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A Survey on Network Embedding
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Abstract—Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network
structure. Recently, a significant amount of progresses have been made toward this emerging network analysis paradigm. In this
survey, we focus on categorizing and then reviewing the current development on network embedding methods, and point out its future
research directions. We first summarize the motivation of network embedding. We discuss the classical graph embedding algorithms
and their relationship with network embedding. Afterwards and primarily, we provide a comprehensive overview of a large number of
network embedding methods in a systematic manner, covering the structure- and property-preserving network embedding methods,
the network embedding methods with side information and the advanced information preserving network embedding methods.
Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data sets
and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an
effective system and point out some potential future directions.

Index Terms—Network embedding, graph embedding, network analysis, data science.
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1 INTRODUCTION

M ANY complex systems take the form of networks, such
as social networks, biological networks, and information

networks. It is well recognized that network data is often sophisti-
cated and thus is challenging to deal with. To process network data
effectively, the first critical challenge is to find effective network
data representation, that is, how to represent networks concisely
so that advanced analytic tasks, such as pattern discovery, analysis
and prediction, can be conducted efficiently in both time and
space.

Traditionally, we usually represent a network as a graph
G = 〈V,E〉, where V is a vertex set representing the nodes in a
network, andE is an edge set representing the relationships among
the nodes. For large networks, such as those with billions of nodes,
the traditional network representation poses several challenges to
network processing and analysis.

• High computational complexity. The nodes in a network
are related to each other to a certain degree, encoded by
the edge set E in the traditional network representation.
These relationships cause most of the network processing
or analysis algorithms either iterative or combinatorial
computation steps, which result in high computational
complexity. For example, a popular way is to use the
shortest or average path length between two nodes to rep-
resent their distance. To compute such a distance using the
traditional network representation, we have to enumerate
many possible paths between two nodes, which is in na-
ture a combinatorial problem. As another example, many
studies assume that a node with links to important nodes
tends to be important, and vice versa. In order to evaluate
the importance of a node using the traditional network
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representation, we have to iteratively conduct a stochastic
node traversal process until reaching a convergence. Such
methods using the traditional network representation result
in high computational complexity that prevents them from
being applicable to large-scale real-world networks.

• Low parallelizability. Parallel and distributed computing
is de facto to process and analyze large-scale data. Net-
work data represented in the traditional way, however,
casts severe difficulties to design and implementation of
parallel and distributed algorithms. The bottleneck is that
nodes in a network are coupled to each other explic-
itly reflected by E. Thus, distributing different nodes
in different shards or servers often causes demandingly
high communication cost among servers, and holds back
speed-up ratio. Although some limited progress is made
on graph parallelization by subtly segmenting large-scale
graphs [1], the luck of these methods heavily depends on
the topological characteristics of the underlying graphs.

• Inapplicability of machine learning methods. Recently,
machine learning methods, especially deep learning, are
very powerful in many areas. These methods provide
standard, general and effective solutions to a broad range
of problems. For network data represented in the tradi-
tional way, however, most of the off-the-shelf machine
learning methods may not applicable. Those methods
usually assume that data samples can be represented by
independent vectors in a vector space, while the samples
in network data (i.e., the nodes) are dependant to each
other to some degree determined by E. Although we can
simply represent a node by its corresponding row vector
in the adjacency matrix of the network, the extremely high
dimensionality of such a representation in a large graph
with many nodes makes the in sequel network processing
and analysis difficult.

The traditional network representation has become a bottle-
neck in large-scale network processing and analysis nowadays.
Representing the relationships explicitly using a set of edges in
the traditional representation is the upmost barrier.
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To tackle the challenge, substantial effort has been com-
mitted to develop novel network embedding, i.e., learning low-
dimensional vector representations for network nodes. In the
network embedding space, the relationships among the nodes,
which were originally represented by edges or other high-order
topological measures in graphs, is captured by the distances be-
tween nodes in the vector space, and the topological and structural
characteristics of a node are encoded into its embedding vector.
An example is shown in Fig. 1. After embedding the karate club
network into a two-dimensional space, the similar nodes marked
by the same color are close to each other in the embedding space,
demonstrating that the network structure can be well modeled in
the two-dimensional embedding space.

