspecified term д(S). The
latter one is inevitable since we cannot acquire the non-linear trans-

formation д() in advance, which to some extent, we can tolerate.

Therefore, if we can decorrelate the V and S, the learned model

would be more stable.

There are mainly two strands of methods focusing on reducing

the correlations between variables. Based on the Lasso-type reg-

ularization framework [30, 31], several methods are proposed to

take the correlation between variables as an addtional criterion of

feature selection [7, 29]. They leverage the covariance matrix (or

correlation matrix) of predictor variables X to penalize the learned

coefficients. As a result, the highly correlated variables are unlikely

to be selected at the same time. However, in practice, these methods

would suffer from the loss of information once two stable variables

are strongly correlated.

Inspired by the sample reweighting techniques in the causal liter-

ature [2, 15], researchers proposed a sample reweighting technique

to eliminate the correlation between variables [16]. Specifically,

they learn the sample weights by jointly minimizing the momemnt

discrepancy between each variable pairs:

Ŵ = arg min

W ∈C
LB +

λ3
n

n∑
i=1

W 2

i + λ4

(
1

n

n∑
i=1

Wi − 1

)
2

, (6)

LB =

p∑
j=1




XT
, jΣW X,−j/n − XT

, jW /n · X
T
,−jW /n




2
2

, (7)

whereW ∈ Rn×1 are sample weights, ΣW = diag (W1, · · · ,Wn ) is

the corresponding diagonal matrix and C =
{
W :

��Wi j
�� ≤ c

}
for

some constant c .
The proposed weight-learning algorithm offers a new angle for

variable decorrelation without lossing important variables. How-

ever, decorrelate all the variables is often hard to accomplish in real

situations, the uniqueness of solution requires λ3n ≫ p2 + λ4 [16].
Moreover, there is a tradeoff between decorrelation and effective

sample size, unnecessarily removing the correlation among stable

variables (or among unstable varibles) would cause the shrinkage

of effective sample size, and lead to variance inflation and under-

performance in high-dimensional settings.

2
We assume all the variables are centered with zero mean

4.2 Differentiated Variable Decorrelation
We have demonstrated before that treating each pair of variables

eqaully and decorrelating them all is not quite plausible and may

result in over-reduced sample size in real high-dimensional settings.

Therefore the key challenge posed by the previous method is how to

avoid the redundant work and focus on removing only the spurious

correlation which might vary across different environments.

Rather than individually considering all the variables, inspired

by the aforementioned example of dog classification, we assume

the variables have intrinsic group structures under changing distri-

butions as follows:

Assumption 3. The variables X = {X1,X2, . . . Xp } could be par-
titioned into k distinct groups G1,G2, . . . ,Gk . For ∀i, j, i , j and
Xi ,X j ∈ Gl , l ∈ {1, 2, . . . ,k}, we have PeXiX j

= PXiX j .

Under assumption 3, we know that the joint distribution are

stable within the same group and therefore the spurious correlation

are induced by the variables between different groups. Moreover,

combined with assumption 1, we can conclude that the stable vari-

able S and unstable variable V would be partitioned into different

groups:

Corollary 1. For ∀i, j,Xi ∈ S and X j ∈ V , Xi ,X j belong to
different groups.

Based on the above analysis, if we can accurately cluster the

variables and remove the correlation between different clusters, the

estimation error on unstable variables V would be eliminated.

With the single homogeneous training data, it seems to be in-

feasible to accomplish such goal. However, in real scenarios, due

to the different time spans, regions and strategies we collect the

data, the heterogeneity often exists, either within single dataset

or accross different environments. Rather than considering hetero-

geneity a nuisance factor that causes unstable performace, we can

also leverage it for better insights into invariance. Specifically, by

leveraging the extra unlabeled data from multiple environments

Z = [Z1,Z2, . . . ,ZM ], we propose to capture the invariant property

over joint distribution of two variables through the variance of their

correlation
3
and define the dissimilarity of two variables as follow:

Dis(Xi ,X j ) =

√√√
1

M − 1

M∑
l=1

(
Corr (X l

i ,X
l
j ) −Ave_Corr (Xi ,X j )

)
2

,

(8)

where Corr (X l
i ,X

l
j ) represents the pearson correlation of Xi ,X j in

the lth environment andAve_Corr (Xi ,X j ) represents their average

correlation over all the environments.

