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ABSTRACT
Learning image representation by deep model has recent-
ly made remarkable achievements for semantic-oriented ap-
plications, such as image classification. However, for user-
centric tasks, such as image search and recommendation,
simply employing the representation learnt from semantic-
oriented tasks may fail to capture user intentions. In this
paper, we propose a novel Socially Embedded VIsual Rep-
resentation Learning (SEVIR) approach, where an Asym-
metric Multi-task CNN (amtCNN ) model is proposed to
embed user intention learning task into semantic learning
task. Specifically, to address the sparsity and unreliabili-
ty problems in social behavioral data, we propose to use
user clustering, reliability evaluation, random dropout in
output layer in our amtCNN. With its the partially shared
network architecture, the learnt representation can capture
both semantics and user intentions. Comprehensive exper-
iments are conducted to investigate the effectiveness of our
approach in applications of user favoring prediction, person-
alized image recommendation, and image reranking. Com-
pared to the state-of-the-art image representation techniques,
our approach achieves significant improvement in perfor-
mance.
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1. INTRODUCTION
Image representation learning is a fundamental task in

various image-related applications. In past years, a tons of
research works have been conducted to learn image represen-
tations with the goal of bridging the semantic gap between
low-level features and high-level semantics. The learnt im-
age representations have gained great success in content-
centric applications, such as image classification, object de-
tection, motion tracking, etc. In recent years, user-centric
image platforms (such as Flickr and Pinterest) are more and
more prevalent, where images are generated, disseminated
and consumed by users. How to proactively provide images
according to users’ intentions (e.g., interests) has become
a critical problem, which subsequently posits a significant
challenge to image representations: besides semantics, can
image representations also reflect user intentions?

Recently, a paucity of works attempt to embed social sig-
nals into visual representations to capture user intention,
where social signals such as user behaviors and social re-
lations are commonly used to capture user intentions [15,
28]. They usually learn a linear or kernel variation of tra-
ditional hand-crafted descriptors, such as SIFT, HOG, bag-
of-features representations, etc, to make the learnt represen-
tations consistent to social signals. However, these methods
can hardly bridge the gap between low-level features and
high-level user intentions because the hand-crafted features
pose serious limit on how much intention information can
be embedded. These hand-crafted features are designed for
identifying image semantics, and cannot work well in reflect-
ing user intentions, because these two factors cover different
aspects of image contents.

Then can we learn image representations incorporating
both semantics and user intentions from scratch rather than
hand-crafted features? The recent progress in deep learning
models, such as Convolutional Neural Network, offers an
optimistic answer. These methods have demonstrated their
superiority in learning image representations from scratch
and attained significant improvement than hand-crafted fea-
tures. However, existing deep learning based methods are
usually designed for semantic-oriented tasks, e.g. image clas-
sification. How to embed both semantic-related information
and intention-related information into deep models is still
an unexplored problem.

Learning image representations to capture both semantics
and user intentions still entail following challenges:

• Multiple and asymmetric learning tasks. In user-
centric image applications, such as image search and
recommendation, semantics is an important factor to



determine whether a user will like an image or not.
Other factors in user intention, such as visual style and
emotion will also play important roles. These two fac-
tors are complementary, but they have different char-
acteristics and thus need different learning paths from
raw data to supervised information. How to design
an asymmetric architecture to jointly fuse semantics
learning and intention learning tasks is challenging.

• The sparsity and unreliability of social behav-
ioral data. In social media platform, the number of
images and users is huge. But a user can only see a
tiny proportion of the whole images. Thus, the real
user-image behaviors are very sparse. Furthermore,
the social behavioral information is sometimes unreli-
able due to some “fake” users and noisy information.
How to make the right use of social behavioral data is
critical and challenging for image representation learn-
ing.

To address the above challenges, we propose a novel So-
cially Embedded VIsual Representation learning (SEVIR)
method. It aims at learning mid-level image representation
that can capture both semantics and user intention based on
Convolutional Neural Network. The framework is illustrat-
ed in Figure 1. In our approach, user intention is evaluated
based on social behavioral data. An Asymmetric Multi-task
CNN (amtCNN ) model is proposed to embed user intention
learning task into semantic learning task. In amtCNN, se-
mantic meaning is learnt from labeled image classification
datasets, such as ImageNet. And user intention is learn-
t from the social images with quantified intention labels.
In particular, we consider data reliability issue and conduc-
t dropout on the output layer to address the sparsity and
unreliability problems in social behavioral data, and thus
avoid overfitting problem. As the output, the activations in
mid-layers of amtCNN can be utilized as image represen-
tations, where both semantics and user intention are incor-
porated. We perform extensive experiments to demonstrate
the effective of our approach. Figure 2 is a showcase, in
which the curves in the left part denote the performance in
Precision@k on our image recommendation dataset. And
the representations learned for a image by different methods
are visualized in the right part. Intuitively, we can observe
from Figure 2 that the representations learned by SEVIR
and semantic-oriented CNN are apparently different, and
SEVIR performs significantly better than traditional rep-
resentations, which is attributed to its capability of fusing
semantics and intentions into image representations.
The contributions of the proposed approach can be sum-

marized as follows:
1) In contrast with traditional semantic-oriented repre-

sentation learning methods, we investigated an unexplored
problem of learning socially embedded visual representations
from scratch, where the learned representation can well cap-
ture both the semantics of images and users’ intentions over
the images.
2) We propose a novel Asymmetric Multi-task CNN (amtC-