Network embedding, as a promising way of network repre-
sentation, is capable of supporting subsequent network processing
and analysis tasks such as node classification [2], [3], node cluster-
ing [4], network visualization [5], [6] and link prediction [7], [8].
If this goal is fulfilled, the advantages of network embedding over
traditional network representation methods are apparent, as shown
in Fig. 2. The traditional topology based network representation
usually directly uses the observed adjacency matrix, which may
contain noise or redundant information. The embedding based
representation first aims to learn the dense and continuous repre-
sentations of nodes in a low dimensional space, so that the noise or
redundant information can be reduced and the intrinsic structure
information can be preserved. As each node is represented by
a vector containing its information of interest, many iterative or
combinatorial problems in network analysis can be tackled by
computing mapping functions, distance metrics or operations on
the embedding vectors, and thus avoid high complexity. As the
nodes are not coupling any more, it is convenient to apply main-
stream parallel computing solutions for large-scale network anal-
ysis. Furthermore, network embedding can open the opportunities
for network analysis to be benefited from the rich literature of
machine learning. Many off-the-shelf machine learning methods
such as deep learning models can be directly applied to solve
network problems.

In order to make the embedding space well support network
analysis tasks, there are two goals for network embedding. First,
the original network can be reconstructed from the learned em-
bedding space. It requires that, if there is an edge or relationship
between two nodes, then the distance of these two nodes in the
embedding space should be relatively small. In this way, the
network relationships can be well preserved. Second, the learned
embedding space can effectively support network inference, such
as predicting unseen links, identifying important nodes, and in-
ferring node labels. It should be noted that an embedding space
with only the goal of network reconstruction is not sufficient
for network inference. Taking the link prediction problem as an
example, if we only consider the goal of network reconstruction,
the embedding vectors learned by SVD tend to fit all the observed
links and zero values in the adjacency matrix, which may lead to
overfitting and cannot infer unseen links.

In this paper, we survey the state-of-the-art works on network
embedding and point out future research directions. In Section 2,
we first categorize network embedding methods according to the
types of information preserved in embedding, and summarize the
commonly used models. We briefly review the traditional graph
embedding methods and discuss the difference of these methods
with the recent network embedding methods in Section 3. Then,
in Sections 4, 5 and 6, we respectively review the methods on
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Fig. 1: An example of network embedding on a karate network.
Images are extracted from DeepWalk [3].

structure and property preserving network embedding, network
embedding with side information, as well as advanced information
preserving network embedding. In Section 7, we present a few
evaluation scenarios and some online resources, including the data
sets and codes, for network embedding. We conclude and discuss
a series of possible future directions in Section 8.

2 CATEGORIZATION AND THE MODELS

To support network inference, more information beyond nodes
and links needs to be preserved in embedding space. Most re-
search works on network embedding develop along this line in
recent years. There are multiple ways to categorize them. In this
paper, according to the types of information that are preserved in
network embedding, we categorize the existing methods into three
categories, that is, (1) network structure and properties preserving
network embedding, (2) network embedding with side information
and (3) advanced information preserving network embedding.

2.1 The Categorization of Network Embedding Meth-
ods
As mentioned before, network embedding usually has two goals,
i.e., network reconstruction and network inference. The traditional
graph embedding methods, mainly focusing on network recon-
struction, has been widely studied. We will briefly review those
methods in Section 3. Fu and Ma [9] present a more detailed
survey. In this paper, we focus on the recently proposed network
embedding methods aiming to address the goal of network infer-
ence. The categorization structure of the related works is shown in
Fig. 3.

2.1.1 Structure and property preserving network embed-
ding
Among all the information encoded in a network, network struc-
tures and properties are two crucial factors that largely affect
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Fig. 2: A comparison between network topology based network analysis and network embedding based network analysis.

Fig. 3: An overview of different settings of network embedding.

network inference. Consider a network with only topology infor-
mation. Many network analysis tasks, such as identifying impor-
tant nodes and predicting unseen links, can be conducted in the
original network space. However, as mentioned before, directly
conducting these tasks based on network topology has a series of
problems, and thus poses a question that whether we can learn a
network embedding space purely based on the network topology
information, such that these tasks can be well supported in this low
dimensional space. Motivated by this, attempts are proposed to
preserve rich structural information into network embedding, from
nodes and links [10] to neighborhood structure [3], high-order
proximities of nodes [6], and community structures [4]. All these
types of structural information have been demonstrated useful
and necessary in various network analysis tasks. Besides this
structural information, network properties in the original network
space are not ignorable in modeling the formation and evolution
of networks. To name a few, network transitivity (i.e. triangle
closure) is the driving force of link formation in networks [11],
and structural balance property plays an important role in the
evolution of signed networks [12]. Preserving these properties
in a network embedding space is, however, challenging due to
the inhomogeneity between the network space and the embedding
vector space. Some recent studies begin to look into this problem

and demonstrate the possibility of aligning these two spaces at the
property level [8], [13].