Intuitively, the variables with lower dissimilarity are more likely

to maintain a stable joint distribution over changing environments

and should be grouped into the same cluster. By computing the

dissimilarity between all the variable pairs and further transform

each variable into a p_dimensional vector space:

F (Xi ) = (Dis(Xi ,X1),Dis(Xi ,X2), . . . ,Dis(Xi ,Xp )), (9)

grouping the variables with lower dissimilarity into the same cluster

is equivalent to performing conventional clustering analysis on F ,

3
For simplicity we only consider the first order moments of random variables, and the

higher order information could be incorperated for better characterization of joint

distribution



and we can incorperate several popular techniques like k-means

[20].

Combining the variable clustering process, we propose our Dif-

ferentiated Variable Decorrelation (DVD) algorithm as follows:

LDVD =
∑
i,j
I (i, j)




(XT
,iΣW X, j/n − XT

,iW /n · X
T
, jW /n)




2
2

(10)

where I (i, j) is an indicator function which produces 1 if Xi and Xj
belong to the same cluster and produces 0 otherwise. The whole

object function can be formalized as follow:

min

W

∑
i,j
I (i, j)




(XT
,iΣW X, j/n − XT

,iW /n · X
T
, jW /n)




2
2

s.t

1

n

n∑
i=1

W 2

i < γ1,

(
1

n

n∑
i=1

Wi − 1

)
2

< γ2, W ⪰ 0

(11)

With the learned sample weights Ŵ which can decorrelate vari-

ables between different clusters, one can run weighted least square

to estimate the regression coefficients as follows:

ˆβDVD = argmin

β

n∑
i=1

Ŵi ·
(
Yi − XT

i β
)
2

, (12)

l1 or l2 regularizer could be further applied to avoid overfitting.

4.3 Optimization and Complexity Analysis
For the variable clustering process, we follow the standard routine

of k-means algorithm with an itrerative refinement procedure. We

first initialize the k mean variables, then we assign the rest vari-

ables into clusters with nearest mean and recalculate the means of

different clusters, such procedure converges when the assignment

no longer changes. Then, with the clutering results, we can con-

struct the indicator I and optimize the sample weightŴ by gradient

descent. The details of algorithm are shown in Algorithm 1.

For variable clustering, its complexity is O(kp2) for each itera-

tions, where p is the dimension of observed variables and k is the

pre-specified number of clusters. For optimizingW , its complexity

is O(np2). In total, the complexity of each iteration in Algorithm 1

is O(np2 + kp2).

5 EXPERIMENTS
In this section, we evaluate our algorithm on both synthetic and

real world datasets.

5.1 Baselines
We use following four methods as the baselines.

• Ordinary Least Square (OLS):

min ∥Y − Xβ ∥2
2
.

• Lasso [30]:

min ∥Y − Xβ ∥2
2
+ λ1∥β ∥1.

• Independently Interpretable Lasso (IILasso) [29]

min ∥Y − Xβ ∥2
2
+ λ1∥β ∥1 + λ2 |β |

T R|β |,

where R ∈ Rp×p with each element Rjk = |r jk |/(1 − |r jk |),

and r jk =
1

n |X
T
, jX,k |.

Algorithm 1 Differentiated Variable Decorrelation (DVD)

Input: Unlabeled heterogeneous data Z = [Z1,Z2, . . . ,ZM ] and

labeled homogeneous data D = [X,Y].
Output: Clustering results G1,G2, . . . ,Gk and sample weightW .

1: Variable clustering:
2: Calculate the variable dissimilarity vector F by Equ.9.

3: Initialize k cluster meansm1,m2, . . . ,mk .

4: repeat
5: Assignment step: Assign each variable to the cluster with

the nearest mean measured by least squared Euclidean distance.

6: Update step: Recalculate means for variables assigned to

each cluster.

7: until The assignment result G1,G2, . . . ,Gk no longer changes.

8: Variable decorrelation weight learning:
9: Initialize parametersW (0),

10: Calculate value of Obj. (11) with parametersW (0) and α (t ),
11: Initialize the iteration variable q ← 0,

12: repeat
13: q ← q + 1,

14: UpdateW (q) by gradient descent,

15: Calculate loss function with parametersW (q),
16: until Loss function converges or max iteration is reached.

