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Abstract
Human activity plays a central role in understanding large-scale social dynamics. It is well

documented that individual activity pattern follows bursty dynamics characterized by heavy-

tailed interevent time distributions. Here we study a large-scale online chatting dataset con-

sisting of 5,549,570 users, finding that individual activity pattern varies with timescales

whereas existing models only approximate empirical observations within a limited time-

scale. We propose a novel approach that models the intensity rate of an individual triggering

an activity. We demonstrate that the model precisely captures corresponding human

dynamics across multiple timescales over five orders of magnitudes. Our model also allows

extracting the population heterogeneity of activity patterns, characterized by a set of

individual-specific ingredients. Integrating our approach with social interactions leads to a

wide range of implications.

Introduction
Human activity pattern is one of the central building blocks of modeling and understanding
social dynamics such as information spreading [1–3], social-tie and group formations [4–7],
social cooperations and competitions [8, 9]. While a wide range of social interaction models
exist, they mostly assume that the communications among individuals are largely random, fol-
lowing a Poisson process. Yet, recent researches on human dynamics have demonstrated exten-
sive evidence [10–12] that the interevent time (time between consecutive messages) and the
response time (time between a message was received and the reply was sent) τ are heavy-tailed
distributed, in contrast to prediction of the uncorrelated Poisson process where the interevent
time distribution P(τ) follows an exponential form. This indicates that the vast majority of
responses were sent within a very short time frame known as bursts. In some cases, however,
the response stalls for a long time, as predicted by the long waiting times at the tail of the distri-
bution. Specific examples range from communications [13, 14], entertainment [15, 16] and
work patterns [17–19] to neural activities [20, 21], implying that there exists intrinsic complex-
ity at each individual level even without involving social interactions. In other words, in social
systems the “propagator” (interevent time distribution) P(τ) of a free “particle” (person) is fun-
damentally distinct from these in the physical science that are purely random (Guassian or
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exponential). In contrast, the intrinsic complexity of human behaviors such as long-memory
effect are encoded and translated into the non-trivial form of P(τ), which significantly impacts
on social dynamics at a macroscopic level. For instance, it has been subsequently shown [22]
that the non-Poisson nature of the contact dynamics fundamentally alters spreading processes
on networks, resulting in notably larger decay times than predicted by Poisson processes.

To capture underlying complexity in human activity patterns, various models have been
developed during the past decade. Overall these models fall into two major approaches. The
first approach mainly focuses on the microscopic foundation of human dynamics and tends to
model how individuals make actions or responses. For instance, Barabási proposed a simple
queuing model that allows to capture some essential ingredients of bursty dynamics [23–26].
These models mostly predict a power law P(τ) with universal exponent 1 and 1.5 for fixed and
variable queues, respectively. The second approach, however, tends to model P(τ) directly with-
out involving microscopic information at the individual level. Candidate models include Wei-
bull distribution, log-normal distribution and Pareto distribution that follows power law for all
τ greater than a threshold xm [27–29]. These models have more practical flexibility compared
to queuing models yet lack microscopic understandings of human dynamics.

To demonstrate the challenges of modeling human activity pattern precisely, we plot P(τ) in
Fig 1a for one online chatting user where τ is the interevent time of two consecutive messages
(see Datasets section for details). The interevent time τ ranges over five orders of magnitudes
and there is no simple distribution being able to approximate P(τ) across the entire time scale.
For instance, a power law only captures an intermediate time regime τ 2 (102, 104) approxi-
mately, and one has to crop data to perform power law fitting [30]. To quantify the effects of
cropping, we fit P(τ) with the Pareto distribution for the same user which discards interevent
time τ smaller than a parameter xm. Fig 1b shows the fraction of cropped data versus fitting
goodness, showing that the power law fits well only after cropping 30% of the data. More
severely, when apply the Pareto distribution to the population, less than 10% of the users pass
statistical test even when croping 70% of the data. Fig 1 reveals the fact that there exist different
time scales where individuals’ actions and responses have remarkably distinct patterns. This
finding calls the needs for generic yet accurate models that enable to capture and quantify
human dynamics across full-time scale. In this work, we report such a generic framework
through a multiscale survival process.