2.1.2 Network Embedding with Side Information
Besides network topology, some types of networks are accom-
panied with rich side information, such as node content or
labels in information networks [14], node and edge attributes
in social networks [15], as well as node types in heteroge-
neous networks [16]. Side information provides useful clues for
characterizing relationships among network nodes, and thus is
helpful in learning embedding vector spaces. In the cases where
the network topology is relatively sparse, the importance of the
side information as complementary information sources is even
more substantial. Methodologically, the main challenge is how
to integrate and balance the topological and side information in
network embedding. Some multimodal and multisource fusion
techniques are explored in this line of research [15], [17].

2.1.3 Advanced Information Preserving Network Embed-
ding
In the previous two categories, most methods learn network
embedding in an unsupervised manner. That is, we only take the
network structure, properties, and side information into account,
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and try to learn an embedding space to preserve the information.
In this way, the learned embedding space is general and, hopefully,
able to support various network applications. If we regard network
embedding as a way of network representation learning, the
formation of the representation space can be further optimized
and confined towards different target problems. Realizing this
idea leads to supervised or pseudo supervised information (i.e.
the advanced information) in the target scenarios. Directly de-
signing a framework of representation learning for a particular
target scenario is also known as an end-to-end solution [18],
where high-quality supervised information is exploited to learn
the latent representation space from scratch. End-to-end solutions
have demonstrated their advantages in some fields, such as com-
puter vision [19] and natural language processing (NLP) [20].
Similar ideas are also feasible for network applications. Taking
the network node classification problem as an example, if we have
the labels of some network nodes, we can design a solution with
network structure as input, node labels as supervised information,
and embedding representation as latent middle layer, and the
resulted network embedding is specific for node classification.
Some recent works demonstrate the feasibility in applications such
as cascading prediction [18], anomaly detection [21], network
alignment [22] and collaboration prediction [23].

In general, network structures and properties are the funda-
mental factors that need to be considered in network embedding.
Meanwhile, side information on nodes and links, as well as
advanced information from target problem is helpful to enable
the learned network embedding work well in real applications.

2.2 Commonly Used Models in Network Embedding
To transform networks from original network space to embedding
space, different models can be adopted to incorporate different
types of information or address different goals. The commonly
used models include matrix factorization, random walk, deep
neural networks and their variations.

2.2.1 Matrix Factorization
An adjacency matrix is commonly used to represent the topology
of a network, where each column and each row represent a node,
and the matrix entries indicate the relationships among nodes.
We can simply use a row vector or column vector as the vector
representation of a node, but the formed representation space is
N -dimensional, where N is the total number of nodes. Network
embedding, aiming to learn a low-dimensional vector space for
a network, is eventually to find a low-rank space to represent a
network, in contrast with the N -dimensional space. In this sense,
matrix factorization methods, with the same goal of learning low-
rank space for the original matrix, can naturally be applied to solve
this problem. In the series of matrix factorization models, Singu-
lar Value Decomposition (SVD) is commonly used in network
embedding due to its optimality for low-rank approximation [8].
Non-negative matrix factorization is often used because of its
advantages as an additive model [4].

2.2.2 Random Walk
As mentioned before, preserving network structure is a fundamen-
tal requirement for network embedding. Neighborhood structure,
describing the local structural characteristics of a node, is impor-
tant for network embedding. Although the adjacency vector of a
node encodes the first-order neighborhood structure of a node, it is

usually a sparse, discrete, and high-dimensional vector due to the
nature of sparseness in large-scale networks. Such a representation
is not friendly to subsequent applications. In the field of natural
language processing (NLP), the word representation also suffers
from similar drawbacks. The development of Word2Vector [24]
significantly improves the effectiveness of word representation by
transforming sparse, discrete and high-dimensional vectors into
dense, continuous and low-dimensional vectors. The intuition of
Word2Vector is that a word vector should be able to reconstruct
the vectors of its neighborhood words which are defined by co-
occurence rate. Some methods in network embedding borrow
these ideas. The key problem is how to define “neighborhood”
in networks.

