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ABSTRACT
Nowadays graph has become a general and powerful representation
to describe the rich relationships among different kinds of entities
via the underlying patterns encoded in its structure. The knowledge
(more generally) accumulated in graph is expected to be able to cross
populations from one to another and the past to future. However
the data collection process of graph generation is full of known or
unknown sample selection biases, leading to spurious correlations
among entities, especially in the non-stationary and heterogeneous
environments. In this paper, we target the problem of learning stable
graphs frommultiple environments with selection bias. We purpose
a Stable Graph Learning (SGL) framework to learn a graph that
can capture general relational patterns which are irrelevant with
the selection bias in an unsupervised way. Extensive experimental
results from both simulation and real data demonstrate that our
method could significantly benefit the generalization capacity of
graph structure.
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1 INTRODUCTION
Graph is a general and powerful representation to describe the rich
relationships among different kinds of entities. The relational pat-
terns (or knowledge more generally) it encodes are often exploited
to facilitate various tasks. Therefore, many application fields are
enthusiastic in generating application-specific graphs. In a recom-
mendation system, for example, a graph is usually constructed and
accumulated to reflect the purchasing patterns of products based
on historical user purchasing behaviors, and this graph can be
exploited in identifying product collections, predicting future pur-
chasing behaviors, making promotion strategies and so on. In such
cases, the quality of the graph is of huge impact on the subsequent
tasks.

In addition to the traditional way of manually defining a graph
by domain experts, the recent trend is to derive a graph from a
collection of data in a data-driven manner. Among others, the
most commonly used is to measure the co-occurrence frequency
among entities [23] and heuristically build edges linking highly
co-occurred entities. Some more advanced methods take the sub-
sequent task into the loop and exploit the supervised information
from the end task to further refine the generated graph through a
learning framework[14]. No matter which strands, all these data-
driven methods implicitly assume that the data collection for graph
generation is sufficiently representative with respect to the whole
data population, or at least, the two data collections for generating
and exploiting the graph respectively should be independent and
identically distributed (I.I.D.). Only under this assumption, the re-
lational patterns encoded in the generated graph may still hold in
the subsequent tasks.

In practice, however, this assumption can hardly be satisfied. The
data collection process is usually full of known or unknown sample
selection biases, leading to spurious correlations among entities.
Take recommendation system as an example. In constructing a prod-
uct co-purchasing graph, the collected data may consist of much
more female user behaviors than male. Then the resulted graph gen-
erated by existing methods will induce much bias in predicting male
purchasing behaviors (if we suppose a large discrepancy between
female and male purchasing behavior patterns). This problem is
more serious in non-stationary and heterogeneous environments
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such as different geographical regions, diverse demographic popu-
lations, or long time-span. As we usually ignore the original data
distribution where we derive the graph when exploiting it, it is
highly demanded to scrutinize the stability of the generated graph
across different environments.

In recent years, stable (or invariant) learning[11, 17, 26] arouses
considerable research interests. These methods aim to learn a stable
function from input variables to the output variable which is consis-
tent across unknown distribution shifts, but few of them study the
problem in the context of graph structure. In this paper, we target
the problem of learning stable graphs from multiple environments
with selection bias. We suppose the data availability from multiple
environments with different sample selection biases, and aim to
learn a graph that capture general relational patterns that are irrel-
evant with these selection biases. We expect that the learned graph
can be applied into multiple, even unknown environments and help
to produce stable performances with subsequent tasks. Meanwhile,
the stable graph should be more explainable as it contains less bias
and thus less spurious correlations than conventional generated
graphs. In addition, as we do not target any specific subsequent
tasks, the learning of stable graphs should be in an unsupervised
way.

Here we propose a Stable Graph Learning (SGL) framework to
accomplish these goals. For more generality, we design the frame-
work for set data, where a data sample is represented by a set (e.g. a
shopping basket in recommendation systems) consisting of several
elements (e.g. products in recommendation systems). The frame-
work is composed by three modules, including a graph construction
module to generate a graph, a graph convolutional network (GCN)
to learn embeddings for elements and transform a set into a pooled
embedding vector (i.e. a set vector), as well as an element-wise
variational auto-encoder (E-VAE) to reconstruct the original input
set.

The parameters in the three modules are jointly optimized in a
iterative way, but, conceptually, we can decompose the training pro-
cess into two phases. In the first phase, we fix the graphs constructed
in each environment, and update parameters in GCN and E-VAE,
enabling the two modules with the capability to generate the set
data in the corresponding environment from the constructed graph.
In the second phase, we fix the parameters in GCN and E-VAE, and
refine the graph structure tomake the probability of generating a set
equals to the average probability of generating the set over all envi-
ronments. Assuming the environments are randomly selected with
different selection bias, the resulted graph structure contains less
bias than every single environment, and consequentially possess
the superiority in producing stable performance across different
environments in subsequent tasks.

The main technological contributions in this paper are summa-
rized as below:

(1) We investigate the problem of learning stable graphs from
multiple environments with selection bias, which is of para-
mount significance in both research and applications but
rarely studied in literature.

(2) We propose a simple yet effective framework SGL for learn-
ing stable graphs from set data, which is composed by a GCN

module and a subtly designed element-wise VAE (E-VAE) for
high-dimensional sparse set data.