Materials and Methods

Datasets
Our data-driven approach relies on accessibility of the following large-scale datasets of human
activity pattern.

Online chatting: This data is collected from Tencent QQ, an MSN-style instant message
platform in China, covering over 600 million users. We collect the log of users’ group chatting
behavior that contains 50,000 online groups with 5,549,570 group members and the message
log of each group during a 2 month period. The data records a unique user ID for every indi-
vidual user and all timestamps when the user posts messages, which allows to construct each
user’s activity pattern. All data is collected by Tencent QQ for academic research according to
its terms and conditions. Furthermore, the data is fully anonymous and contains no identifiable
information.

We also apply our method to the following two well-studied small-scale datasets for com-
parison and cross-validation:

Letter correspondence: The dataset is collected in the same way as in [24], and we adopt the
similar analysis strategy. We collect 28511 letters of Einstein and 6944 letters of Freud, apart
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from the ones missing date or sender/receiver. We calculate the response time of the letters and
analyze the distribution of it.

Emails: The dataset contains 3188 users and 129 135 records of sending and receiving
Emails during a 3 month period in a university environment [10]. We analyze the distribution
of time intervals between an individual sending two consecutive e-mails as in [12, 24].

Model
The fact that the interevent time distribution P(τ) behaves differently at different time scales
indicates that the intensity rate λ for an individual to make an action or response varies with
the time τ. Therefore instead of modeling P(τ) directly, we are aiming to model the intensity
function λ(τ) that encodes all essential microscopic details of the underlying stochastic process.
Survival analysis [31–33] allows to connect λ to P(τ) through following rate equation

@SðtjyÞ
@t

¼ �lðtjyÞSðtjyÞ; ð1Þ

where the survival function S(τ|θ) is the probability of a waiting time longer than τ, and {θ} are
individual specific parameters. Solving Eq (1) leads to

SðtjyÞ ¼ exp � R t

0
lðtjyÞdt� �

: ð2Þ

Given the waiting time distribution P(τ|θ), the survival function S(τ|θ) simply corresponds
to its complementary cumulative distribution

SðtjyÞ ¼ R1
t PðtjyÞdt: ð3Þ

Fig 1. (a) The probability density function of the time interval between any user’s two consecutive messages in online chatting. P(τ) is well approximated by a
power-law τ−α with the exponent α = −1.4 for the intermediate time regime τ 2 [102, 104] whereas for both shorter and longer time scales the power-law
characteristic does not work. Left bottom inset: survival rate of the time interval. (b) When fitting with Pareto distribution, we discard the data with interevent
time less than xm. We tune the parameter xm and find the best fitting. It shows the relation between the fraction of cropped data less than xm and the goodness
of fit, which is measured by the KS statistic. The red line shows the threshold statistic to pass the KS test with the significance level of 5%, which gradually
increases due to the decreased amount of data.

doi:10.1371/journal.pone.0151473.g001
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Combining Eqs (2–3) allows to predict

PðtjyÞ ¼ � @SðtjyÞ
@t

¼ lðtjyÞ exp �
Z t

0

lðxjyÞdx
� �

: ð4Þ

Here the P(τ|θ) is a generic form of several simple distributions commonly used to model
human dynamics. A time-independent intensity rate λ corresponds to a homogeneous Poisson
process, where Eq 4 simply recovers the well-known exponential waiting time distribution. If λ
varies with time τ, we are able to achieve various P(τ) forms. For instance, λ(τ) = γ/τ leads to a
power law waiting time distribution P(τ)*τ−(1+γ) whereas λ(τ) = γ/τα with an exponent α< 1
recovers the Weibull distribution. Nevertheless, as we discussed above, these simple forms cap-
ture only limited temporal regimes of the empirically observed P(τ).

