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ABSTRACT
Cascades are ubiquitous in various network environments such as
epidemic networks, traffic networks, water distribution networks
and social networks. The outbreaks of cascades will often bring bad
or even devastating effects. How to accurately predict the cascading
outbreaks in early stage is of paramount importance for people to
avoid these bad effects. Although there have been some pioneering
works on cascading outbreaks detection, how to predict, rather than
detect, the cascading outbreaks is still an open problem. In this pa-
per, we attempt harnessing historical cascade data, propose a novel
data driven approach to select important nodes as sensors, and pre-
dict the outbreaks based on the cascading behaviors of these sen-
sors. In particular, we propose Orthogonal Sparse LOgistic Regres-
sion (OSLOR) method to jointly optimize node selection and out-
break prediction, where the prediction loss are combined with an
orthogonal regularizer and L1 regularizer to guarantee good predic-
tion accuracy, as well as the sparsity and low-redundancy of select-
ed sensors. We evaluate the proposed method on a real online social
network dataset including 182.7 million information cascades. The
experimental results show that the proposed OSLOR significantly
and consistently outperform topological measure based method and
other data driven methods in prediction performances.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Models and Principles—Human fac-
tors; I.2.6 [Computing Methodologies]: Artificial Intelligence—
Knowledge acquisition

General Terms
Algorithm, Experimentation
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Information Cascades, Outbreak Prediction, Social Network, Data
Driven Approach
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1. INTRODUCTION
An information cascade (or herding) [10, 11] occurs when peo-

ple observe the actions of others and then make the same choice
as the others have made. This phenomenon is ubiquitous in var-
ious network environments, such as epidemic diffusion in social
networks, traffic jam spreading over transportation networks, and
information propagation in social media, etc. Although these cas-
cades are from different networks, all of them share a common
characteristic: only a tiny proportion of them will break out (i.e.
a large population of nodes in the network get affected), and the
remained will diminish before the critical point of outbreak [24].
How to predict these rare cascading outbreaks in early stage is of
paramount importance for people to avoid disease prevalence, seri-
ous traffic congestion, rumor outbreak, and so on.

Cascades have been studied for many years in sociology, and
most of them focus on the empirical analysis of those diffusion
processes. In recent years, cascades in networks and their out-
break phenomena have aroused considerable interests from the re-
searchers in computer science. A representative work by Leskovec
et al. [18] proposed a cost-effective methodology for near optimal
sensor placement with multiple criteria to detect outbreaks in net-
works. After that, a number of works have emerged following the
line of outbreak detection in networks [5]. The major goal of these
works is: given an outbreak cascade, how to detect this outbreak
with minimum detection time or minimum affected population? In
contrast, the main goal of this paper is: given an arbitrary cascade,
how to predict whether this cascade will break out or not in fu-
ture with high accuracy? In other words, given a network and the
dynamic cascades over the network, we want to select a set of n-
odes as sensors to predict outbreaks in early stage according to their
cascading behaviors (e.g. infecting a disease, involving in a traffic
congestion, adopting a piece of information or idea, etc.).

Take Twitter as an example, after a user publishes a post, some
of his/her followers (or friends) will forward this post to their fol-
lowers, and this post may spread out over the social network to
form an information cascade, and possibly break out if a certain
cascade size is reached. During the whole procedure, the cascad-
ing behaviors (i.e. forwarding) of the involved users cause the out-
break of this post, and clearly the importance of these users are
not the same in that some user’s forwarding may bring more sub-
sequent forwarding behaviors and thus has higher correlation with
outbreaks. How to measure the user importance with respect to
cascading outbreak prediction in early stage? A naive and intuitive
solution would be to select the big users (e.g. celebrities) who have
many followers. However, our empirical study suggests that these
topological measures are not adequate, and they may not even di-



rectly related to the task of outbreak prediction. In this paper, we
attempt to harness the historical information cascade data, and pro-
pose a novel data driven approach to discover the important nodes.

In historical cascades, the behavior of each node may have in-
dications in the early stage of multiple cascades, including both
outbreak and non-outbreak cascades. Also the behaviors of mul-
tiple nodes are often correlated or complementary with respect to
outbreaks. Therefore we can select a subset of nodes, whose joint
behaviors are highly correlated with the information outbreak, as
sensors to achieve the prediction goal. However, this is a challeng-
ing problem because: (1) the outbreak prediction and node selec-
tion procedures need to be jointly optimized; (2) the node selection
need to be parsimonious so that the monitoring over the selected
sensors can be cost-effective; and (3) the node selection process
need to be efficient so that the method can be applied into large
realistic networks.