(3) Extensive experiments are conducted in both simulation and
real data, and the results show that the graph learned by
SGL can indeed perform better than other graphs generated
by conventional methods in terms of generalization across
different environments.

The rest of this paper is organized as follows. Section 2 reviews
the works of the related fields. Section 3 introduces our Stable Graph
Learning framework. Section 4 gives the experimental results to
show the effectiveness of our model. Finally, we concludes this
work at the end of paper.

2 RELATEDWORKS
In this section, we review the works of some related fields with this
work, including Graph Convolutional Networks, the deep genera-
tive models and the graph generation task.

In the past few years, Graph Convolutional Networks (GCN)[8,
16] have become the major technology to catch patterns encoded
in the graph because of its powerful capacity via deep learning.
Like Convolutional Neural Networks (CNN)[20], the fundamental
models for processing images and texts, GCNs introduce the con-
volution operation into graph data by using the graph Laplacian
matrix in the spectral domain[8]. Through stacking the convolution
layers, the information would be propagated and aggregated among
the nodes to capture the structural characteristics. To improve the
performance of GCNs, further works are proposed, e.g. [28, 29] add
attention mechanism when aggregating node neighborhoods; [21]
aims to learn node embeddings with disentangled semantics; [5, 6]
use sampling strategy to improve the computational efficiency of
algorithms. For applications, a variety of GCNs are designed to han-
dle with specific tasks, including the node classification[2], graph
generation[7], network embedding[33] and etc.

Another technological line is the deep generative models that
are used to learn the joint distribution of observed data. Generative
Adversarial Networks (GAN)[10] optimize the generator together
with a discriminator in a thought of zero-sum game. In constrast,
AutoEncoder (AE)[13] learns the implicit distribution in a more
direct way: an encoder could compress the raw data into a latent
vector, then a decoder is to recover the data from the latent vector
conversely through a neural network. The two modules would
be optimized under a reconstruction loss between the real input
and the recovered output. To solve the monotonicity of generated
samples in AE, the Variational AutoEncoder (VAE)[15] is proposed
to replace the latent vector with a latent distribution that should
be approximate to a prior distribution and fed a sampled vector to
the decoder. In this paper, we subtly design an element-wise VAE
(E-VAE) for high-dimensional sparse set data generation.

On the other hand, to generate graphs to capture rich rela-
tionships in real-world has been studied in a flood of literature.
Trained on a representative set of graphs from particular applica-
tions, MolGAN[7] utilizes a permutation-invariant discriminator
to learn the implicit distribution of molecular graphs in the GAN
framework with a reward network to gain the desired chemical
properties; [22] proposes a regularized VAE to encourage to gener-
ate semantically valid graphs satisfied with constraint formulations;



GraphRNN[30] could generate variable-sized graph by adding new
nodes and edges in a BFS ordering sequence recurrently. Given
partial node labels, GLCN[14] jointly optimizes the refined graph
structure and the learnt graph convolution; GAT[28] employs at-
tention mechanism to directly calculate the connective strengths
between nodes via the supervised information in a specific task.
But in the more general scenes, none of the graph examples and
the specific tasks are provided, only the collection of frequent oc-
currence, such as set data, is available. To deal with these forms of
data, NetGAN[3] requires the learnt graph to output random walks
that could not be distinguished with the real samples in the GAN
architecture. The methods based on co-occurrence construction
like Adamic/Adar[1], are still the most widely used in industry
yet because of their effectiveness and efficiency. However, all the
graph generative models above are based on the I.I.D. assumption,
and ignore the selection bias on the data collection, causing their
generated graphs always fail in distribution-shifted environments.

Although a paucity of researchers try to address the problem in
the framework of causal inference and causal graphs are exploited
to guarantee stable performance across environments due to the
invariance of causality[18, 25, 27, 31], the high complexity of causal
discovery and causal graph generation makes it infeasible for high-
dimensional situations in practice. Moreover, the resulted causal
graphs are thought to be directed acyclic graphs[4, 32], that cannot
cover the common graph types with complex cyclic structure in
real world.

3 PROBLEM AND OUR METHOD
In this section, we introduce the problem we investigate and our
proposed method in detail. Note that we assume the initial graph
for each environment has been constructed by an I.I.D. graph gen-
erative model (co-occurrence based method in this paper) before
the Stable Graph Learning framework.

3.1 Notations and Problem
The major notations used in this paper are standardized in Table1.
Given a graph and set data {(𝑮 (𝑚) , S(𝑚) )}𝑀

𝑚=1 from𝑀 different en-
vironments, the task of Stable Graph Learning is to learn a graph 𝑮𝑆
that represents the unbiased connective structure, e.g. the weighted
adjacency matrix, over the 𝐾 elements across all environments.

Because 𝑮 (𝑚) is generated from S(𝑚) , if the collection process of
S(𝑚) comes from an environment with selection bias, the spurious
correlations among the elements would cause 𝑮 (𝑚) to performance
poorly in other environments. We could explain this via the reverse
generation process from 𝑮 (𝑚) to S(𝑚) .

The generation process of a set data can be described as adding
the elements into the current set one-by-one, which is similar
to the sequence generation in the literature of nature language
process[19]. Beginning from an empty set, a steady-state set would
be achieved eventually after rounds of transfer (one step of addi-
tion) according to the relational patterns encoded in graph. We can
formalize the one transfer as a function (Eq.(1)) of the probability
𝑃 (𝑚) (·|·) for each element 𝐼𝑘 to be selected conditioned on the
current set s on the basis of graph 𝑮 (𝑚) , where ℎ is an inherent
function and𝑚 indicates the index of environment.