To incorporate different activity patterns across multiple time scales, we propose the follow-
ing generic intensity function

lðtjyÞ ¼ l0
ðt=t0Þa þ 1

þ l1; ð5Þ

where θ = {λ0, t0, α, λ1} captures the following different aspects in human activity patterns:
λ0 determines the activity rate in a small time scale. If τ� t0, (τ/t0)

α � 0 and λ0 � λ1, we
find λ(τ)� λ0. The larger λ0 is, the higher the probability that the user makes a quick response
will be.

t 0 determines the critical time scale where a highly heterogeneous activity pattern starts to
emerge. This phenomenon is well-known as the burstiness of human dynamics [34, 35]

α> 0 controls the degree of the heterogeneity of burst regime.The larger α value leads to
more heterogeneous activities raised from underlying human dynamics.

λ1 determines the activity rate in a large time scale, e.g. limτ ! 1 λ(τ) = λ1. λ1 � λ0 so
that λ1 has little influence until τ is big enough. The exponential tail is greatly influenced by
λ1 and it also plays a leading role in the average time interval of human activities.

To learn our modelling parameters, we start from a set of empirical records of an individu-
al’s interevent times T = {τ1, τ2, . . ., τn}, and calculate the following likelihood function

LðyÞ ¼
Yn
i¼1

PðtijyÞ ¼
Yn
i¼1

SðtijyÞlðtijyÞ: ð6Þ

The corresponding log-likelihood function reads

lnLðyÞ ¼
Xn

i¼1

f ln lðtijyÞ �
Z ti

0

lðtjyÞdtg: ð7Þ

Maximizing Eq (7) regarding {λ0, t0, λ1, α} leads to estimated modeling parameters of the
interevent times T.

Results
Fig 2 demonstrates P(τ) for four randomly selected individuals across our datasets. Despite
notable diversity over different individuals and datasets, our model excellently agrees with the
empirical data across a full-time regime over five orders of magnitudes. In contrast, a power
law fitting is often limited within an intermediate time-scale over 1–2 orders of magnitudes.
The sharp cutoff at large time scale reveals a clear exponential tail in a semi-log plot in line
with the prediction of our model (Fig 2 Inset). Note that a typical timescale of such cutoff (e.g.
start around 6 hours for online chatting dataset) is much shorter than the duration of data
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records(two months in our case), implying that it is rooted in the intrinsic ingredients of
human activity instead of a finite-size effect. We also find that the time-dependent intensity
rates λ(τ) monotonically decease with τ that are very well captured by our model Eq (5).

To evaluate the performance of our model, we apply our methodology to 26,648 active users
(with more than 100 records during two month periods) from the online chatting dataset and
apply several standard statistical tests including Kolmogorov-Smirnov test (KS test), chi-square
test and Cramér-von Mises test. We set the significance level to 5% to judge whether the fitting
is good enough or not. In addition, we use the average statistic as metric, which represents the
magnitude of error between real data and the fitting result of the interevent time distribution.

Table 1 shows the average statistic of KS-test, chi-square test and Cramér test and the pass
rate with the significance level of 5% in these three statistical tests on online chatting dataset.

As the table shows, our model beats all the baselines significantly in all metrics. 70.6% of users
pass the KS-test with the significance level of 5%. If we lower the significance level to 1%, the pass

Fig 2. The interevent time distribution P(τ) for (a-b) two users from online chatting dataset, (c)one user for Email reply and (d) one individual for letter
correspondence, respectively. The black circle represents the real data and the red curve is the model’s prediction. Right top inset: P(τ) in a semi-log plot. Left
bottom inset: intensity rate λ versus waiting time τ.

doi:10.1371/journal.pone.0151473.g002
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rate will increase to 81.8% and it is quite an inspiring result. As for the bad case, we found that
data sparsity is a main reason and observing more data will make the model more precise.

The improvement compared to baselines is mainly attributed to the truth that our model
captures multi-time-scale characteristics of human dynamics in a more detailed and compre-
hensive way. The Poisson process performs the worst among all models since it cannot capture
the heavy-tail feature of human dynamics. While Pareto distribution, Weibull distribution and
log-normal distribution can capture heavy-tail feature, it only works for the middle time scale.
As a result, if we try to fit the whole time scales of human dynamics, such models embody obvi-
ous limitation and are significantly exceeded by our model in all metrics. The high pass rate of
our model also indicates that it captures multiple time scale human behaviour for real
application.