In this paper, we propose Orthogonal Sparse LOgistic Regres-
sion (OSLOR) method to address the above requirements. In par-
ticular, the outbreak prediction problem (a binary problem to pre-
dict outbreak or non-outbreak) is formulated with a sparse logistic
regression model, which minimizes the prediction loss with a s-
parse linear model, in which only a small number of variates are
active. In order to reduce the redundancy among the selected sen-
sors without sacrificing the prediction quality, we add a penalty
term to constrain the orthogonality of selected nodes. We evaluate
the proposed method on a real online social network dataset, which
is collected from a Twitter style website. We have in total 116.3
million nodes (i.e. users) and 4.05 billion edges (i.e. social rela-
tions) in the network, and 182.7 million cascades over the network.
In our experiments, OSLOR achieves much higher prediction ac-
curacy than topological measure based methods and other feature
selection based methods. We show, perhaps counterintuitively, that
the nodes with high indegree have poor predictive power for cas-
cading outbreaks.

Figure 1 is a showcase of outbreak prediction by the proposed
method. We show that by effectively selecting users on social net-
work to monitor their cascading behaviors, we can predict at 2,474
seconds (after its generation) that this information cascade will
break out in future, which in actual break out around 13,620 sec-
onds. Thus, we predict this cascading outbreak with the leading
time of 11146 seconds. While for most information cascades, the
evidence cannot reach the threshold (0.5) and thus will be predicted
as non-outbreaks.

The main contributions of this paper are:
(1) Enlightened by the outbreak detection works, we move one

step forward to attempt outbreak prediction problem, which is of
paramount importance for various applications, such as network
monitoring, and viral marketing.

(2) In contrast with the topological measure based methods com-
monly used in previous research, we propose to measure the node
importance with respect to cascading outbreaks from data driven
angle, and we show that the nodes we discovered from historical
data can, in most cases, significantly outperform the nodes selected
by topological measures such as indegree.

(3) We propose a novel Orthogonal Sparse LOgistic Regression
method to jointly optimize outbreak prediction and node selection,
which can provide cost-effective solution for node selection while
maintaining high prediction accuracy.

(4) We extensively evaluate the proposed method on the appli-
cation of information cascade outbreak prediction in online social
network. The proposed method can be straightforwardly applied
into outbreak prediction in other network environment, such as epi-
demic, traffic and water distribution networks.
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Figure 1: Showcase: early prediction of cascading outbreak-
s by OSLOR. The green line represents the accumulated for-
warding number of a microblog from its generation to outbreak
(outbreak threshold is 1200). The blue line represents the accu-
mulated evidence of outbreak prediction.

The rest of this paper is organized as follow: Section 2 reviews
related work. Section 3 presents a formal definition of our problem,
and introduce the proposed method. Section 4 describes the detail
about experiments and shows the results. Finally, section 5 con-
cludes the paper, summarize our contributions and discuss future
work.

2. RELATED WORK
Although cascade has been studied for many years in sociolo-

gy, only in recent years the computer science researchers start to
pay attention to it, especially with the rapid development of online
social networks. In this section, we will briefly survey the relat-
ed work, introduce the corresponding taxonomies, and position the
uniqueness of this paper.

Outbreak analysis and detection. Cascades and outbreaks hap-
pen ubiquitously in various networks. The common way to detect
outbreaks is to select important nodes and place sensors there to
monitor. This strategy has been widely applied to detect water con-
taminations in water distribution network [14], and virus outbreaks
in human society [5]. Some early work placed sensors by topo-
logical measures, e.g. targeting high degree nodes [31] or highly
connected nodes[6]. Recently, Leskovec et al. [18] proposed to op-
timize the sensor placement with different criterions such as mini-
mizing detection time or population affected. By taking advantages
of submodularity property, the proposed algorithm can be used to
optimize large scale real world graph. Also, Kumar et al. [15]
analyzed the bursty evolution of blog network, and discovered its
relation with community structures. Prakash et al. [28] investigat-
ed, after a cascade started, how to identify the nodes from which the
cascade started to spread. This paper is eventually enlightened by
these works, and aim to optimally select important nodes as sensors
to predict the cascading outbreaks. Our work is distinct from those
existing works in two aspects: (1) The goal of this paper is to pre-
dict, rather than detect, the cascading outbreaks in early stage; (2)
Different from the topological measure based methods for impor-
tant node selection, we attempt harnessing historical cascade data
and propose a novel data driven approach to optimize the sensor
placement.