To make analogy with Word2Vector, random walk models are
exploited to generate random paths over a network. By regarding
a node as a word, we can regard a random path as a sentence, and
the node neighborhood can be identified by co-occurence rate as in
Word2Vector. Some representative methods include DeepWalk [3]
and Node2Vec [25].

2.2.3 Deep Neural Networks

By definition, network embedding is to transform the original
network space into a low-dimensional vector space. The intrinsic
problem is to learn a mapping function between these two spaces.
Some methods, like matrix factorization, assume the mapping
function to be linear. However, the formation process of a network
is complicated and highly nonlinear, thus a linear function may not
be adequate to map the original network to an embedding space.

If seeking for an effective non-linear function learning model,
deep neural networks are certainly useful options because of their
huge successes in other fields. The key challenges are how to make
deep models fit network data, and how to impose network structure
and property-level constraints on deep models. Some represen-
tative methods, such as SDNE [6], SDAE [26], and SiNE [13],
propose deep learning models for network embedding to address
these challenges. At the same time, deep neural networks are
also well known for their advantages in providing end-to-end
solutions. Therefore, in the problems where advanced information
is available, it is natural to exploit deep models to come up with
an end-to-end network embedding solution. For instance, some
deep model based end-to-end solutions are proposed for cascade
prediction [18] and network alignment [22].

The network embedding models are not limited to those
mentioned in this subsection. Moreover, the three kinds of models
are not mutually exclusive, and their combinations are possible to
make new solutions. More models and details will be discussed in
later sections.

3 NETWORK EMBEDDING V.S. GRAPH EMBED-
DING

The goal of graph embedding is similar as network embedding,
that is, to embed a graph into a low-dimensional vector space [27].
There is a rich literature in graph embedding. Fu and Ma [9]
provide a thorough review on the traditional graph embedding
methods. Here we only present some representative and classical
methods on graph embedding, aiming to demonstrate the critical
differences between graph embedding and the current network
embedding.
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3.1 Representative Graph Embedding Methods

Graph embedding methods are originally studied as dimension
reduction techniques. A graph is usually constructed from a
feature represented data set, like image data set. Isomap [28] first
constructs a neighborhood graph G using connectivity algorithms
such as K nearest neighbors (KNN), i.e., connecting data entries i
and j if i is one of the K nearest neighbors of j. Then based
on G, the shortest path dGij of entries i and j in G can be
computed. Consequently, for all the N data entries in the data
set, we have the matrix of graph distances DG = {dGij}. Finally,
the classical multidimensional scaling (MDS) method is applied
to DG to obtain the coordinate vector ui for entry i, which aims
to minimize the following function:

N∑
i=1

N∑
j=1

(dGij − ‖ui − uj‖)2. (1)

Indeed, Isomap learns the representation ui of entry i, which
approximately preserves the geodesic distances of the entry pairs
in the low-dimensional space.

The key problem of Isomap is its high complexity due to the
computing of pair-wise shortest pathes. Locally linear embedding
(LLE) [29] is proposed to eliminate the need to estimate the
pairwise distances between widely separated entries. LLE assumes
that each entry and its neighbors lie on or close to a locally linear
patch of a mainfold. To characterize the local geometry, each entry
can be reconstructed from its neighbors as follows:

min
W

∑
i

‖xi −
∑
j

Wijxj‖2, (2)

where the weight Wij measures the contribution of the entry xj
to the reconstruction of entry xi. Finally, in the low-dimensional
space, LLE constructs a neighborhood-preserving mapping based
on locally linear reconstruction as follows:

min
U

∑
i

‖ui −
∑
j

Wijuj‖2. (3)

By optimizing the above function, the low-dimensional represen-
tation matrix U, which preserves the neighborhood structure, can
be obtained.