Table 1: Notation and Definitions

Notation Annotation

𝐾 the number of elements (nodes).
𝑀 the number of environments.
𝐼𝑘 the 𝑘𝑡ℎ element in the environment.

𝑮 (𝑚) the relative graph in the𝑚𝑡ℎ environment.
s(𝑚)
𝑖

∈ {0, 1}1×𝐾 the 𝑖𝑡ℎ set data in the𝑚𝑡ℎ environment.
All the positions with value 1 represent the
corresponding elements are in the set.

X(𝑚) ∈ R𝐾×𝐹 the embedding matrix in𝑚𝑡ℎ environment.
𝐹 the dimension of node embedding.
𝐿 the size of batch data.

𝑃 (𝑚) (𝐼𝑘 |s) = ℎ(𝑮 (𝑚) , 𝐼𝑘 , s). (1)
Due to the distribution shift, with access to {(𝑮 (𝑚) , S(𝑚) )}𝑀

𝑚=1
from 𝑀 environments, 𝑃 (𝑚) (𝐼𝑘 |s) always changes from 𝑚 = 1
to 𝑚 = 𝑀 , implying the unstable connective structure in graph.
However, we could infer the unbiased probability 𝑃𝑆 (𝐼𝑘 |s) if the
provided environments are randomly chose as following :

𝑃𝑆 (𝐼𝑘 |s) =
𝑀∑
𝑚=1

𝑃 (𝑚) (𝐼𝑘 |s)
𝑀

. (2)

Obviously, a graph 𝑮𝑆 is said to be unbiased if it can satisfy
the unbiased generative probability. Although it’s quite difficult
to correct the graph structure on original parameter space (e.g.
the weighted adjacency matrix) due to the underlying complicated
correlations, Eq.(2) enlightens us to do it indirectly via eliminating
the bias on probability space conveniently after transforming the
graph structure to the generative probability. To achieve this goal,
we propose an unsupervised SGL framework to learn the stable
graph from multiple environments with selection bias, which can
be decomposed into two steps including graph-based set generation
and stable graph learning. These two steps are jointly optimized in
our SGL framework. But for ease of understanding, we introduce
them separately in following sections.

3.2 Graph Based Set Generation
Given an environment, we first model the function ℎ, an inher-
ent high-order and non-linear generative function, from the graph
𝑮 (𝑚) to the sparse set data S(𝑚) . To capture the complex structural
patterns among the nodes, a GCN module is applied on the graph
to embed the local structural information of a node into its repre-
sentation. The representation x(𝑙+1)

𝑘
of the node 𝑘 in the (𝑙 + 1)𝑡ℎ

layer is transformed from the 𝑙𝑡ℎ convolution layer as

x(𝑙+1)
𝑘

= 𝜎 (
∑
𝑗 ∈𝑁𝑘

D̂− 1
2 ÂD̂− 1

2 x(𝑙)
𝑗
W(𝑙) + b(𝑙) ), (3)

where 𝜎 is a non-linear activation function, Â is the adjacency
matrix with self loop in graph, D̂ is the degree matrix of Â, 𝑁𝑘
represents all the neighbours of node 𝑘 (including node 𝑘 itself),
andW(𝑙) and b(𝑙) are the parameters of the 𝑙𝑡ℎ convolution layer.
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Figure 1: The illustration of graph based set generation. The set vector is the output of amean pooling operation of the element
embeddingmatrix learnt byGCN from constructed graph and the real set data. Each element embedding concatenates with the
sampled latent vector and is inputted into the decoder separately. Combining all the decoder’s outputs ("selective intensity")
together, we obtain the conditional probability space over the all elements after a softmax layer. By maximizing likelihood of
observed data, we can optimize parameters of GCN, encoder and decoder in every single environment.

Through the stacked multiple convolution layers, we can obtain
the node embedding matrix X(𝑚) that would contain the relation-
ships among nodes in graph 𝑮 (𝑚) .
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Figure 2: The illustration of stale graph learning process.
Sharing the same GCN and E-VAE across 𝑀 environments,
we can fix their parameters after optimization and learn the
stable graph 𝑮𝑆 afterwards. Sampling arbitrary set S𝑖 , we
then obtain the generative probabilities {𝑃 (𝑚)

𝑖
}𝑀
𝑚=1 (𝑃 (𝑚)

𝑖
is

short for 𝑃 (𝑚) (I|si)) on the basis of different graph structures
in all the environments, as well as 𝑃 (𝑢)

𝑖
underlain in 𝑮𝑆 from

a virtualized unbiased environment. The 𝑮𝑆 would be up-
dated so that 𝑃 (𝑢)

𝑖
can be equal to the mean of {𝑃 (𝑚)

𝑖
}𝑀
𝑚=1.