Influence modeling and maximization. This is another impor-
tant area emerging in recent years that is closely related to the work
in this paper. The goal of influence modeling and maximization is
to evaluate user importance in social networks. Motivated by the



design of viral marketing strategies, Domingos et al. [7] proposed
a method to select early starters to trigger a large cascade of further
adoptions. Then Kempe et al. [13] proposed Stochastic Cascade
Model to formalize this problem as a discrete optimization prob-
lem. Chen et al. [4] improved the algorithm in efficiency, and final-
ly derived a scalable solution. The approach was further extended
to multiple cascades [34] or choosing edges instead of users [32].
Gionis et al. [9] investigated the problem of opinion maximization
in social networks. Although on the problem side, influence maxi-
mization is similar to the problem we target in this paper on impor-
tant node selection, the stochastic cascade model they constructed
their algorithms on is based on ideal assumption and thus can only
be used in simulation, not real world cascade data. Recently, Cha
et al. [3] empirically analyzed the social influence in Twitter from
different angles such as network topology and user behaviors, and
drew the conclusion that topological measures alone reveal very lit-
tle about influence of a user. This finding is consistent with ours,
but our main task is to predict the cascading outbreaks, rather than
empirical analysis.

Information cascades and social networks. In recent years,
many methods have been proposed to analyze information cascades
in various domains, including traditional mails [2], blogs [22][11],
marketing [16], web news [17] and social media [35, 25, 21]. In
macroscopic level, some methods are proposed to find rules and
patterns of the information cascades in social networks. Rodrigues
et al. [29] analyzed the characteristics of the information cascades
in Twitter. Anagnostopoulos et al. [1] examine the role of authority
pressure on the observed information cascades. Yang et al. [35]
proposed a time series clustering method to find the information d-
iffusion patterns in Twitter. Matsubara et al. [21] built a unifying
model SPIKEM with seven parameters to explain all cascades. In
microscopic level, Menon et al. [23] investigated the cascading be-
haviors and predicted the response of a user when receiving a piece
of information. Besides, information cascades were exploited to in-
fer the diffusion process and the underlying network structure [10].
Most of these works focus on discovering the rules and patterns
of information cascades in social networks. In contrast, we focus
more on predictive modeling. Also, the outbreak phenomenon in
social networks are rarely investigated, and how to accurately pre-
dict these outbreaks in early stage is still an open problem.

3. METHODOLOGY
In this section we will present our OSLOR method for early pre-

diction of cascading outbreaks in detail. First we introduce some
symbols and notations that will be used throughout the paper.

3.1 Notations and Problem Statement
As stated in the introduction, the problem we focus on in this

paper is to predict in its early stage whether a information cascade
in a network will outbreak or not. To make the presentation more
understandable, we will use the Twitter scenario as the context
to introduce our method. In this case, an information cascade is
started from a user’s posting, and constructed by a series of user
forwarding behaviors.

Suppose there are a total of m information cascades and n partic-
ipating users, we use Xt ∈ Rm×n to denote the status matrix of those
information cascades at time t since they are started, such that Xt

i, j
is either 1 or 0 indicating whether or not user j has participated in
cascade i till timestamp t. Here we call the timestamp t as early
stage time in this paper. In this sense, column vector Xt

· j can be re-
garded as the behavior vector of the j-th user till time t, while row
vector Xt

i· is the condition of the i-th cascade till time t. If we use
X∞ to represent the final state of all cascades, then the i-th cascade

breaks out means the number of participating users in it exceeds a
certain threshold u � 0. Let y = (y1, y2, · · · , ym)T ∈ Rm×1 be the
vector of prediction targets that whether those cascades will break
out or not. Then we have :

yi =
1
2

⎧⎪⎪⎨⎪⎪⎩1 + sign

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

x∞i, j − u

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ (1)

where sign(·) is the sign function such that sign(a) is 1 if a is posi-
tive, and −1 if a is negative. u is the predefined outbreak threshold.

In this way, the problem of early prediction of cascading out-
break is to predict y at t with Xt where t is small. For instance, if
the timestamp unit is second, then we use X300 to predict whether
a cascade will break out or not in just 5 minutes after it has been
generated.