NN ) model to address the challenges of multiple and asym-
metric learning tasks, as well as the sparsity and unreliabil-
ity of social behavioral data, where two different pathways
are designed to learn semantics and user intentions respec-
tively with partially shared network architecture and data
reliability in user intention learning pathway is considered.
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Figure 2: A showcase of the performance in
Precision@k for image recommendation tasks (left)
and the visualized features (right, best viewed in
color).

3) We conducted comprehensive experiments on real ap-
plication scenarios. Compared to the state-of-the-art base-
line methods, our approach can achieve significant improve-
ment, i.e., it performs at least 15% better in image rec-
ommendation and reranking tasks, which demonstrates its
superiority in user-centric image applications.

The rest of the paper is organized as follows: Section 2
gives a brief introduction and comparison of related work-
s. Section 3 introduces the framework of the proposed ap-
proach. In Section 4, we present the architecture of the pro-
posed asymmetric multi-task CNN model and the strategies
for training. Then, we report the experimental results to
show the effectiveness of our approach in Section 5. Finally,
Section 6 summarizes the paper.

2. RELATED WORK

2.1 CNN based Image Representation Learn-
ing

To bridge the gap between low-level features and high-
level semantics, a series of works focus on learning image
representation to capture semantic meaning of images. In
image classification task, Convolutional Neural Network (C-
NN) [12, 25] has shown is superiority to traditional methods
based on hand-crafted features such as Bag-of-Visual-Word
features (BoW) [33] since 2012. Furthermore, in other com-
puter vision problems, such as tracking and object detection,
CNN also showed its strength [4, 6]. Not only it performs
well in the above areas, but also the layer before the output
layer can naturally be used as image representation. How-
ever, to date, there is few deep learning based approaches
designed for image retrieval or recommendation tasks. Al-
though some works [23, 1, 27] explore to use the codes learnt
from image classification datasets for image retrieval, they
can only retrieve the images in object level, where user in-
tention, an important factor for human, is ignored.

2.2 Learning User Intention for Image Repre-
sentaion

Aiming at capturing user intention to improve the per-
formance of image retrieval and recommendation, query log
analysis [8, 7, 21] and relevance feedback [24, 32] are pro-
posed in the past years. However, users’ query log in im-
age search engines can be hardly accessed for common users
and researchers. Besides, the frequent operation in relevance
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Figure 1: The conceptual framework of the proposed Socially Embedded VIsual Representation Learning
approach.

feedback methods may sometimes reduce user satisfaction.
With the development of social media, the information in
social platforms, such as image tags [13], user behaviors [30]
and user relationships, are utilized to analyze user inter-
ests. Cui et al. [3] proposed a social-sensed image search
framework, which first summarizes user interests based on
his favorite images in Flickr, and then reranks the search
results based on his interests to realize personalized search.
Liu et al. [15] learns an image distance metric based on
social behavioral information to evaluate image similarity
of user intention. However, traditional works based on so-
cial information usually use “shallow models”. Thus, their
ability in bridging semantic gap and intention gap can still
be strengthened by deep models. Although in [30], Yuan
et al. explore to learn latent features of social entities (e.g.
users, images, tags) by deep model, this work only focuses
on learning the relationship between pair-wised social en-
tities (e.g. user-image and image-tag). For an image that
has multi-modal information, such as faves, tags, there is
no common representation for this image. In another word,
when user intention is learnt based on user-image relation-
ship, the semantic meaning in image-tag relationship will
be ignored. Furthermore, as other social-sensed works show
[14], the pair-wised relationships in social platforms are usu-
ally unreliable because social information is very sparse and
noisy. To make image representation robust, it must com-
pletely capture both semantics and user intention.

2.3 Multi-task Deep Learning
Multi-task learning is typically applied when there are

multiple related learning tasks on multiple datasets. Deep
model based multi-task learning has been proven effective
in many computer vision problems, such as face recogni-

tion [34], human tracking [26, 29], ontology concept learning
[5], and video semantic embedding [16]. The main idea of
multi-task is to share part of network structures or add some
common constraints to the parameters in each task. Most
of previous works aim at learning multiple subproblems in
a given problem. However, in our problem, the goal is to
learn two different aspects in image representation, i.e., se-
mantic aspect and intention aspect. Therefore, we cannot
simply apply traditional multi-task models but have to con-
sider the different characteristics in different task.