Based on the derived X(𝑚) , we then learn the generation mech-
anism of set data, i.e. the conditional probability 𝑃 (𝑚) (𝐼𝑘 |s), in the
way of reconstructing the distribution of real S(𝑚) . In practice, the
set data is often high-dimensional and sparse. In recommendation
system, for example, a shopping basket only include very small
number of products compared with the whole product pool. There-
fore, a set in such cases is in a very high dimensionality and only
several elements are with value 1. These high-dimensional sparse
sets impose tremendous challenge to a generative model like VAE,
as the commonly used norm-based reconstruction loss functions are
not sensitive enough to effectively differentiate similar or dissimilar
pair of high-dimensional sparse vectors. Here we subtly propose
an element-wise variational autoencoder (E-VAE) to address this
challenge, which reconstructs S(𝑚) from the embeddings of the
elements in the set in an element-by-element way. The detailed
framework of graph based set generation is shown in Figure1.

For each optimization iteration, we sample a real set s(𝑚)
𝑖

from
S(𝑚) . To better express the s(𝑚)

𝑖
, we project it into the element

embedding space X(𝑚) (learnt from 𝑮 (𝑚) ) by mean pooling over

the embeddings of the elements that are in the set, i.e. s
(𝑚)
𝑖

·X(𝑚)

s(𝑚)
𝑖

·1
,

and input it into the encoder of E-VAE. The encoder finally learns a
mean value vector 𝝁 and a variance vector 𝝋 to represent a normal
distribution N(𝝁, 𝝋) of the latent variableZ𝑖 .

For decoder, we sample a vector z𝑖 from the normal distribution
of Z𝑖 firstly. Due to the non-sequential characteristics of set gener-
ation, we input the concatenation of the latent variable z𝑖 and the
embedding of each node into the decoder separately to obtain the
intensity of each element to be selected by z𝑖 . Then the intensity
values of all elements are combined together into a vector which is
further fed into a softmax layer. The 𝑘𝑡ℎ output of softmax layer



is eventually 𝑃 (𝑚) (𝐼𝑘 |s
(𝑚)
𝑖

), the probability of 𝑘𝑡ℎ element to be
selected conditioned on the real set s(𝑚)

𝑖
.

Because s(𝑚)
𝑖

is a piece of real data, we could suppose it is steady-
state. That says the next element most likely to be selected should
be among the ones that have appeared in s(𝑚)

𝑖
, the input set should

be restored after one transfer round of element addition. Hence, we
aim to maximize the likelihood defined by

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
∏

𝐼𝑘 ∈s(𝑚)
𝑖

𝑃 (𝑚) (𝐼𝑘 |s
(𝑚)
𝑖

). (4)

To solve the non-sensitive problem of discriminating sparse
high-dimensional vectors, we adopt the negative log likelihood loss.
Referring to [12], the objective function can be written as below :

L𝑟𝑐 = −s(𝑚)
𝑖

· 𝑙𝑜𝑔[𝑃 (𝑚) (𝐼𝑘 |s
(𝑚)
𝑖

)] . (5)

Besides the reconstruction lossL𝑟𝑐 , the latent variableZ𝑖 should
be also constrained to satisfy the standard normal distribution. The
loss function L𝑘𝑙 is to minimize the KL divergence between the
output N(𝝁, 𝝋) and N(0, 1) as widely used in VAE models.

L𝑘𝑙 = −0.5 ∗ (1 + 𝑙𝑜𝑔(𝜑) − 𝜇2 − 𝜑). (6)

3.3 Stable Graph Learning
Given {(𝑮 (𝑚) , S(𝑚) )}𝑀

𝑚=1 from𝑀 environments, we share the same
parameters of GCN and E-VAE for set generation across all the
environments, because the generative function ℎ is inherent and
independent of all the environments. Such design could also prevent
the overfitting problem of model learning. By reconstructing the
real set data in each environment based on its graph structure, we
could achieve the generative probability {𝑃 (𝑚) (𝐼𝑘 |s)}𝑀𝑚=1 of every
element in all environments conditioned on arbitrary set s, as well
as the parameters of GCN and E-VAE.

Up to now, we have transformed the biased graph structures from
raw parameter space into different generative probability spaces
of𝑀 environments. With access to these, we can indirectly learn
an stable graph 𝑮𝑆 to meet the constraint in Eq.(2) much more
conveniently. In detail, we first virtualize an environment without
selection bias and initial the graph structure (weighted adjacency
matrix) of 𝑮𝑆 . Then we alternately choose𝑚𝑡ℎ environment and
randomly sample a s(𝑚)

𝑖
from it. The real set s(𝑚)

𝑖
togetherwith each

of {𝑮 (𝑚) }𝑀
𝑚=1 and 𝑮𝑆 are inputted into the architecture of GCN and

E-VAE to obtain the {𝑃 ( 𝑗) (I|s(𝑚)
𝑖

)}𝑀
𝑗=1 and 𝑃𝑆 (I|s

(𝑚)
𝑖

) respectively,
where 𝑃 (I|s(𝑚)

𝑖
) is the output vector of softmax layer that represents

the conditional probability space over the all elements. Finally 𝑮𝑆
could be directly optimized by minimizing the refining objective
loss function L𝑟 𝑓 in the Eq.(7).

L𝑟 𝑓 = | |𝑃𝑆 (I|s(𝑚)
𝑖

) −
𝑀∑
𝑗=1

𝑃 ( 𝑗) (I|s(𝑚)
𝑖

)
𝑀

| |2 (7)

Because the learning of GCN, E-VAE and the stable graph 𝐺𝑆
would interact on each other closely, we joint optimize them in
practice as shown in Figure2. The overall objective function is a
combination of L𝑟𝑐 and L𝑘𝑙 and L𝑟 𝑓 as in Eq.(8).