3.2 Problem Formulation
Till now we can see that the cascading outbreak prediction prob-

lem is transformed into a binary classification problem: based on
the current cascade status matrix Xt, predicting whether those cas-
cades will break out or not finally. We use logistic regression, a
powerful binary classification approach to achieve such goal [12,
20, 30]. The decision function for the i-th cascade at time t is :

h(Xt
i·) = sigmoid(θ0 + Xt

i·θ) =
1

1 + exp(−θ0 − Xt
i·θ)

(2)

where θ = (θ1, θ2, · · · , θm)� ∈ Rn×1 is classification weight vec-
tor. Here the value of θ j suggests the impact of the j-th user to
the outbreak of the cascades. A positive θj suggests the cascading
behavior of user j has positive correlation with cascading outbreak
(i.e., the participation of the j-th user in cascade i will more like-
ly to lead its outbreak), while a negative θ j indicates the behavior
of user j has negative impact to the cascade outbreaks, and a zero
θ j means that the behavior of user j has no impact on the cascade
outbreaks. In the following presentation, for the sake of notational
convenience, we (1) drop θ0 because we can always extend θ by
another dimension with including θ0 and Xt

i· with including one ad-
ditional 1; (2) drop superscript t on the status matrix because the
derived algorithm is independent of any specific timestamp.

In logistic regression, the objective is to maximize the following
equation with respect to θ:

L(θ) = h (Xi·)
yi · (1 − h (Xi·))

1−yi (3)

To increase numerical stability, we usually work on maximizing the
logarithm of L(θ) as:

log L(θ) = −
m∑

i=1

(log(1 + eXi·θ)) + y�Xθ (4)

In addition to the prediction accuracy, we also need to consider two
other aspects of the cascade outbreak prediction problem:

• The number of powerful users should be limited, i.e., for a
specific network structure, there are only a small number of
users whose behavior will impact the cascading outbreaks.
As shown in Figure 2, the distribution of the quantity of out-
break cascades that users participate obeys power-law.

• It is desired that the behaviors of the powerful users are com-
plementary, i.e., we want the behaviors of the powerful users
to have minimum redundancy, so that we can obtain the most
representative users as selected sensors.

Mathematically, the first item can be achieved by adding a L1
regularization on θ, the second item can be satisfied by adding an
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Figure 2: The distribution of the quantity of (outbreak) cas-
cades that users participate.

orthogonality regularization term on the users’ behavior vectors.
Combining everything together, we propose the Orthogonal Sparse
LOgistic Regression (OSLOR) method which aims to minimize the
following objective

F(θ) = T1(θ) + T2(θ) + T3(θ) (5)

T1(θ) = − log L(θ) (6)

T2(θ) =
β

4

∑
i, j

(θiX�·i X· jθ j)
2 (7)

T3(θ) = γ||θ||1 (8)

In the following section we will proposed an auxiliary function
method to minimize F(θ). Before we go into the details, one issue
we want to mention here is the scalability problem. In reality, the
number of users n is over 108, which makes the matrix Xt too large
to be handled efficiently. However, the distribution of the quantity
of cascades that users participate fits powerlaw, as shown in Figure
2. Many users only participate in one or two cascades. Thus we
filter out the users according to their participation frequency.

3.3 Optimization Algorithm
To minimize F(θ) in Eq.(5), we propose an auxiliary function

method in this section, which is similar as [19]. Specifically, let
g(θ) = T1(θ) + T2(θ), we can derive its derivative with respect to θ
is :

∇g(θ) = −y�X + HθX + βθ
� [

(θθ�) � (X�X) � (X�X)
]

(9)

where � denotes the Hadamard product and Hθ is calculated as
below :

Hθ =

[
1

1 + eX1·θ
,

1

1 + eX2·θ
, · · · , 1

1 + eXm·θ

]
(10)

Obviously, the derivative function of g(θ) is first order continuous
and differentiable, thus it is locally Lipschitz continuous [8]. Then
according to [26], for R ∈ R+ and ∀η satisfying ‖η − θ‖ < R, we
have the following inequality,

g(θ) ≤ g(η) + (θ − η)�∇g(η) +
R
2
‖θ − η‖2 (11)

where || · || is Frobenious Norm. Now we define the following aux-
iliary function

S (θ, η) = g(η) + (θ − η)T∇g(η) +
R
2
‖θ − η‖2 + T3(θ) (12)

Obviously S (·, ·) has the following three properties

• For F(θ) defined in Eq.(5), we have F(θ) = S (θ, θ)

• S (·, ·) is asymmetric, i.e. S (θ, η) � S (η, θ)

• According to Eq. (11), we have F(θ) = g(θ)+T3(θ) ≤ S (θ, η)
when ||η − θ|| < R

Based on S (·, ·), we can design the following iteration strategy to
minimize F(θ).