3. THE FRAMEWORK OF SEVIR

3.1 Overview
In this paper, we propose a Socially Embedded VIsual

Representation Learning SEVIR approach to capture both
semantic meaning and user intention in image representa-
tion. In our approach, we first prepare and pre-process two
training datasets: an image classification dataset for seman-
tic learning and a user favor behavior1 dataset in social plat-
forms for user intention learning. Then, a Symmetric Multi-
task CNN (amtCNN ) is designed to embed user intention
learning task into traditional semantic learning CNN mod-
el. Therefore, the image representation learnt in mid-layers
in amtCNN can be applied to user-centric applications, such
as image search and recommendation.

In image classification task, we usually use category la-
bel vector to represent the semantic meaning of images. To
make user behavior learning task aligned to classification
task, we need to restructure the favor behavior into the for-
m of label vector which is called intention label in data pre-

1In Flickr, user can click “favor” button for an image, which
denotes this is his/her favorite image.



processing stage. For an image, its intention label is defined
as the distribution of user interests. In our approach, we
divide user into different clusters with respect to the images
they favor. Thus, each user cluster can represent a user in-
terest. We can evaluate whether the current image will be
liked for each user cluster based on our user favor behavior
data. Furthermore, we evaluate the confidence score of the
intention label to solve the sparsity and unreliability prob-
lems in social information.
After the data are pre-processed, we have two datasets: a

classification dataset D1 = {I1, · · · , Im} with category label
zi for each image Ii; a social dataset D2 = {I ′1, · · · , I ′n}
with intention yi and confidence score ti for each image Ii.
Then, we use the proposed amtCNN model to learn an image
representation f(·), so that: 1) for any Ii ∈ D1, its features
f(Ii) includes the knowledge in zi, i.e., there exists g(·), so
that g(f(Ii)) ≈ zi; 2) for any I ′i ∈ D2, its features f(I ′i)
includes the knowledge in yi, i.e., there exists h(·), so that
h(f(Ii)) ≈ yi.
In this section, we introduce how to conduct user cluster-

ing, as well as generate intention labels yi and confidence
score ti for social images in detail. The proposed amtCNN
model will be introduced in Section 4.

3.2 Intention Label for Social Images
In most of social multimedia platforms, such as Flickr, a

user can “favor” some images, which indicates that the user
likes this image. By collecting all images that a user favors,
we can estimate his/her interests. By dividing n users into
k clusters, we can regard each cluster as a interest. Thus,
a social image can be represented as the distribution of the
clusters whose users like it, which is called intention labels
in our work. Intuitively, the images that are liked by simi-
lar user clusters should be similar in user intention aspect.
Therefore, the image representations that are learnt from
intention labels can capture user intention aspect. Here,
we generate intent labels based on user clusters rather than
independent users due to two main reason. First, social be-
havior information is very sparse, using independent users
may make the label vector very sparse and high-dimensional.
Second, when new users come, we hope the intent label to
be stable in dimensionality. We first introduce how to divide
users into k clusters in this section.
Inspired by [15], given n users and their favorite images,

we conduct user clustering to partition the users into k clus-
ters. First, each user ui is represented by the set of his
favorite images Im(ui). Then, the pair-wised user similar-
ity of ui and uj can be evaluated by the Jaccard similarity
of Im(ui) and Im(uj):

sim(ui, uj) =
|Im(ui) ∩ Im(uj)|
|Im(ui) ∪ Im(uj)|

. (1)

Then, we can conduct Spectral Clustering [19] on the simi-
larity graph. Finally, we can obtain the users in each cluster,
which is denoted as Ci.
However, we cannot judge that users in the same cluster

must have the same interests, and vise versa. It is mainly
because the data in social platforms are usually sparse and
unreliable. For some active users who favor a lot of images
that he/she really likes, we can understand his/her interests
well. Oppositely, for the ones who favor few images or ran-
domly favor some images, the clustering results may have
some error. Therefore, for each cluster, we give a reliability

score to each user in it to denote the confidence that it be-
longs to the cluster. In our approach, we use the centrality
score calculated by PageRank [20] model as the reliability s-
core. ri denotes the vector of reliability scores of these users.
Then, ri can be iteratively updated by:

ri(t) = d · Pi · ri(t− 1) + (1− d)e, (2)

where ri(t) is the pagerank score in the tth iteration. Pi is
the transaction matrix, which is normalized from pair-wised
user similarity of the users in Ci to make the sum of each
column to be 1, d is the damping factor to guarantee the
connectivity of the similarity graph, and e is a normalized
n-dimension vector whose elements are all 1/n. In tradition-
al PageRank model [20], the empirical value of d is about
0.8. Thus, we adopt this value in our approach. After ri(t)
converged to r̃i, the final reliability score ri is normalized to
make the maximum value to be 1:

ri =
r̃i

max(r̃i)
. (3)

Thus, for user ui, we have known that he/she should belong
to cluster ci with reliability ri.