Algorithm 1 Stable Graph Learning (SGL) framework

Input: {(𝑮 (𝑚) , S(𝑚) )}𝑀
𝑚=1 from𝑀 different environments

Output: Stable graph structure 𝑮𝑆 over 𝐾 elements, non-linear
parameters 𝜃 of GCN and 𝜑 of VAE
Initial 𝑮𝑆 , 𝜃 and 𝜑
while not converged do

Compute the element embedding pool {X(𝑚) }𝑀
𝑚=1 of𝑀 envi-

ronments and X𝑆 via {𝑮 (𝑚) }𝑀
𝑚=1, the current 𝑮𝑆 and 𝜃

for𝑚 = 1 to𝑀 do
Sample batch of set data {s(𝑚)

𝑖
}𝐿
𝑖=1

Obtain 𝑃𝑆 (I) conditioned on {s(𝑚)
𝑖

}𝐿
𝑖=1 via X𝑆 and 𝜑

for 𝑗 = 1 to𝑀 do
Obtain 𝑃 ( 𝑗) (I) conditioned on {s(𝑚)

𝑖
}𝐿
𝑖=1 via X

( 𝑗) and 𝜑
end for
Calculate total L (𝑚) in𝑚𝑡ℎ environment as in Eq.(8)

end for
L = L (1) + ... + L (𝑀)

Optimize 𝑮𝑆 , 𝜃 and 𝜑 to minimize L
end while
return: 𝑮𝑆 , 𝜃 , 𝜑

L = L𝑟𝑐 + 𝛼L𝑘𝑙 + 𝛽L𝑟 𝑓 , (8)

where 𝛼 and 𝛽 are hyper-parameters. And we summary the whole
SGL framework in the Algorithm1.

4 EXPERIMENT
To verify the disadvantage of biased graph structure and the effec-
tiveness of our SGL framework on learning the stable graph from
multiple environments with selection bias, we carry out both simu-
lation experiments and real data experiments. All the experiments
conducted in this paper, as well as the model of GCN and E-VAE,
are implemented in Pytorch[24].

4.1 Baselines and Evaluation Metrics
In our study, only the set data is available, and the initial graph struc-
ture is easily obtained from data by a predefined generative model.
For comparison, our baselines include the graphs {𝑮 (𝑚) }𝑀

𝑚=1 con-
structed using the data in single environment only, the average
result of these graphs 𝑮𝐴 =

∑𝑀
𝑚=1

𝑮 (𝑚)
𝑀

and the graph 𝑮𝐶 that is
generated from the union of data in all environments (uniformly
composed). Lastly, the 𝑮𝑆 is the learnt graph by SGL framework.

To evaluate the stability of the learnt graph structure, we design
a set prediction task based on the node embeddings. A piece of
set data s could be split into a target element 𝐼𝑡 and the remaining
elements s−{𝐼𝑡 }. The set prediction task is to recover s given s−{𝐼𝑡 },
that is to select 𝐼𝑡 from all the elements except for the elements in
the given set s − {𝐼𝑡 }. We define the distance of one candidate 𝐼𝑐
to the given set as the mean Cosine Distance between the node
embeddings of 𝐼𝑐 and the elements in the given set as following :

𝐷𝑖𝑠𝑐 (𝐼𝑐 , s − {𝐼𝑡 }) =
1

|s − {𝐼𝑡 }|
∑

𝐼 𝑗 ∈s−{𝐼𝑡 }
𝐶𝑜𝑠𝑖𝑛𝑒 (x𝑡 , x𝑗 ) . (9)



If 𝐼𝑐 is in the top-K elements with the minimal distance to the
given set, we says 𝐼𝑐 is retrieved successfully. Then we calculate
the top-K accuracy of successful retrieval based on node embed-
dings learnt from graphs generated by different methods. For fair
comparison, we keep the same parameters of embedding learning
model for all the graphs.

In the later sections, we explain the experimental setup and
results on simulation data and real data in detail.

4.2 Simulation Experiment
For brevity, we assume the number of available environments is
two in the following state about experiments.

4.2.1 Biased weighted random walk. Weighted random walk is to
generate a path by randomly walking among the nodes based on
the edge weights in the graph. The probability 𝜋𝑣,𝑢 of moving from
node 𝑣 to 𝑢 is defined as:

𝜋𝑣,𝑢 =
𝑤𝑣,𝑢∑

𝑢
′ ∈𝑁𝑣

𝑤𝑣,𝑢′
, (10)

where𝑤𝑣,𝑢 is the weight of edge (𝑣,𝑢) and 𝑁𝑣 is the set of neigh-
bours of node 𝑣 . To introduce the distribution shift in two data
environments, we make biased weighted random walk (BWRW for
brevity) to simulate the generation of set data. Firstly we introduce
the high-order correlation and redefine the 𝜋

′
𝑣,𝑢 as in the Eq.(11),

where 𝑄 (𝑡 (𝑣), 𝑣,𝑢) is a coefficient depending on the node 𝑣 , 𝑢 and
the front node 𝑡 (𝑣) of 𝑣 .