1. Set θ0 = 0, where 0 ∈ Rn×1 is an all-zero vector

2. Update θk+1 = argminθS (θ, θk) for k = 0, 1, 2, · · · .

The generated θk series have the following property :

F(θk+1) ≤ S (θk+1, θk) ≤ S (θk, θk) = F(θk) (13)

Therefore the objective function value F(θ) will be monotonically
decreasing with the those iteration rules. Now the only problem is
to minimize S (θ, θk) with respect to θ. To solve that, we have the
following lemma.

Lemma 1. The global optimum of minimizing the following ob-
jective with respect to u

J(u) =
1
2
||u − a||2 + μ||u||1 (14)

where u = [u1, u2, · · · , un]� and a = [a1, a2, · · · , an]� are n dimen-
sional vectors, is given by

ui =

{
0, if μ ≥ |ai|, (15a)

ai − sign(ai) · μ, if μ < |ai|. (15b)

Proof. According to the definition of 1-norm and Frobenious
norm, we have :

min {J(u)} = min

{
1
2
||u − a||2 + μ||u||1

}

= min

⎧⎪⎪⎨⎪⎪⎩
1
2

∑
i

(ui − ai)
2 + μ

∑
i

|ui|
⎫⎪⎪⎬⎪⎪⎭

= min

⎧⎪⎪⎨⎪⎪⎩
1
2

∑
i

[
(ui − ai)

2 + 2μ|ui|
]⎫⎪⎪⎬⎪⎪⎭

=
1
2

∑
i

min
{
(ui − ai)

2 + 2μ|ui|
}

Thus the minimization of J(u) could be achieved by minimizing
each formula independently. Denote fi(x) = (x − ai)2 + 2μ|x| for
i = 1, · · · , n. Then we have :

fi(x) =

⎧⎪⎪⎨⎪⎪⎩
(x − ai)2 + 2μx = (x − (ai − μ))2 − μ2 + 2μai, x ≥ 0
(x − ai)2 − 2μx = (x − (ai + μ))2 − μ2 − 2μai, x < 0

Since every fi(x) is a combination of two quadratic function, the
optimum value is obtained among three points : the junction point



or the two parabola’s peaks. Thus :

ui = argminx{ fi(x)}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 : ai − μ ≤ 0 and ai + μ ≥ 0
ai − μ : ai − μ > 0 and (ai + μ ≥ 0 or ai > 0)

ai + μ : ai + μ < 0 and (ai + μ ≤ 0 or ai < 0)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 : μ ≥ |ai|
ai − μ : ai > 0 and μ < ai

ai + μ : ai < 0 and μ < −ai

=

⎧⎪⎪⎨⎪⎪⎩
0 : μ ≥ |ai|
ai − ai

|ai |
μ : μ < |ai|

This proves the lemma.

Then for the renew step, we have :

θk+1 = argminθS (θ, θk)

= argminθ

⎧⎪⎪⎨⎪⎪⎩
1
2

∥∥∥∥∥∥θ −
(
θk − 1

R
∇g(θk)

)∥∥∥∥∥∥
2

+
γ

R

∥∥∥θk
∥∥∥

1

⎫⎪⎪⎬⎪⎪⎭ (16)

If we set a = θk − 1
R∇g(θk), μ = γ

R , and apply the lemma above,
we obtain a close form update formula for each entry of a new
coefficient :

θk+1
i =

(∣∣∣∣∣∣
[
θk − 1

R
∇g(θk)

]
i

∣∣∣∣∣∣ −
γ

R

)
+

· sign

([
θk − 1

R
∇g(θk)

]
i

)
(17)

where symbol (·)+ means the positive part of the number within
brackets.