For an image Ii, we use Ui to denote the set of users who
favor it. Thus, we can map Ui to a k-dimensional vector yi
to represent the intention label for Ii:

yij =

{
1, Ui ∩ Cj ̸= ϕ
0, otherwise.

(4)

In this equation, if there is at least one user in cluster j that
favors image Ii, the jth element in yi will be 1. However,
for different 1 in yi, we have different confidence because
the users have different reliability. We use tij to denote the
confidence score that image Ii is favored by cluster j. If
yij = 1, we can know that users Ui ∩ Cj favored Ii in Cj .
Thus, the confidence score tij is defined as the average of
these users’ reliability score. Thus, the confidence score tij
is defined as follows,

tij =

{ ∑
u∈Ui∩Cj

rj(u)

|Ui∩Cj |
, yij = 1

1, otherwise.
(5)

Note that, although we define tij = 1 when yij = 0, we just
know that there is no user in cluster j that favors image i.
However, we do not know that the users in cluster j dislike
image i. This problem will be discussed in detail in the next
section.

Based on the above formulation process, for an image Ii,
we can obtain two k-dimensional vectors yi and ti. yi de-
notes which clusters of users favor the image, and ti repre-
sents the corresponding confidence.

4. ASYMMETRIC MULTI-TASK CNN
In the last section, we introduced how to pre-process the

social behavioral datasets to construct intention labels. Mean-
while, for traditional image classification task, we usually
use a 1-of-k vector to denote the category that an image
belongs to. Therefore, we have two datasets after data pre-
processing stage: classification dataset D1 with category la-
bels z for semantic learning and user favor behavior dataset
D2 with intention labels y and confidence scores t for user
intention learning. We now use the proposed Asymmetric
Multi-task CNN (amtCNN ) model to learn an effective im-
age representation, in which semantic meaning and user in-



tention are captured.

4.1 Network Architecture
We design the multi-task convolutional neural network

based on the previous problem definition, which is illustrat-
ed in Figure 3. In Figure 3, there are two pathways for
two tasks. The pathway in the top dash box is designed for
image classification task, and the other is designed for user
intention learning task. “conv”, “pool” and “fc” denote con-
volutional layer, pooling layer, and fully connected layer in
CNN correspondingly. The layer name that ends with “ij”
denotes it is the ith layer in the jth pathway. For example,
“conv3 1” indicates that it is the third layer in the first path-
way (for image classification task), and it is a convolutional
layer.
In the first pathway, there are five convolutional layer-

s and three fully connected layers, where the first, second
and fifth convolutional layers are followed by pooling layers.
This setting refers to AlexNet [12], which is one of typical
CNN architectures in image classification area. The size of
convolution kernels in the convolution layers and the number
of neurons in the fully connected layers are illustrated over
each layer. The setting of stride and padding is also similar
to AlexNet. In this pathway, we do not adjust much from
AlexNet because it is for typical image classification task.
Therefore, in the forward propagation stage, the transac-
tion function from the (l− 1)th layer to the lth layer can be
formulated as follows,

x1
l = σ(W 1

l−1x
1
l−1 + b1l−1), 1 < l ≤ 8, (6)

where σ(·) is the activation function, where we use RELU
[12] in our network, where σ(x) = x when x > 0 and 0
otherwise. Here superscript “1” refers to the first pathway;
x1
l denotes the output of the lth layer; W 1

l−1 denotes the

weights from the (l − 1)th layer to the ith layer; b1l−1 is the
bias. Equation is suitable for both convolutional layer and
fully connected layer. For convolutional layers, x and b are
ql × 1 vectors and W is a ql−1 × pl−1 × pl−1 × ql tensor,
where ql is the number of feature maps and pl is the size
of convolutional kernel in the lth layer. For fully connection
layers, we can regard each neuron as a 1 × 1 convolution.
Thus W is a ql−1 × ql matrix. Different from the previous
layers, the final output layer z̃ is defined as:

z̃ = softmax(σ(W 1
8 x

1
8 + b18)), (7)

where softmax(·) is a function which can generate a distri-
bution from a given vector.
The second pathway is designed to embed social favor be-

havior. In this pathway, the types of layers are similar to
those in the first pathway, but the connections are quite dif-
ferent. A convolutional or fully connected layer in the second
pathway is connected to the previous layers in both of the
first and the second pathway, i.e.,

x2
l = σ(W 2,1

l−1x
1
l−1 + b2,1l−1 +W 2,2

l−1x
2
l−1 + b2,2l−1), 1 < l ≤ 8, (8)

where W 2,i
l−1 (i = 1, 2) refers to the weights from the ith

pathway’s l − 1 layer to the second pathway’s l layer, and
b2,il−1 is the corresponding bias. In the second pathway, the
output layer ỹ is defined as:

ỹ = σ′(W 2,1
8 x1

8 + b2,18 +W 2,2
8 x2

8 + b2,28 ), (9)

where σ′(·) is sigmoid function, which is defined as σ′(x) =
1

1+e−x . Compared to Equation 7, we do not use softmax+RELU
but sigmoid function. It is mainly because in the first path-
way, the groudtruth label is zi, which is a 1-of-k indica-
tor. However, in the second pathway, the groundtruth is yi,
which have multiple 1s. Therefore, the softmax (a probabil-
ity distribution) is not suitable.