𝜋
′
𝑣,𝑢 =

𝑄 (𝑡 (𝑣), 𝑣,𝑢) ∗𝑤𝑣,𝑢∑
𝑢
′ ∈𝑁 (𝑣) 𝑄 (𝑡 (𝑣), 𝑣,𝑢′) ∗𝑤𝑣,𝑢′

. (11)

Obviously, the assignment of different value to 𝑄 can cause the
underlying relationships change in generated data. According to
the 𝑄 function defined in Eq.(12), where 𝑞2 > 𝑞1 > 1 and 𝑑 (𝑡 (𝑣), 𝑢)
represents the shortest distance between 𝑡 (𝑣) and 𝑢, a node prefers
to move to the nodes with the same type. If two nodes of the
same type in environment 1 are of different types in environment
2, it equals to make an intervention on selection bias in the two
environments, leading to the shift of data distribution.

𝑄 (𝑡 (𝑣), 𝑣,𝑢) =


𝑤𝑣,𝑢 ∗ 𝑞2 𝐼 𝑓 𝑑 (𝑡 (𝑣), 𝑢) <= 1 𝑎𝑛𝑑

𝑡 (𝑣), 𝑣, 𝑢 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡𝑦𝑝𝑒
𝑤𝑣,𝑢 ∗ 𝑞1 𝐼 𝑓 𝑣, 𝑢 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡𝑦𝑝𝑒

𝑤𝑣,𝑢 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

4.2.2 Experimental setup. Initially, we create an undirected graph
with 100 nodes. Every node pairs is connected with 50% probability
and the weight of connected edge is assigned uniformly with value
between 1 and 100. All the 100 nodes are divided equally into two
types in both environments, and half of them have different types
in the two environments. In addition to the first-order and second-
order bias controlled by 𝑞1 and 𝑞2, we also introduce the zero-order
bias represented by 𝑞0, that simulates the prior preference of data
selection, e.g. the female users are more concerned with the skin
care products than the males. For 𝑞0 > 1, all the nodes always have
equal probability to become a starting node in environment 1, but

MEAN of ACCURACY
𝑞0 = 1

𝑞1 = 2, 𝑞2 = 4 𝑞1 = 2, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 9
𝐺 (1) 39.24% 43.23% 44.03% 45.18%
𝐺 (2) 40.36% 43.93% 44.29% 45.34%
𝐺𝐴 40.14% 44.69% 43.94% 47.62%
𝐺𝐶 39.98% 44.28% 44.38% 46.96%
𝐺𝑆 40.91% 45.27% 45.02% 48.38%

𝑞0 = 3
𝑞1 = 2, 𝑞2 = 4 𝑞1 = 2, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 9

𝐺 (1) 39.58% 40.31% 43.70% 44.97%
𝐺 (2) 39.43% 40.89% 43.67% 43.78%
𝐺𝐴 38.40% 39.92% 44.02% 46.64%
𝐺𝐶 38.68% 40.34% 43.23% 46.68%
𝐺𝑆 39.90% 41.45% 44.99% 48.79%

STD of ACCURACY
𝑞0 = 1

𝑞1 = 2, 𝑞2 = 4 𝑞1 = 2, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 9
𝐺 (1) 0.0149 0.0345 0.0473 0.0569
𝐺 (2) 0.0214 0.0299 0.0491 0.0560
𝐺𝐴 0.0079 0.0052 0.0039 0.0079
𝐺𝐶 0.0071 0.0046 0.0064 0.0134
𝐺𝑆 0.0048 0.0037 0.0040 0.0041

𝑞0 = 3
𝑞1 = 2, 𝑞2 = 4 𝑞1 = 2, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 6 𝑞1 = 3, 𝑞2 = 9

𝐺 (1) 0.0155 0.0310 0.0472 0.0532
𝐺 (2) 0.0152 0.0241 0.0422 0.0509
𝐺𝐴 0.0036 0.0074 0.0109 0.0203
𝐺𝐶 0.0046 0.0064 0.0125 0.0175
𝐺𝑆 0.0026 0.0037 0.0076 0.0093

Table 2: The mean and std of top-30 accuracy of set predic-
tion task across 11 testing datasets for 8 parameter groups
of BWRW. The node embeddings learnt from 𝑮𝑆 can achieve
the higher mean accuracy more stably than the baselines in
almost all the experiments. And the advantage of graph 𝑮𝑆
ismore remarkable as environments’ discrepancy increases.

in environment 2 the probability of the nodes of type 1 being the
starting node are 𝑞0 times than that of the nodes of type 2.

Determined by a group of 𝑞0, 𝑞1 and 𝑞2, two environments of set
data with distribution shift could be acquired by BWRW. Taking
them as training datasets, we directly build up the graph of base-
lines, including 𝑮 (1) , 𝑮 (2) , 𝑮𝐴 and 𝑮𝐶 , based on the co-occurrence
generative method, where the edge weight of two nodes is the
co-occurrence frequency of them. Also we learn the graph 𝑮𝑆 by
SGL framework. For evaluation, 11 testing datasets are produced
by mixing the data of two environments with a proportion from
0:10 to 10:0. For credibility, we conduct kinds of experiments about
stability based on different parameter groups (𝑞0, 𝑞1, 𝑞2) of BWRW.
In the next, we’ll elaborate them with the results.