The whole algorithm is summarized in Algorithm 1. By compar-

Algorithm 1 Orthogonal Sparse LOgistic Regression (OSLOR)
Require: Tradeoff parameters β > 0, γ > 0, Radius R > 0, Cas-

cade status matrix X, Cascade outbreak indicator vector y, Step
size c > 0

1: Calculate the inner product matrix X� · X
2: Initialize the coefficient θ0 ← 0
3: Calculate the current value of object function using Eq. (5)

F0 ← F(θ0)
4: Initialize the iteration variable k ← 0
5: repeat
6: Calculate gradient ∇g(θk) using Eq. (9) and Eq. (10)
7: Update θk+1 using Eq. (17)
8: Update the value of object function Fk+1 = F(θk+1)
9: if Fk ≤ Fk+1 then

10: R← R · c, continue;
11: else
12: k ← k + 1
13: end if
14: until converged
15: Output: The final coefficient θk

ing the absolute value of coefficients, we could choose the top k(i.e.
500) users and using the coefficients we’ve already calculated for
further predicting.

Complexity Analysis The first step of our algorithm takes O(mn2)
time to calculate the inner product. Though in reality the column
vector Xi is very sparse that the actual time expense here is O(δmn2)
where δ is the sparse rate. From Eq.(4), we can see the time com-
plexity for calculating the loss function is O(mn). From Eq.(7), the

time complexity is O(n2) when all the inner products have been al-
ready calculated. From Eq.(10), to calculate Hθ takes O(mn) time.
And Eq.(9) takes O(mn + mn + mn) = O(mn) time to calculate. At
last, it spends O(n) time to update θ from Eq.(16). In total, the time
complexity of our algorithm is O(δmn2 + k(mn + n2)) where k is
the number of iteration times. Due to our experimental result, k is
about 102, less than both n and m. Thus we have kmn < nmn = mn2

and kn2 < mn2. Briefly, the time complexity is O(mn2).

4. EXPERIMENTS
In this section we will present the empirical study results on ap-

plying OSLOR for cascade outbreak detection in a real world data
set.

4.1 Dataset Information
The dataset for experiments in this paper is collected from Tencent

Weibo1, one of the largest Twitter-style website in China with over
500 million users in total. We collected all the information cas-
cades2 (microblogs and the chain of users that participate in for-
warding these microblogs) with timestamps generated between March
10th and March 20th of year 2011, as well as the complete so-
cial network snapshot of all users in Tencent Weibo at March 20th,
2011. The propagation paths of all the collected microblogs are
explicitly known, which do not need to be inferred. In this dataset,
we have in total 182.7 million information cascades, and 116.3 mil-
lion participated users. To better understand the dataset, we show a
log-log distribution graph of cascade size in Figure 3, and list some
data details in Table 1.
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Figure 3: Distribution of cascade size (in blue and solid). The
red straight line is the linear fitting result to the blue curve,
showing the distribution fits power-law. The two green lines
indicate the threshold which discriminate outbreaks and non-
outbreaks. Those 2000 cascades in between are gap cascades
and not used in experiments.

Figure 3 shows that the size of information cascades fits power-
law, which means that only a tiny proportion of these information
cascades break out while the remains are non-outbreaks. Table 1
shows that among the 1.16 billion cascades, only about 420 thou-
sand cascades are larger than 5, and about 1000 cascades are larger

1http://t.qq.com/
2Note that the information cascades are tree-structure, i.e. if a user
participate the cascades several times, we only record the earliest
time.



Size Count Proportion User number
1200 1000 0.5/105 2.71 ∗ 106

500 3237 1.8/105 3.17 ∗ 106

100 14313 7.8/105 3.57 ∗ 106

50 26637 14.5/105 3.70 ∗ 106

5 420469 230/105 4.30 ∗ 106

Table 1: Some detailed statistics of the cascade size, count and
number of participated users. The number in the second col-
umn indicates the quantity of cascades which have a larger size
than the number in the first column. The third column repre-
sents the ratio of the second column over the total number of
cascades. The last column is the number of users that involved
in these cascades.

than 1200. Thus, this is a seriously unbalanced dataset for outbreak
prediction.

4.2 Experimental Settings
To avoid skewing the predictor towards the non-outbreak cas-

cades, we did some selection on the cascades for training OSLOR.
Specifically, we rank all the cascades according to cascade size with
decreasing order, and we select the top 1000 cascades as outbreaks,
the 3001st - 10000th cascades as non-outbreaks, and the 1001st -
3000th cascades as the gap between outbreaks and non-outbreaks.
After the filtering, the smallest size of outbreak cascades is 1200,
and the largest size of non-outbreak cascades is 543, as shown in
Figure 3. Although the setting of boundary between outbreaks and
non-outbreaks is not very precise, it has little effect on the evalua-
tion of the proposed method and the comparison with the baselines,
which is demonstrated in experiment results. Any more solid meth-
ods for outbreak thresholding can be straightforwardly applied in
our method. Among the 8000 cascades, we randomly select 80%
of them for training, and the remained 20% for testing. We conduc-
t random selection of training and testing data for 100 times, and
report the average results in the following.