Laplacian eigenmaps (LE) [30] also begins with constructing
a graph using ε-neighborhoods or K nearest neighbors. Then the
heat kernel [31] is utilized to choose the weight Wij of nodes i
and j in the graph. Finally, the representation ui of node i can be
obtained by minimizing the following function:∑

i,j

‖ui − uj‖2Wij = tr(UTLU), (4)

where L = D −W is the Laplacian matrix, and D is the
diagonal matrix with Dii =

∑
jWji. In addition, the constraint

UTDU = I is introduced to avoid trivial solutions. Furthermore,
the locality preserving projection (LPP) [32], a linear approxi-
mation of the nonlinear LE, is proposed. Also, it introduces a
transformation matrix A such that the representation ui of entry
xi is ui = ATxi. LPP computes the transformation matrix A
first, and finally the representation ui can be obtained.

These methods are extended in the rich literature of graph em-
bedding by considering different characteristics of the constructed
graphs [9].

3.2 Major Differences
Network embedding and graph embedding have substantial differ-
ences in objective and assumptions. As mentioned before, network
embedding has two goals, i.e. reconstructing original networks and
support network inference. The objective functions of graph em-
bedding methods mainly target the goal of graph reconstruction.
As discussed before, the embedding space learned for network
reconstruction is not necessarily good for network inference.
Therefore, graph embedding can be regarded as a special case of
network embedding, and the recent research progress on network
embedding pays more attention to network inference.

Moreover, graph embedding mostly works on graphs con-
structed from feature represented data sets, where the proximity
among nodes encoded by the edge weights are well defined in
the original feature space. In contrast, network embedding mostly
works on naturally formed networks, such as social networks,
biology networks, and e-commerce networks. In those networks,
the proximities among nodes are not explicitly or directly defined.
The definition of node proximities depends on specific analytic
tasks and application scenarios. Therefore, we have to incorporate
rich information, such as network structures, properties, side
information and advanced information, in network embedding to
facilitate different problems and applications.

In the rest of the paper, we mainly focus on the network em-
bedding methods with the goal of supporting network inference.

4 STRUCTURE AND PROPERTY PRESERVING NET-
WORK EMBEDDING

In essence, one basic requirement of network embedding is to
appropriately preserve network structures and capture properties
of networks. Often, network structures include first-order structure
and higher-order structure, such as second-order structure and
community structure. Networks with different types have different
properties. For example, directed networks have the asymmetric
transitivity property. The structural balance theory is widely appli-
cable to signed networks.

In this section, we review the representative methods of
structure preserving network embedding and property preserving
network embedding.

4.1 Structure Preserving Network Embedding
Network structures can be categorized into different groups that
present at different granularities. The commonly exploited net-
work structures in network embedding include neighborhood
structure, high-order node proximity and network communities.

DeepWalk [3] is proposed for learning the representations of
nodes in a network, which is able to preserve the neighbor struc-
tures of nodes. DeepWalk discovers that the distribution of nodes
appearing in short random walks is similar to the distribution of
words in natural language. Motivated by this observation, Skip-
Gram model [24], a widely used word representation learning
model, is adopted by DeepWalk to learn the representations
of nodes. Specifically, as shown in Fig. 4, DeepWalk adopts
a truncated random walk on a network to generate a set of
walk sequences. For each walk sequence s = {v1, v2, ..., vs},
following Skip-Gram, DeepWalk aims to maximize the probability
of the neighbors of node vi in this walk sequence as follows:

max
φ

Pr({vi−w, ..., vi+w}\vi|φ(vi)) = Πi+w
j=i−w,j 6=iPr(vj |φ(vi)),

(5)
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Fig. 4: Overview of DeepWalk. Image extracted from [3].

where w is the window size, φ(vi) is the current representation
of vi and {vi−w, ..., vi+w}\vi is the local context nodes of vi.
Finally, hierarchical soft-max [33] is used to efficiently infer the
embeddings.

Node2vec [25] demonstrates that DeepWalk is not expressive
enough to capture the diversity of connectivity patterns in a
network. Node2vec defines a flexible notion of a node’s network
neighborhood and designs a second order random walk strategy to
sample the neighborhood nodes, which can smoothly interpolate
between breadth-first sampling (BFS) and depth-first sampling
(DFS). Node2vec is able to learn the representations that em-
bed nodes with same network community closely, and to learn
representations where nodes sharing similar roles have similar
embeddings.