In this work, we call the layers in the first pathway“seman-
tic layers”and the second pathway“social layers”. Therefore,
we can observe that a semantic layer is only determined by
the last semantic layer, while a social layer is determined by
both of the last semantic layer and the last social layer. This
is because user intention, i.e., which kind of users will like
this image, is first determined by the semantic meaning of
the image, and also determined by other emotional or social
aspects. Based on this setting, we can embed the user inten-
tion learning task into traditional image classification task.
From Figure 3, we can observe that the final size of each so-
cial layer is half of the size of corresponding semantic layer
to achieve the best performance. There are two reasons for
this phenomenon. First, semantic layer has included a lot of
useful information which will effect user intention. Thus, we
do not need so much social nodes. Second, for image classi-
fication task, ImageNet is a very big dataset to pre-train our
network. On the other hand, the Flickr dataset is crawled
by ourselves and thus does not have a very huge amount.
If the size of social layers is too big, the network may face
under-fitting problem due to the lack of training samples.

4.2 Training
Based on the architecture in Figure 3, our target is to

derive the optimal weights in the network. For each im-
age, the input data x1 is the pixel data of RGB channels,
i.e., x1 =< IRi , IGi , IBi >. In the first pathway, i.e., image
classification task, we expect the output layer z̃i to be close
to the classification label vector zi. In ImageNet ILSVRC-
2012 dataset, there are 1000 categories in total. Thus, zi is
a 1000-D vector where only one element is 1 and the others
are 0. We define the loss function for this task as L1, which
can be computed according to the loss function of regression:

L1 =
1

2

N∑
i=1

(zi − z̃i)
2 +

λ

2

8∑
l=1

∥W 1
l ∥2F , (10)

where z̃i is the output z̃ in Equation 7 for image Ii; λ is
the factor to balance the loss and regularization to previous
overfitting.

For the second user intention learning task, the supervised
label is yi. Here, the loss function should be re-defined be-
cause we have different confidence for the elements in yi. In
Section 3, we compute the confidence score ti for yi. As
mentioned, when yij = 1, tij denotes the confidence that
users in cluster j like image i. However, yij = 0 only de-
notes “unknown” but not “dislike”. If we use all 0s in yi for
training, it may bring a lot of noise. Here we refer to the
idea of dropout to solve this problem. For all the js that
make yij = 0, we only select part of them for back propa-
gation. Therefore, we first modify the confidence score in
Equation 5 as follows,

t′ij =

 tij , yij = 1
1, yij = 0 and j is selected
0, otherwise.

(11)
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Figure 3: The architecture of the proposed network. The top dash line box is designed for image classification
task and the bottom one is for favor behavior learning task. The arrow line between two layers denotes that
these two layers are fully connected.

In this work, the dropout rate is 0.2, i.e., we only select 20%
0s in yi for back propagation. Then, the loss function for
this task is defined as,

L2 =
1

2

N∑
i=1

t′i(yi − ỹi)
2 +

λ

2

8∑
l=1

(∥W 2,1
l ∥2F + ∥W 2,2

l ∥2F ). (12)

Using Equation 12, only the weights connected to the select-
ed neuron in the output layer will be updated in the back
propagation stage.
We use batch mode in the training stage. We first select

a batch of images in classification dataset D1, and use L1

to update the weights W 1. Second, we select a batch of
images in social image datasetD2, and user L2 to update the
weights W 2,1 and W 2,2. We iteratively repeat the above two
operations until the errors converge on both of the validation
sets for two tasks.
When the training processed is finished, we can use the

combination of mid-level fully connect layers, i.e., the fc6
to fc8, as the learnt representation. In our approach, we
find fc8 performs the best on the validation set. Therefore,
for image Ii, its representation in our network f(Ii) is <
x1
i,8, x

2
i,8 >.

4.3 Algorithm
We summarize the algorithm of the whole Socially Embed-

ded Visual Representation Learning approach as described
in Algorithm 1.
Our approach has three main steps. First, we divide n

users into k clusters. Then, we compute the k-dimensional
vector y and t for each social image. Finally, we train our
amtCNN model based on the pre-processed data.

5. EXPERIMENTS
In this section, we first introduce the experimental set-

tings in this work. Then we evaluate the proposed approach
in three application scenarios: user favor behavior predic-
tion, personalized image recommendation, as well as image

reranking. Finally, we give some observations of the learnt
image representation.