Note that in our method, we emphasize the outbreak prediction
in early stage. We thus set t in Xt (in Section 3.1) to a short time
duration. In our experiments, we set t to 300 seconds, 1800 sec-
onds 3600 seconds and 5400 seconds to represent different levels
of early stage. Given a cascade, we only use the selected sensors
that participated this cascade before t since its generation to predict
the outbreak.

4.3 Baselines and Evaluation Metrics
In order to demonstrate the advantages and characteristics of the

proposed methods, we implemented the following four methods as
baselines:

• Rand: We randomly select users as sensors and apply logis-
tic regression on them for outbreak prediction.

• Indegree: This is a representative method of topological mea-
sure based methods. We implement it by ranking the users
according to their indegree in the underlying social network
with decreasing order, select the top k users as sensors, and
apply logistic regression on them for outbreak prediction.

• MRel (Maximum Relevance) [33]: We implement MRel
according to [33], and measuring the importance of users by
evaluating the mutual information between its behavior vec-
tor xi· and the final state vector y. After selecting the impor-
tant users, we apply logistic regression on them for outbreak
prediction.

• mRMR (maximum Relevance Minimum Redundancy)[27]:
We implement the algorithm according to [27], which max-
imize the relevance between selected users and the outbreak
label, while minimize the redundancy between each pair of
users. After selecting the important users, we apply logistic
regression on them for outbreak prediction.

As the outbreak prediction problem is transformed into binary
classification problem, we use Precision, Recall and F1 to evalu-
ate the prediction performances of the proposed methods and base-
lines. Using notations in Section 3, we give their definitions as
follow. H = (h1, h2, · · · , hm)� = (h(Xt

1·), h(Xt
2·), · · · , h(Xt

m·))
� is the

predict vector and y is the result vector. Use T to denote the set of
testing samples. Then

Precision =
∑

i∈T hi × yi∑
i∈T hi

(18)

Recall =
∑

i∈T hi × yi∑
i∈T yi

(19)

F1 =
2 × Precision × Recall

Precision + Recall
(20)

4.4 Prediction Accuracy
In this section, we will demonstrate the prediction performance

of OSLOR and other baselines with respect to outbreak prediction
accuracy.

With the different numbers of selected users (50, 100, 300 and
500), and different settings for early stage time (300, 1800, 3600
and 5400 seconds), we show the prediction performances of all the
five methods in Figure 4. From this figure, we have the following
observations.

(1) In terms of F1 measure, the proposed method OSLOR signif-
icantly and consistently outperform other baselines. The more sen-
sors selected, the larger improvement is made by OSLOR, which is
owing to the subtle node selection process and the joint optimiza-
tion of prediction accuracy and node selection.

(2) In most cases, MRel and mRMR can achieve better predic-
tion accuracy than indgree. Indgree is a representative topologi-
cal measure, which is widely used for node importance evaluation.
Here we carefully argue that for a specific task in network where
historical data is available, data driven approach can often outper-
form topological measure based methods.

(3) By observing the figures of precision and recall, we can see
that the indegree method can always get highest precision, while
our method can always get highest recall. That means the cascades
participated by nodes with high indegree will be more probable to
break out. On the other side, however, the outbreak cascades do not
necessarily involve the top ranked nodes with respect to indegree.
That is why the indegree method has poor performance in recall
aspect.

(4) The prediction accuracy increases with the early stage time
increasing. This is because increasing the early stage time can bring
in more information about the information cascades (i.e. more user-
s participated in the cascades), with which we can better predict
outbreaks. However, more information will bring more noise. In
OSLOR, these noise is suppressed by the Lasso term. That is why
the advantage of OSLOR become more obvious with the increasing
of early stage time.

We show in Figure 5 the prediction accuracy with different num-
ber of sensors for OSLOR and other three baselines (the curve for
mRMR is omitted as its curve is very similar with MRel). We can
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Figure 4: Prediction results of different methods with different early stage time.

see that the prediction accuracy increases with the number of sen-
sors increasing for all methods, which is consistent with the intu-
ition. The prediction accuracy increases fast when the number of
sensors increase from 0 to 50 for OSLOR, MRel and indegree. The
curve of MRel and indegree become stable around 100 sensors. But
the prediction accuracy of OSLOR continuously increase.