LINE [10] is proposed for large scale network embedding,
and can preserve the first and second order proximities. The first
order proximity is the observed pairwise proximity between two
nodes, such as the observed edge between nodes 6 and 7 in
Fig. 5. The second order proximity is determined by the similarity
of the “contexts” (neighbors) of two nodes. For example, the
second order similarity between nodes 5 and 6 can be obtained
by their neighborhoods 1, 2, 3, and 4 in Fig. 5. Both the first
order and second order proximities are important in measuring the
relationships between two nodes. The first order proximity can be
measured by the joint probability distribution between two nodes
vi and vj as

p1(vi, vj) =
1

1 + exp(−uTi uj)
. (6)

The second order proximity is modeled by the probability of the
context node vj being generated by node vi, that is,

p2(vj |vi) =
exp(ūTj ūi)∑
k exp(ū

T
k ūi))

. (7)

The conditional distribution implies that nodes with similar distri-
butions over the contexts are similar to each other. By minimizing
the KL-divergence of the two distributions and the empirical
distributions respectively, the representations of nodes that are able
to preserve the first and second order proximities can be obtained.

Considering that LINE only preserves the first-order and
second-order proximities, GraRep [34] demonstrates that k-step
(k > 2) proximities should also be captured when constructing
the global representations of nodes. Given the adjacency matrix
A, the k-step probability transition matrix can be computed
by Ak = A...A︸ ︷︷ ︸

k

, whose element Akij refers to the transition

Fig. 5: An example of the first-order and second-order structures
in a network. Image extracted from [10].

probability pk(j|i) from a current node i to a context node j
and the transition consists of k steps. Moreover, motivated by
the Skip-Gram model [24], the k-step loss function of node i is
defined as

Lk(i) = (
∑
j

pk(j|i) log σ(uTj ui))+λEj′∼pk(V )[log σ(−uTi uj′)],

(8)
where σ(x) = (1 + e−x)−1, pk(V ) is the distribution over the
nodes in the network and j′ is the node obtained from negative
sampling. Furthermore, GraRep reformulates the loss function as
the matrix factorization problem, for each k-step loss function,
SVD can be directly used to infer the representations of nodes. By
concentrating the representations learned from each function, the
global representations can be obtained.

Wang et al. [4] propose a modularized nonnegative matrix
factorization (M-NMF) model for network embedding, which
aims to preserve both the microscopic structure, i.e., the first-order
and second-order proximities of nodes, and the mesoscopic com-
munity structure [35]. To preserve the microscopic structure, they
adopt the NMF model [36] to factorize the pairwise node similar-
ity matrix and learn the representations of nodes. Meanwhile, the
community structure is detected by modularity maximization [37].
Then, based on the assumption that if the representation of a node
is similar to that of a community, the node may have a high
propensity to be in this community, they introduce an auxiliary
community representation matrix to bridge the representations
of nodes with the community structure. In this way, the learned
representations of nodes are constrained by both the microscopic
structure and community structure, which contains more structural
information and becomes more discriminative.
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Fig. 6: The framework of SDNE. Image extracted from [6].

The aforementioned methods mainly adopt the shallow mod-
els, consequently, the representation ability is limited. SDNE [6]
proposes a deep model for network embedding, so as to address
the high non-linearity, structure-preserving, and sparsity issues.
The framework is shown in Fig. 6. Specifically, SDNE uses the
deep autoencoder with multiple non-linear layers to preserve the
neighbor structures of nodes. Given the input adjacency nodes xi
of node i, the hidden representations for each layer can be obtained
by

y
(1)
i = σ(W(1)xi + b(1))

y
(k)
i = σ(W(k)y

(k−1)
i + b(k)), k = 2, ...,K.

(9)

Then the output representation x̂i can be obtained by reversing
the calculation process of encoder. To impose more penalty to
the reconstruction error of the non-zero elements than that of zero
elements, SDNE introduces the penalty vector bi = {bij}nj=1 (bij
is larger than a threshold if there is an edge between nodes i and
j) and gives rise to the following function that can preserve the
second-order proximity

L2nd =
∑
i

‖(x̂i − xi)� bi‖2. (10)

To preserve the first-order proximity of nodes, the idea of Lapla-
cian eigenmaps [30] is adopted. By exploiting the first-order and
second-order proximities jointly into the learning process, the
representations of nodes can be finally obtained.