5.1 Experimental Setup

5.1.1 Datasets
In our experiments, we have prepared four datasets, in-

cluding:
Training dataset. The training dataset consists of t-

wo sub sets: D1 for classification and D2 for user inten-
tion learning. In this work, D1 is a subset of ILSVRC-2012
dataset in ImageNet and D2 is crawled from Flickr. We
do not use the whole ILSVRC-2012 dataset as D1 bacause
its amount is much more than D2. We first use the w-
hole ILSVRC-2012 to pre-train the weights in classification
pathway in our network. Then, we use D1 and D2 for fine-
tuning. We randomly select 128,000 images from ILSVRC-
2012 dataset as D1, where there are 1000 categories in total
and each category has 128 images. To construct D2, we s-
elect 128, 000 images from Yahoo Flickr Creative Commons
WebScope dataset 2 with popular tags 3. Then, we crawl the
users who favor them through Flickr API. Finally, there are
97,513 users in total and each image is favored by 4 users
in average. For each of D1 and D2, we use 90% for training
and remained 10% for test.

Favor behavior prediction dataset. We crawl oth-
er 10,000 images that are favored by the users in training
dataset in Flickr. The user intention labels yi computed by
Equation 4 is used as groundtruth to predict which clusters
of users will favor them. This dataset can be regarded as
the test dataset after training.

Recommendation dataset. We also prepare a recom-
mendation dataset for image recommendation. We crawled
1, 000 users’ favorite images in Flickr. The number of the
images in total is 17,935. All of the selected users have at

2http://webscope.sandbox.yahoo.com/catalog.php?
datatype=i&did=67
3https://www.flickr.com/photos/tags/



Algorithm 1: SEVIR

Input: Image Classification dataset D1 = {I1, · · · , Im}
with label zi for each Ii;

User favorite images D2 = {I ′1, · · · , I ′n} with favored
users Ui for each I ′i;
Output: The trained CNN model, which can obtain

the representation f(Ii) for any image Ii.
for pair-wised users (ui, uj) do

Compute user similarity sim(ui, uj) by Eq. 1;
end
Conduct spectral clustering on the similarity graph;
for each cluster Ci do

for user u ∈ Ci do
Compute the reliability score r(u) by Eq. 3;

end

end
for each image Ii ∈ D2 do

Compute intention labels yi by Eq. 4;
Compute confidence score vector ti by Eq. 5;

end
repeat

Select batch of images B1 ⊆ D1;
Compute loss L1 along the first pathway by Eq. 10;
Conduct back propagation for the first pathway;
Select batch of images B2 ⊆ D2;
Compute loss L2 along the second pathway by Eq.
12 with dropout;
Conduct back propagation for the second pathway;

until errors for both two pathways converged ;

least 80 favorite images. For each user, we randomly select
40 of his favorite images as ground truth for test and the
remained favorite image for training. Then we randomly
sample other 160 images from the whole image dataset as
candidates for testing.
MSR dataset. We utilize Bing Image Retrieval Grand

Challenge (MSR) dataset [7] to prove that our distance learn-
ing method can improve the performance of image reranking.
In this dataset, the images under a given query are labeled
as “Excellent”, “Good” or “Bad” with respect to the click
count. Different from traditional image retrieval datesets,
MSR dataset is based on user click data, which can capture
not only semantic relevance but also human cognition.
To the best of our knowledge, there is no public bench-

mark including user behavioral information for image rec-
ommendation. Thus, we crawled the data from Flickr for
the first three datasets. In our image reranking method, a
public dataset is utilized to make our approach comparable
to others.

5.1.2 Model Implementation
We train the network introduced in Section 4 on our train-

ing dataset. Our training strategy follows the practice of the
previous works on CNN [12, 31]. In our training set, each im-
age is resized to 256×256. Five 224×224 crops are cropped
from the center and the four corners of the resized image.
We also conduct horizonal flipping and vertical flipping for
each cropped sample. Following AlexNet [12], dropout with
probability 0.5 is used in the first two fully connection lay-
ers in each task in learning process. The learning rate starts
from 0.02 for all layers. It is divided by 10 when the error

rate stops reducing. Our model is modified based on the
public code of Caffe [9]. It is trained on a single GeForce
Tesla K40 GPU with 12GB memory. The training process
will cost about 3 days.

5.2 Favor behavior Prediction
In our CNN model, for any image I, we can compute the

output ỹ in the second pathway using Equation 9. For an im-
age in our favor behavior prediction dataset, y means which
clusters of users will like it. Therefore, we can use ỹ to pre-
dict users’ favor behavior. In this experiment, for each image
I in favor behavior prediction dataset, we evaluate the sim-
ilarity between the prediction result ỹ and groundtruth y in
metrics of RMSE (Root Mean Square Error), Precision@k,
and Kendall− τ [11]. Here RMSE reflects the error in val-
ue; Precision@k reflects the accuracy when we recommend
the image to k clusters of users; and Kendall − τ evaluates
the performance in ranking point of view. For RMSE, lower
value is better. For the other metrics, the higher the better.