4.2.3 Experimental result. We evaluate the performances of all the
models in the designed set prediction task using the node embed-
dings learnt by GCN from different graphs. To keep the two data
environments of testing datasets be the same with the training’s



(a) 𝑞0 = 1, 𝑞1 = 2, 𝑞1 = 4 (b) 𝑞0 = 1, 𝑞1 = 2, 𝑞2 = 6 (c) 𝑞0 = 1, 𝑞1 = 3, 𝑞2 = 6

(d) 𝑞0 = 1, 𝑞1 = 3, 𝑞2 = 9 (e) 𝑞0 = 3, 𝑞1 = 2, 𝑞1 = 4 (f) 𝑞0 = 3, 𝑞1 = 2, 𝑞2 = 6

(g) 𝑞0 = 3, 𝑞1 = 3, 𝑞2 = 6 (h) 𝑞0 = 3, 𝑞1 = 3, 𝑞2 = 9

Figure 3: Top-30 accuracy of set prediction task using the node embeddings learnt from different graphs. Each subfigure
corresponds to an experiment with the value of parameter group of BWRW below the subfigure. E1:E2 represents the mixing
proportion of data from the two environments and the curves point to the baselines and the learnt graph by SGL. The purple
curve to 𝑮𝑆 is always more smooth than the baselines in 8 experiments.

Table 3: The mean and std of top-30 accuracy of set predic-
tion taskwhen the data environments of testing datasets are
of different parameter groups of BWRW with the environ-
ments of training datasets.

TRAIN: 𝑞0 = 1, 𝑞1 = 2, 𝑞1 = 4 TEST: 𝑞0 = 1, 𝑞1 = 3, 𝑞2 = 9
𝐺 (1) 𝐺 (2) 𝐺𝐴 𝐺𝐶 𝐺𝑆

MEAN 43.65% 43.87% 43.25% 43.09% 44.02%
STD 0.0364 0.0379 0.0082 0.0085 0.0032
TRAIN: 𝑞0 = 3, 𝑞1 = 2, 𝑞1 = 6 TEST: 𝑞0 = 3, 𝑞1 = 3, 𝑞2 = 6

𝐺 (1) 𝐺 (2) 𝐺𝐴 𝐺𝐶 𝐺𝑆
MEAN 42.54% 42.00% 41.99% 41.95% 43.57%
STD 0.0351 0.0316 0.0046 0.0054 0.0038
TRAIN: 𝑞0 = 1, 𝑞1 = 3, 𝑞1 = 6 TEST: 𝑞0 = 3, 𝑞1 = 3, 𝑞2 = 9

𝐺 (1) 𝐺 (2) 𝐺𝐴 𝐺𝐶 𝐺𝑆
MEAN 45.01% 43.91% 45.45% 45.55% 46.56%
STD 0.0511 0.0462 0.0043 0.0041 0.0039

firstly, we experiment on 8 parameter groups of BWRW. It can be
observed that the performance of the graph built in single environ-
ment rapidly declines as the data proportion from another envi-
ronment increases in Figure3. And the 𝑮𝐴 , 𝑮𝐶 and 𝑮𝑆 could keep
relatively stable when the testing distribution changes. However,
the performance of 𝑮𝑆 is much more stable and achieves higher
mean accuracy than all the baseline in almost all the experiments,
especially when the discrepancy between the two environments is
more significant, seen in Table2. That is because 𝑮𝑆 directly learn
the less biased high-order and non-linear correlations among the
nodes at the level of generation probability from two environments
(𝑮𝐴 only balances the linear part), so that it could also ignore the
prior preference of data selection (controlled by 𝑞0) and reduce the
model bias of the initial graph generative method to some extent
(𝑮𝐶 still suffers from the both biases).

Moreover we explore the situations when the testing data envi-
ronments are of different parameters groups of BWRW with the
training environments. The 𝑮𝑆 is expected to keep its superiority
even if the training datasets can not cover the testing distribution



Mean ACC STD Env1:Env2=0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0
𝐺 (1) 12.93% 0.0050 13.54% 13.42% 13.62% 12.62% 13.49% 12.87% 12.92% 12.81% 12.16% 12.17% 12.62%
𝐺 (2) 15.96% 0.0485 23.12% 22.21% 20.64% 18.83% 17.91% 16.11% 14.04% 13.67% 11.62% 9.46% 7.56%
𝐺𝐴 18.09% 0.0347 23.21% 22.74% 21.76% 19.68% 19.46% 17.71% 16.68% 16.87% 14.98% 13.34% 12.57%
𝐺𝐶 16.15% 0.0310 20.50% 20.57% 19.23% 17.49% 17.47% 16.08% 14.79% 15.24% 13.26% 11.78% 11.23%
𝐺𝑆 18.64% 0.0288 22.90% 22.44% 21.81% 19.71% 19.98% 18.53% 17.31% 17.57% 15.91% 14.68% 14.22%

Table 4: Purchasing behavior prediction with exposure bias using item embeddings learnt from commodity network. The
environment 1 consists of shopping logs mainly with unpopular items and env 2 consists of logs mainly with popular items.