We also compare the goodness of fit under different time scales after cropping data. Fig 3
shows the result of average KS p-value after cropping the short interevent time data on online
chatting dataset and email dataset. We can see that the goodness of fit (measured by average p-
value of KS test) all increases when gradually cropping data and stays relatively steady after dis-
carding about 30%—40% of the data. The Pareto distribution, Weibull distribution and log-
normal distribution show different patterns, reflecting partial information of human dynamics.

Table 1. Goodness of fit for the online chatting dataset, measured by the average statistic and pass rate with the significance level of 5% of three
statistical testingmethod.Our model performs best in all metrics.

KS test chi-square Cramer

stat rate stat rate stat rate

Poisson 0.713 0.0% 8445.5 0.0% 79.43 0.0%

Pareto 0.281 0.5% 612.91 0.0% 19.91 0.5%

Weibull 0.202 1.7% 402.89 1.9% 5.46 2.0%

Log-normal 0.145 8.1% 216.24 3.7% 2.16 8.0%

Model 0.070 70.6% 67.99 51.3% 0.66 76.54%

doi:10.1371/journal.pone.0151473.t001

Fig 3. Average KS p-value after cropping, (a) online chatting dataset and (b) email activity dataset, respectively. The horizontal axis shows the fraction of
data cropping. The vertical axis shows the average p-value in KS test, where higher value represents a better fitting. The blue, orange and green curves show
the goodness of fit of Pareto distribution, Weibull distribution and log-normal distribution respectively. The red dotted line shows the p-value of our model
without cropping data.

doi:10.1371/journal.pone.0151473.g003
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Pareto distribution performs worst for the full data yet improves significantly when cropping
30% of the data in short-time-scale. Log-normal distribution performs relatively stable and has
advantage over Pareto distribution in shorter and longer time scales, implying that the early
period and later period of human dynamics are non-power-law. The performance of our
model (without cropping data) is represented by red dotted lines, showing remarkable
improvements over all baselines.

Fig 4 plots the distributions of our modeling parameters across the online chatting dataset,
finding that

λ0 follows a log-normal distribution quite well. Since it mainly influences the percentage of
short interevent intervals, we may infer that people’s short time response patterns is stable
around different users and the percentage of quick responses is also near Gaussian distribution;

t0 follows a skewed log-normal distribution with 100 seconds as the modal number. As t0 is
the typical time scale of human activity between the quick response and bursty patterns, the
plot indicates that for most people, the power-law distributed activity dynamics dominates
after a relatively long period. We hypothesise that t0 corresponds a time scale that an individual
sticks to a certain topic whereas for the τ> t0, the user starts to lose his/her interests and switch
to other topics. Further studies need to be performed to test this hypothesis.

λ1 has a strong correlation with the average time interval in human dynamics. It can be
approximated by a log-normal distribution with a cutoff at small value, a fact due to the sam-
pling bias of neglecting inactivity users.

α follows a skewed normal distribution with an average value close to 1.45, in line with the
prediction of queue models with various queue size [24].

Fig 4. Distribution of parameter (a) λ0, (b) t0, (c) λ1 and (d) α for the online chatting dataset, respectively.

doi:10.1371/journal.pone.0151473.g004
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Discussion
To conclude, previous studies have shown that human dynamics is characterized by bursts of
events and long periods of inactivity. Nevertheless, the nature of burst dynamics remains elu-
sive. Our study of high resolution records of human interactive behavior provides an in-depth
analysis of human dynamics, revealing non-Poisson temporal patterns that suggests a rethink-
ing of mechanisms governing the human dynamics. Rather than focusing on limited time
regimes, we find different patterns over multiple time-scales. We propose a generic model
which not only captures the microscopic dynamics comprehensively but also predicts the
interevent time distribution of each individual accurately. In this way, our model offers a
generic modeling framework of the dynamics of human activities, potentially impacting a wide
range of applications from marketing to education and politics.
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