Cao et al. [26] propose a network embedding method to
capture the weighted graph structure and represent nodes of non-
linear structures. As shown in Fig. 7, instead of adopting the
previous sampling strategy that needs to determine certain hyper
parameters, they considers a random surfing model motivated
by the PageRank model. Based on this random surfing model,
the representation of a node can be initiatively constructed by
combining the weighted transition probability matrix. After that,
the PPMI matrix [38] can be computed. Finally, the stacked
denoising autoencoders [39] that partially corrupt the input data
before taking the training step are applied to learn the latent
representations.

In order to make a general framework on network embedding,
Chen et al. [40] propose a network embedding framework that
unifies some of the previous algorithms, such as LE, DeepWalk
and Node2vec. The proposed framework, denoted by GEM-
D[h(·), g(·), d(·, ·)], involves three important building blocks:
h(·) is a node proximity function based on the adjacency matrix;
g(·) is a warping function that warps the inner products of network

embeddings; and d(·, ·) measures the differences between h and
g. Furthermore, they demonstrate that the high-order proximity for
h(·) and the exponential function for g(·) are more important for a
network embedding algorithm. Based on these observations, they
propose UltimateWalk=GEM-D[

∏(L), exp(x), dwf (·, ·)], where∏(L) is a finite-step transition matrix, exp(x) is an exponential
function and dwf (·, ·) is the warped Frobenius norm.

The main goal of the aforementioned methods is to learn the
embedding for nodes, currently there are some methods proposed
to learn the whole-graph embedding. For example, in [41], they
define some connected and non-isomorphic induced sub-graphs
and different networks consist of these sub-graphs. Then language
modeling method, such as SkipGram, can be applied to the edit-
distance graph of these sub-graphs. Therefore, the representations
of these sub-graphs can be learned and the similarities of different
networks can be captured. PATCHY-SAN [42] is proposed to
learn the embedding for a whole graph based on convolutional
neural network (CNN) [43], so as to deal with the whole graph
related tasks. In order to make the traditional CNN compatible
with the network data, they elaborately design several network
data preprocessing steps, such as node sequence selection and
graph normalization. In this way, the network topology can be
transformed to the formation for CNN.

In summary, many network embedding methods aim to pre-
serve the local structure of a node, including neighborhood struc-
ture, high-order proximity as well as community structure, in the
latent low-dimensional space. Both linear and non-linear models
are attempted, demonstrating the large potential of deep models in
network embedding.

4.2 Property Preserving Network Embedding
Among the rich network properties, the properties that are crucial
for network inference are the focus in property preserving network
embedding. Specifically, most of the existing property preserving
network embedding methods focus on network transitivity in all
types of networks and the structural balance property in signed
networks.

Ou et al. [44] aim to preserve the non-transitivity property
via latent similarity components. The non-transitivity property
declares that, for nodes A, B and C in a network where (A,B)
and (B,C) are similar pairs, (A,C) may be a dissimilar pair.
For example, in a social network, a student may connect with
his classmates and his family, while his classmates and family
are probably very different. To address this, they use a set of
linear projection matrices to extract M hash tables, and thus,
each pair of nodes can have M similarities {Smij }Mm=1 based on
those hash tables. Then the final similarity between two nodes
can be aggregated from {Smij }Mm=1. Finally they approximate
the aggregated similarity to the semantic similarity based on the
observation that if two nodes have a large semantic similarity,
at least one of the similarities Smij from the hash tables is large,
otherwise, all of the similarities are small.

Preserving the asymmetric transitivity property of directed
network is considered by HOPE [8]. Asymmetric transitivity
indicates that, if there is a directed edge from node i to node j and
a directed edge from j to v, there is likely a directed edge from
i to v, but not from v to i. In order to measure this high-order
proximity, HOPE summarizes four measurements in a general
formulation, that is, Katz Index [45], Rooted PageRank [7],
Common Neighbors [7], and Adamic-Adar [46]. With the high-
order proximity, SVD can be directly applied to obtain the low
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Fig. 7: Overview of the method proposed by Cao et al. [26]. Image extracted from [26].

Fig. 8: The framework of SiNE. Image extracted from [13].

dimensional representations. Furthermore, the general formulation
of high-order proximity enables HOPE to transform the original
SVD problem into a generalized SVD problem [47], such that the
time complexity of HOPE is largely reduced, which means HOPE
is scalable for large scale networks.