Mean ACC STD Env1:Env2=0:10 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 10:0
𝐺 (1) 17.69% 0.0148 15.85% 16.03% 16.44% 16.64% 16.94% 16.67% 18.22% 18.87% 18.87% 19.99% 20.03%
𝐺 (2) 17.46% 0.0063 16.86% 16.97% 16.56% 16.87% 17.17% 18.16% 16.99% 18.07% 18.10% 18.09% 18.27%
𝐺𝐴 18.51% 0.0132 16.79% 16.94% 17.24% 17.60% 17.94% 18.50% 18.24% 19.78% 19.43% 20.46% 20.70%
𝐺𝐶 18.56% 0.0127 16.84% 16.97% 17.34% 17.63% 17.81% 18.68% 18.94% 19.50% 19.53% 20.33% 20.62%
𝐺𝑆 20.17% 0.0092 19.09% 19.01% 19.14% 19.51% 19.77% 20.02% 20.29% 20.84% 21.02% 21.62% 21.53%

Table 5: Purchasing behavior prediction in different gender groups using item embeddings learnt from commodity network.
The environment 1 consists of shopping logs of females and env 2 consists of logs of males.

shift, i.e. the improved stability learnt inside training environments
should be adaptive to the agnostic environment to some extent.
The results reported in Table3 can well support our claim.

4.3 Real Data Experiment
Furthermore we study the stable graph structure problem in a
common real-world application of commodity recommendation.

4.3.1 Experimental setup. For better recommendation, a commod-
ity network is always constructed according to the users’ purchase
history to preserve the similarities between items. Such a graph is
of great business value because the recommendation system could
directly promote the items that have the strongest relation to the
users’ purchase list. However, the shopping logs are full of selection
bias, making the commodity network easy to contain spurious cor-
relations. For example, the women are more willing to shop than
men and the online system prefers to recommend popular items.

In order to study the problem in depth, we use the data from
the public "Cloud Theme Click Dataset", which is an important rec-
ommendation procedure in mobile terminal of electronic business.
The dataset released in [9] includes more than 4 million purchase
histories of users for one month before the promotion started. A
shopping behavior can be seen as the set data containing multiple
items. Because such decision-making process is susceptible to noise,
we use the Swing method to generate the initial graph. The Swing
could filter the data noise with cooperation ability of human by
the similarity metric 𝑆𝑖𝑚(𝑖, 𝑗) between the item 𝑖 and 𝑗 defined in
Eq.(13), where𝑈𝑖 is the user set of purchasing item 𝑖 and 𝐼𝑡𝑢 is the
item set purchased by user 𝑢.

𝑆𝑖𝑚(𝑖, 𝑗) =
∑

𝑢∈𝑈𝑖∩𝑈 𝑗

∑
𝑣∈𝑈𝑖∩𝑈 𝑗

1
𝛼 + |𝐼𝑡𝑢 ∩ 𝐼𝑡𝑣 |

(13)

Taking the 𝑆𝑖𝑚(𝑖, 𝑗) as the edge weight of item 𝑖 and 𝑗 , we can
construct a commodity network in each shopping data environment
respectively and then learn a stable version via the SGL framework.

Also we use the set prediction task, purchasing behavior prediction
here, to evaluate the stability of graph structure. Belowwe’ll present
our findings in two special cases: commodity exposure bias and
user group bias.

4.3.2 commodity exposure bias. The online system prefers to rec-
ommend popular items, causing the unpopular items to get harder
to obtain exposure. The exposure bias is very concerned in elec-
tronic business, because it can result in the cold-start problem of
new commodities. Here we define an item is popular if its occur-
rence frequency over 100 in dataset, otherwise it is unpopular. If a
shopping log consists of popular items mainly, it would be assigned
into environment 2, or else into the environment 1. Then we select
the total 1585 items which appear at least 4 times in each of the
two environments. After dividing the training and testing data in
a proportion of 6:4, we use the item embeddings learnt by GCN
from different graphs to evaluate the prediction performances in 11
mixing testing datasets as we have done in simulation experiment.

From Table4, the followings are observed: the relations between
popular items are easier to be predicted because they are apt to be
associated by recommendation; it fails to learn the unpopular items’
relationships solely in environment 2 due to the overexposure of
popular items, vice versa in environment 1; the stable commodity
network 𝑮𝑆 can balance the correlations in both environments and
reach the highest mean prediction rate more stably.

4.3.3 user group bias. Taking the gender attribute as an example,
the women are more willing to shop than men, leading to the
correlations in graph inclined to female user group. The detailed
experimental procedure is similar to that of commodity exposure
bias, except that we divide the purchase logs into environment
1 of female users and environment 2 of the males. It seems that
the women tend to purchase all the related goods together at once
time, so we can do better prediction for them as in Table5. And
the proposed SGL framework can well make up the information
loss in single environment to generate the graph 𝑮𝑆 with the best



overall performance via learning the essential relationships within
commodities.

5 CONCLUSION
In this paper, we target to solve the problem of data selection bias
for graph generation, that leads to the bad performance of biased
graph structure in Non-I.I.D. scene. To learn the stable graph, we
propose a SGL framework, which consists of a GCN module for
structure embedding and a designed E-VAE for high-dimensional
sparse set generation, to balance the biased underlying relationships
between nodes from different environments. Experiments in both
simulation data and real-world data have proved the disadvantage
of biased graph structure and our algorithm could indeed improve
the generalization ability of learnt graph. The SGL framework can
be easily varied to adapt to different types of graphs and collected
data, e.g. sequential data, which we will exploit in the future work.
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