We show in Table 2 the standard deviation of F1 for all methods
with 500 sensors and different early stage time, which demonstrate
the proposed method OSLOR is quite stable. Also, we conduct T-
Test for OSLOR over all baseline methods, and demonstrate that
OSLOR significantly outperform other baselines with p − value <
0.05.

4.5 Prediction Leading Time
As we emphasize early prediction of cascading outbreaks, we

will demonstrate how much leading time we can obtain for the early
prediction. We show in Figure 6(a) the distribution of outbreak time
for all outbreak cascades since the generation. We can see that the
outbreak cascades in this dataset (whose setting is very similar with

Twitter) break out very fast. Almost 75% of them break out within
3 hours after the generation. This is in contrast with the cascading
outbreaks in other network environment, such as epidemic network
and water distribution network, where the outbreak time counted
in days. The fast outbreak make the prediction, especially in early
stage, more challenging.

Fortunately, the proposed method OSLOR can predict 72.85% of
these outbreaks with acceptable accuracy in five minutes, as shown
in Figure 6(b). There are only a few cascades that need over one
hour for OSLOR to give a high outbreak evidence. Figure 6(c)
shows the prediction leading time distribution. Although these cas-
cades break out fast, we can still accurately predict the outbreak
with at least one hour leading time for over 55% cascades. In fact,
the average leading time is 2.77 hours.

4.6 Effects of Orthogonality
In the design of OSLOR, we emphasize that the node selection

process should be parsimonious, and impose the orthogonal and s-
parse regularizers into the objective function. Here we show the



Early Stage Time OSLOR MRel mRMR indegree rand
300 0.590 ± 0.049 0.542 ± 0.046 0.565 ± 0.036 0.544 ± 0.048 0.422 ± 0.052

1800 0.608 ± 0.044 0.568 ± 0.043 0.579 ± 0.044 0.554 ± 0.048 0.493 ± 0.041
3600 0.639 ± 0.038 0.557 ± 0.046 0.564 ± 0.048 0.573 ± 0.047 0.529 ± 0.046
5400 0.658 ± 0.039 0.569 ± 0.044 0.571 ± 0.045 0.582 ± 0.046 0.555 ± 0.045

Table 2: F1 score with standard deviation with 500 sensors.
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Figure 6: (a)Distribution of time used for cascades to break out. (b) Distribution of time used for OSLOR to predict the outbreaks.
(c) Distribution of prediction leading time.
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Figure 5: Predicting results of different methods with different
number of sensors (from 10 to 500) and different early stage
time (300sec, 1800sec, 3600sec, 5400sec).

effect in Figure 7. We compare the performance of OSLOR which
combines the loss term with two regularizers, and the logistic re-
gression method (denoted as LR in the figure) without any regu-
larizers. We can see that the OSLOR significantly and consistent-
ly outperform logistic regression method under various settings on
sensor number and early stage time. In particular, for a certain
number of sensors, the nodes selected and optimized by OSLOR
are much more effective than those from logistic regression. One
main reason is that the orthogonal regularizer reduce the redun-
dancy of the selected nodes, which guarantee the diversity of these
nodes and maximize the effective information amount that can be
acquired from these nodes.

5. CONCLUSION
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Figure 7: Comparison of OSLOR and logistic regression.

In this paper, we focus on predicting cascading outbreaks in ear-
ly stage. We borrow the idea of placing sensors on important nodes
of networks from outbreak detection works, and attempt harness-
ing historical cascade data to discover the important nodes, whose
cascading behaviors are aggregated to predict outbreaks. Aiming at
this, we propose Orthogonal Sparse LOgistic Regression (OSLOR)
method to jointly optimize the outbreak prediction and node se-
lection. We demonstrate by extensive experiments that the pro-
posed method can significantly and consistently outperform other
data driven approaches (MRel and mRMR) and topological mea-
sure based approach (indegree). Although the experimental dataset
is collected from social network, the proposed approach can be s-
traightforwardly applied into other networks such as epidemic net-
works, traffic networks and water distribution networks, etc.. In
this paper, we have found out the important nodes that have strong
predictive power for outbreaks. How to figure out the common
characteristics of these nodes discovered by data driven approach
will be our future work.
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