17: returnW

• Decorrelated Weighting Regression (DWR) [16]

min

W ,β

n∑
i=1

Wi · (Yi − Xi , β)
2

s.t

p∑
j=1




XT
, jΣW X,−j/n − XT

, jW /n · X
T
,−jW /n




2
2

< λ2

|β |1 < λ1,
1

n
∑n
i=1 W 2

i < λ3,
(
1

n
∑n
i=1Wi − 1

)
2

< λ4

We tune the hyper-parameters by grid search and cross validation.

To avoid the degeneration of Lasso and IILasso methods, we set the

hype-parameters λ1 , 0 and λ2 , 0. For fair comparison, we let

the hyper-parameter which control the regularization of weight

variance in weight-learning models (λ3 for DWR and γ1 for DVD)
to be the same.

5.2 Evaluation Metrics
In our experiments, we perform the task of stable prediction across

environments. To evaluate the prediction performance, we use

RMSE, β_Error ,Averaдe_Error , and Stability_Error as evaluation
metrics. Their definitions are listed as follows:

RMSE =
√

1

n
∑n
k=1(Yk − Ŷk ),

where n is sample size, Ŷk and Yk refer to the predicted and true

outcome for sample k .

β_Error = ∥β − ˆβ ∥1,



Figure 1: The effective sample size of DWR and DVD, when
fixing n = 200, rtrain = 1.9 and varying p.

where
ˆβ and β represent the estimated and true regression coeffi-

cients.

Averaдe_Error = 1

|E |

∑
e ∈E RMSE(De ),

Stability_Error =
√

1

|E |−1

∑
e ∈E (RMSE(De ) −Averaдe_Error )2,

where |E | refers to the number of testing environments, andRMSE(De )

represents the RMSE value on dataset De
from environment e .

5.3 Experiments on Synthetic Data
5.3.1 Dataset. We generate X = {S·,1, · · · , S·,ps ,V·,1, · · · ,V·,pv }
from a multivariate normal distribution X ∼ N (0, Σ), by specifying

the structure of covariance matrix Σ. We can simply simulate differ-

ent correlation structures of X by defining different Σ. Specifically,

we let Σ = Diag

(
Σ(S ), Σ(V )

)
to be a block diagonal matrix whose el-

ement Σ(S ) ∈ Rps×ps was Σ
(S )
jk = ρs for j , k and Σ

(S )
jk = 1 for j = k .

We can define Σ(V ) ∈ Rpv×pv in a similar way. So there will be cor-

rleations among stable variables (and unstable variables). Note that

such simplified design indicates the fact that stable variables S and

unstable variables V form two clusters. Actually we can simulate

more complex scenarios by manipulating the covariance matrix Σ
and further divide stable variables S (or V) into sub-clusters, more

experimental settings can be found in supplementary materials
4
.

To introduce tne misspecification error such as missing non-

linear and interaction terms, we generate the outcome Y from a

polynomial nonlinear function Ypoly :

Ypoly = f (S) + ε = [S,V] · [βs , βv ]T + S·,1S·,2S·,3 + ϵ,

where βs =
{
1

3
,− 2

3
, 1,− 1

3
, 2
3
,−1, · · ·

}
, βv = ®0 and ϵ = N(0, 0.3).

5.3.2 Generating Various Environments. To test the stability of all

algorithms, we need to generate a set of environments e , each with

a distinct joint distribution PXY . Specifically, following [16] we

generate different environments in our experiments by varying

P(V|S). Among all the unstable variables, we simulate unstable

correlation P(Vb |S) on a subset Vb ∈ V, where the dimension of

4
https://github.com/Silver-Shen/Stable-Learning-via-Differentiated-Variable-

Decorrelation

Vb can be tuned. We vary P(Vb |S) via biased sample selection with

a bias rate r ∈ [−3,−1) ∪ (1, 3]. For each sample, we select it with

probability Pr =
∏

Vi ∈Vb |r |
−5∗Di

, where Di = | f (S)−siдn(r ) ∗Vi |.

siдn(r ) = 1 if r > 0, otherwise siдn(r ) = −1.
We could deduce that r > 1 corresponds to positive correlation

between Y and Vb , and r < −1 refers to the negative correlation

between Y and Vb . And the higher absolute value of r , the stronger
correlation between Vb andY . By varying P(Vb |S), we can generate
different environments, and different value of r refers to different

environments.