To compare with our approach, we use the following meth-
ods as baselines:

• Logistic Regression with Bag-of-Words feature
(BOW) [33]. In this method, we first train a logistic
regression model on the training dataset D2. Bag-of-
Words features are extracted based on SIFT descrip-
tors [17]. Then we use the favor prediction dataset
to evaluate the performance using the trained logistic
regression model.

• Logistic Regression with SIDL (SIDL). SIDL [15]
is a distance learning method which incorporates social
behavioral information. The learned image distance
metric can map the original image feature to a new
space. Like the previous baseline, we train a logistic
regression model based on the mapped features.

• AlexNet. AlexNet [12] is a CNN model proposed
for image classification on ImageNet which captures
semantic information. We use the last layer before the
output layer as image representation.

• Social task in SEVIR (SEVIR soc). Here we only
use the second pathway in our proposed SEVIR Net-
work. The network is trained on Flickr dataset D2 and
the last layer before the output layer is used as image
representation.

In our experiments, we mark our proposed method as
SEV IR soc + sem because it captures social information
and semantic information at the same time. Table 1 shows
the results.

Table 1: The performance on favor behavior predic-
tion dataset in RMSE, Precision@k, and Kendall − τ
for different image representation methods.

RMSE P@3 P@10 Kendall − τ
BoW [33] 0.4368 0.1201 0.2855 0.057
SIDL [15] 0.3345 0.2347 0.3451 0.3939

AlexNet [12] 0.347 0.2099 0.3362 0.3467
SEVIR soc 0.3199 0.2289 0.353 0.3751

SEVIR soc+sem 0.2857 0.2556 0.4061 0.4277

From Table 1, it can be observed that the proposed method
SEV IR soc + sem achieves the best performance in all of



the metrics. BoW performs the worst because it is extract-
ed only based on visual contents. Thus, it does not include
adequate information for semantic and intention. Although
SIDL also embeds social behavioral information, it perform-
s worse than SEV IR soc because the linear model (logis-
tic regression) cannot bridge low-level feature and high-level
favor behavior well. Intuitively, favor behavior is more re-
lated to user intention than semantic meaning of images.
However, we can observe that AlexNet performs better than
SEV IR soc. To our understanding, it is mainly because the
social data are very sparse and unreliable. Thus the model
that fits the training social data very much may reduce the
performance on test data on the contrary due to overfitting.

5.3 Image Recommendation
In the image recommendation dataset, we have 1,000 user-

s’ favorite images in Flickr. We divide part of them for train-
ing and rest for test. In test stage, our task is to recommend
40 images from 200 candidate images for each user. In this
experiment, we use the following recommendation methods
to show the effectiveness of our approach:

• Content-based Filtering using Bag-of-Words Fea-
tures (BoW). Content-based Filtering [22] is one of
the most popular content based recommendation meth-
ods. The idea is to rank the candidate images accord-
ing to their similarity to the training images of a given
user. Here we use Bag-of-Words features to evaluate
image similarity.

• Content-based Filtering based on SIDL, AlexNet,
SEVIR soc, SEVIR soc+sem. Respectively, we
use SIDL, AlexNet, SEVIR soc, SEVIR soc+sem to
evaluate image similarity for Content-based Filtering.

• Content-boosted Collaborative Filtering based
on SIDL, AlexNet, SEVIR soc, SEVIR soc+sem.
Collaborative Filtering [2] is a typical recommenda-
tion method which uses user behavioral information.
To demonstrate that our content-based method and
CF are competitive. We adopt the approach in [18]
to combine Content-based Filtering with Collabora-
tive Filtering. Here we use the proposed SEVIR to
evaluate content similarity of images.

We use Precision@k to evaluate the performance of the
above recommendation methods. Figure 4 shows the results
for image recommendation. In Figure 4, (a) illustrates the
performance of content-based methods of our proposed SE-
VIR and baseline methods; (b) illustrates the performance
of combining content-based methods with collaborative fil-
tering. From Figure 4 (a), we can see that the proposed
SIVIR soc+sem performs the best, which is consistent to
the previous experiments. When combined with Collab-
orative Filtering (CF), we can observe from Figure 4 (b)
that the hybrid method CF+SEVIR (here SEVIR mean-
s SIVIR soc+sem) still performs the best. It indicates that
although the pure CF produces relatively good performance,
our proposed SEVIR is still an effective image representation
which is competitive to CF.