5.3.3 Experimental Settings. For variable clustering, we uniformly

choose ten different bias rates from r ∈ [−3,−1) ∪ (1, 3] to form

multiple environments and set cluster numbers k = 2. In exper-

iments, we evaluate the performance of all algorithms from two

aspects, including accuracy on parameter estimation and stability

on prediction across unknown test data. To measure the accuracy

of parameter estimation, we train all models on one training dataset

with a specific bias rate rtrain . We carry out model training for

10 times independently with different training data from the same

bias rate rtrain , and report the mean and variance of β_Error . To
evaluate the stability of prediction, we test all models on various

test environments with different bias rate r ∈ [−3,−1) ∪ (1, 3] (the
same environments as used in variable clustering). For each test

bias rate rtest , we generate 10 different test datasets and report

the mean of RMSE. With RMSE from all test environments, we

report Average Error and Stability Error to evaluate the stability of

prediction across unknown test environments.

5.3.4 Results. Before reporting the experimental results, we demon-

strate the effective sample size of weighting-based methods DWR

and DVD in Figure 1, under the same training protocal for both

methods. The effective sample size described in [21] can be seen as

a measurement of smoothness of learned sample weights, which is

defined as:

Nef f =
(
∑n
i=1wi )

2∑n
i=1w

2

i
.

From the figure, we can see that the effective sample size of DVD

is consistently larger than DWR. DWR takes into account the cor-

relation between all the variables and therefore the Nef f shrinks

quickly as the dimension grows, leading to possible varaince infla-

tion on the parameter estimation. By efficiently removing the spu-

rious correlation between clusters of variables, our method is more

capable of handling stable learning problem in high-dimensional

real settings.

We report the results of setting n = 200, p = 10,pvb = p ∗ 0.2
and rtrain = 1.9 in Figure 2 and Table 1.

From the results, we have following observations and analysis:

• Ordinary least squares (OLS) suffers from spurious corre-

lation in terms of error inflation and yields unsatisfactory

performance in most of settings, which is consistent with

our theoretical analysis.

• Lasso and IILasso do not differentiate themselves with OLS

much and even worse than OLS in much settings. Recall that

we generate the stable variables with dense correlation struc-

ture, therefore regularization based methods would suppress



(a) Estimation error (b) Prediction error over different test environments (c) Average prediction error&stability

Figure 2: All the models are trained with n = 200, p = 10,pvb = p ∗ 0.2 and rtrain = 1.9.

Table 1: Results under varying sample size n, number of unstable variables pvb , and bias rate r . The smaller β_Error, Aver-
age_Error and Stability_Error, the better.

Scenario 1: varying sample size n
n, pvb , r n = 120, pvb = p ∗ 0.2, r = 1.9 n = 160, pvb = p ∗ 0.2, r = 1.9 n = 200, pvb = p ∗ 0.2, r = 1.9

Methods β_Error Average_Error Stability_Error β_Error Average_Error Stability_Error β_Error Average_Error Stability_Error

OLS 1.988 0.470 0.087 1.870 0.489 0.105 1.839 0.522 0.121

Lasso 2.021 0.476 0.092 1.905 0.494 0.110 1.876 0.529 0.129

IILasso 2.035 0.475 0.094 1.920 0.498 0.113 1.894 0.538 0.149

DWR 2.012 0.545 0.099 1.991 0.502 0.076 1.656 0.485 0.081

Our 1.892 0.469 0.040 1.741 0.489 0.050 1.369 0.476 0.042
Scenario 2: varying number of unstable variables pvb

n, pvb , r n = 200, pvb = p ∗ 0.2, r = 1.9 n = 200, pvb = p ∗ 0.3, r = 1.9 n = 200, pvb = p ∗ 0.4, r = 1.9

Methods β_Error Average_Error Stability_Error β_Error Average_Error Stability_Error β_Error Average_Error Stability_Error

OLS 1.839 0.522 0.121 2.128 0.563 0.179 2.533 0.623 0.245

Lasso 1.876 0.529 0.129 2.176 0.571 0.186 2.588 0.637 0.254

IILasso 1.894 0.538 0.149 2.196 0.575 0.191 2.606 0.640 0.259

DWR 1.656 0.485 0.081 1.881 0.469 0.092 2.416 0.459 0.035

Our 1.369 0.476 0.042 1.641 0.460 0.064 2.204 0.443 0.021
Scenario 3: varying bias rate r on training data

n, pvb , r n = 200, pvb = p ∗ 0.2, r = 1.6 n = 200, pvb = p ∗ 0.2, r = 1.8 n = 200, pvb = p ∗ 0.2, r = 2.0

Methods β_Error Average_Error Stability_Error β_Error Average_Error Stability_Error β_Error Average_Error Stability_Error

OLS 1.296 0.452 0.064 1.780 0.510 0.117 2.102 0.517 0.122

Lasso 1.321 0.455 0.067 1.812 0.516 0.123 2.138 0.522 0.128

IILasso 1.339 0.457 0.070 1.829 0.519 0.125 2.155 0.527 0.132

DWR 1.153 0.457 0.033 1.262 0.458 0.035 1.621 0.455 0.012

Our 1.236 0.463 0.021 1.236 0.450 0.023 1.522 0.451 0.012

the effects of S , especially for IILasso, leading to the loss of

information and possible underporformance.

• From Figure 4(a), we find that the weighting-based decorre-

lation method could effectively reduce the esimation bias, at

the cost of increasing estimation variance. However, DWR

apparently suffers from the over-reduced sample size after

reweighting the training data, making it quite unstable and

vulnerable to the noise. From Figure 4(b) and 4(c), DVD

achieves a more stable prediction compared with different

baselines. By efficiently reducing the spurious correlation

between stable and unstable variables, our algorithm can

ensure a more accurate estimation under misspecifed model.

Note that the performance of our algorithm is worse than

baselines when the bias of test data is large, which is reason-

able and coincides with I.I.D. assumption in that the spurious

correlation in training data (rtrain = 1.9) still persists in test

data, so leveragingV for prediction does not actually matter.

However, as the discrepancy of training and test distribution

getting larger, as we can see the left side of Figure 4(b), the

performance of baselines deteriorate dramatically.

• By varying the sample sizen, dimension of unstable variables

pvb , our algorithm consistently outperforms baselines. For

the relatively small training bias rate rtrain , the result of

DVD is comparable with baselines as the selection bias is

not very severe.



(a) RMSE over different test environments. (b) Average Error of all the environments and stability.

Figure 3: Prediction performances over various built periods of house. All themodels are trained on the first periodbuilt_year ∈
[1900, 1919] and tested on all the six periods.

5.4 Experiments on Real World Data
5.4.1 Datasets and Experimental Setting. In this experiment, we

use a real world regression dataset (Kaggle) of house sales prices

from King County, USA, which includes the houses sold between

May 2014 and May 2015 . The outcome variable is the transaction

price of the house and each sample contains 16 predictive variables

such as the built year of the house, number of bedrooms, number

of bathrooms, and square footage of home etc.

To test the stability of different algorithms and support variable

clustering in DVD, we simulate different environments accord-

ing to the built year of the house. Specifically, the houses in this

dataset were built between 1900∼2015 and we split the dataset into

6 periods, where each period approximately covers a time span of

two decades. We train all the methods on the first period where

built_year ∈ [1900, 1919] with cross validation, and test them on

all the six periods respectively.

5.4.2 Results. From Figure 3(b), we can find that ourmethod achieves

not only the smallest average error but also a better stability over

different test environments compared with other baselines, which

demonstrate the effectiveness of differentiated variable decorrela-

tion. From Figure 3(a), we can find a clear error inflation along the

time axis for all the methods. The longer time interval from period

1 (training environment), the larger distribution shifting models

may incur, which are more challenging in real applications. The

results show that the variable decorrelation method performs much

better than baselines in period 3-6, which gives credit to sample

reweighting techique. Our method is more reliable in the largest

distribution change than the DWR, which demonstrate the effecacy

of feature diffrentiation. Therefore, in practical use, our algorithm

is more reliable, especially when one expects to encounter obvious

environment changes in test scenarios.

6 CONCLUSION
In this paper, we focus on how to stabilize the prediction perfor-

mance of machine learning methods accross the non-stationary

environments when the model may be misspecified. We argue that

the previous methods based on varialbe decorrelation set a too

ambitious goal to remove all the dependencies between variables.

However, it is hard to accomplish in high-dimensional real settings

and may result in the over-reduced sample size. Actually, only the

spurious correlation which may vary across different environments

is the nuisance and should be elimiated. In concert with this notion,

we incorporate the heterogeneous unlabled data into the variable

decorrelation framework and propose a Differentiated Variable

Decorrelation (DVD) algorithm based on the clustering of variables,

which is able to remove the spurious correlation in biased data while

maintaining higher effective sample size. Empirical experiments

on both synthetic and real world datasets clearly demonstrate the

efficacy of our DVD algorithm on improving the model parameter

estimation and the prediction stability over changing distributions.
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