5.4 Image Reranking
In this experiment, we follow the method in [10] to r-

erank the images for a given query in MSR dataset. In this
method, pair-wised image similarity is computed to build
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Figure 4: The performance on recommendation
dataset in Precision@k with different number of top k
images using (a) content-based methods (b) hybrid
methods of content-based filtering and collaborative
filtering.
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Figure 5: The performance on the MSR dataset in
terms of DCG@25 with using different image repre-
sentations in the PageRank model.

the similarity graph. Then, PageRank [20] is used to com-
pute the centrality scores for each image. Therefore, the
image with high PageRank score is similar to most of oth-
er images. Following the measurements in ACM Multime-
dia Grand Challenge 2013, we use Discounted Cumulated
Gain of the top 25 images (DCG@25) to evaluate the per-
formance. When the rank order is given, the DCG@25 for
each query is calculated as:

DCG@25 = 0.01757

25∑
i=1

2reli − 1

log2(i+ 1)
, (13)

where reli is the relevance score of the i
th ranked image (Ex-

cellent=3, Good=1, Bad=0), 0.01757 is to normalize the val-
ue of DCG@25 up to 1. Note that the DCG@25 of a perfect
ranking may also be less than 1 when there are some non-
excellent images in top 25. For the queries with fewer than
25 images, we simply supply some “Bad” images after the o-
riginal ranking list. We use the baseline methods similar to
favor behavior prediction task to evaluate image similarity.
Figure 5 shows the results of our experiments. From Figure
5, we can observe that our approach has remarkable superi-
ority to the other baseline methods. SIDL, AlexNet, and SE-
VIR soc produce similar performance because they include
different aspects of information: SIDL uses both users’ favor
behavior and image tags, but it is a shallow learning model;
AlexNet considers semantic categories; SEVIR soc only uses
favor behavior but it is a deep learning model. Therefore,



it is reasonable that our approach, which uses deep learning
model and captures both user intention and semantic infor-
mation achieves 0.5649 in DCG@25. Note that, here we
just use the development dataset in MSR. Thus, the rerank-
ing method is unsupervised. However, the performance is
comparable to the state-of-the-art methods that are super-
vised by training dataset. It indicates that our approach
trained by Flickr images can indeed capture user intention
information, which is independent to training data.

5.5 Discussions
In our approach, we are very curious about what we have

learned from the classification task and the behavior learning
task. Therefore, we visualize some representative activations
in our CNN model. We first select 3 images that have the
similar semantic meaning of “flower”. Then, we compute
the activations of bottom convolutional layers (conv1) and
top convolutional layers (conv5) for social task and semantic
task. Figure 6 illustrates representative activations that we
obtain.
Although the selected 3 images are all about flowers, they

have quite different favored users in Flickr. The first two
images are from a flower lover’s album, so that the favored
users are similar. The third image is a photo in a party.
Thus, it has no overlap with the previous two images in user
dimension. From Figure 6, we have some interesting ob-
servations. For conv1, the activations in semantic task are
very close to the original image, but the ones in social task
have been abstract. It indicates that the features extracted
in behavior learning task are relatively latent but not intu-
itive. For conv5, the activations in semantic task describe
the outline of the flowers, while the ones in social task seem
to be some very detailed aspects, such as texture of pistil or
petal. For the activations of conv5 in semantic task, three
images are very similar, which leads to the same classifica-
tion result “flower”. While when we observe the activations
of conv5 in social task, the third image is obviously different
with the first two images. Intuitively, for the third image,
the activations of conv5 in social task deliver the informa-
tion about “many” because there are many black “dots” in
them. However, for the first and the second images, the
activations are relatively pure. Therefore, we can find that
we really learned some extra information in social task that
differs from classification task.

6. CONCLUSION
In this paper, we explore learning image representation to

capture both semantics and user intention for user-centric
applications, such as image search and recommendation.
A Socially Embedded VIsual Representation Learning (SE-
VIR) approach is proposed, in which an Asymmetric Multi-
task Convolutional Neural Network (amtCNN ) model is de-
signed to embed user intention learning task into seman-
tic learning task. In user intention learning task, we first
compute intention labels with confidence scores based on fa-
vor behavior in social platforms. Then, the loss function is
specifically designed to tackle the sparsity and unreliability
challenges in social behavioral information. The experimen-
tal results in user behavior prediction and image reranking
applications indicate that our representation learning ap-
proach includes more intention level information than base-
line methods. The experiment for image recommendation
demonstrate that the learnt representation can make the

performance of content-based filtering method comparable
to collaborative filtering methods. In all of the experiments,
our approach performs at least 15% better than baseline
methods, which is remarkably better than baseline method-
s. From the visualization of the learning results, we observed
that learnt features in social task are quite different with the
ones in classification task.

This work is an effort to embed social information into
deep CNN model. We have a long way to go because the
quality of social data is much worse than well-labeled clas-
sification data. To our understanding, this is the main rea-
son that we can just observe the difference of the features
in visualization part, but we cannot give a good intuitive
explanation. In the future, we will explore to better orga-
nize social information and design a more reasonable deep
model for embedding to make image representation learn-
ing more intelligent and more personalized. Furthermore,
we can incorporate multi-modal social information to better
understand user intention.
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