SiNE [13] is proposed for signed network embedding, which
considers both positive and negative edges in a network. Due to
the negative edges, the social theories on signed network, such
as structural balance theory [12], [48], are very different from
the unsigned network. The structural balance theory demonstrates
that users in a signed social network should be able to have their
“friends” closer than their “foes”. In other words, given a triplet
(vi, vj , vk) with edges eij = 1 and eik = −1, the similarity
f(vi, vj) between nodes vi and vj is larger than f(vi, vk).
To model the structural balance phenomenon, a deep learning
model consisting of two deep networks with non-linear functions
is designed to learn the embeddings and preserve the network
structure property, which is consistent with the extended structural
balance theory. The framework is shown in Fig. 8.

The methods reviewed in this subsection demonstrate the im-
portance of maintaining network properties in network embedding
space, especially the properties that largely affect the evolution and
formation of networks. The key challenge in is how to address the
disparity and heterogeneity of the original network space and the
embedding vector space at property level.

4.3 Summary
Generally, most of the structure and property preserving meth-
ods take high order proximities of nodes into account, which
demonstrate the importance of preserving high order structures
in network embedding. The difference is the strategy of obtaining
the high order structures. Some methods implicitly preserve high-
order structure by assuming a generative mechanism from a
node to its neighbors, while some other methods realize this by

explicitly approximating high-order proximities in the embedding
space. As topology structures are the most notable characteristic of
networks, structure-preserving network methods embody a large
part of the literature. Comparatively, property preserving network
embedding is a relatively new research topic and is only studied
lightly. As network properties usually drive the formation and
evolution of networks, it shows great potential for future research
and applications.

5 NETWORK EMBEDDING WITH SIDE INFORMA-
TION

Besides network structures, side information is another important
information source for network embedding. Side information
in the context of network embedding can be divided into two
categories: node content and types of nodes and edges. In this
section, we review the methods that take side information into
network embedding.

5.1 Network Embedding with Node Content
In some types of networks, like information networks, nodes are
acompanied with rich information, such as node labels, attributes
or even semantic descriptions. How to combine them with the
network topology in network embedding arouses considerable
research interests.

Tu et al. [14] propose a semi-supervised network embedding
algorithm, MMDW, by leveraging labeling information of nodes.
MMDW is also based on the DeepWalk-derived matrix factoriza-
tion. MMDW adopts support vector machines (SVM) [49] and
incorporates the label information to find an optimal classifying
boundary. By optimizing the max-margin classifier of SVM and
matrix factorization based DeepWalk simultaneously, the repre-
sentations of nodes that have more discriminative ability can be
learned.

Le et al. [50] propose a generative model for document
network embedding, where the words associated with each docu-
ments and the relationships between documents are both consid-
ered. For each node, they learn its low-rank representation ui in a
low dimensional vector space, which can reconstruct the network
structure. Also, they learn the representation of nodes in the topic
space based on the Relational Topic Model (RTM) [51], where
each topic z is associated with a probability distribution over
words. To integrate the two aspects, they associate each topic z
with a representation ϕz in the same low dimensional vector space
and then have the following function:

P (z|vi) =
exp(− 1

2‖ui − ϕz‖
2)∑

z exp(− 1
2‖ui − ϕz‖2)

. (11)
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Fig. 9: The augmented network proposed by Sun et al. [52]. Image
extracted from [52].

Finally, in a unified generative process, the representations of
nodes U can be learned.

Besides network structures, Yang et al. [15] propose TADW
that takes the rich information (e.g., text) associated with nodes
into account when they learn the low dimensional representations
of nodes. They first prove that DeepWalk is equivalent to factor-
izing the matrix M whose element Mij = log([ei(A + A2 +
... + At)]j/t), where A is the adjacency matrix, t denotes the t
steps in a random walk and ei is a row vector where all entries
are 0 except the i-th entry is 1. Then, based on the DeepWalk-
derived matrix factorization and motivated by the inductive matrix
completion [17], they incorporate rich text information T into
network embedding as follows:

min
W,H

‖M−WTHT‖2F +
λ

2
(‖W‖2F + ‖H‖2F ). (12)

Finally, they concatenate the optimal W and HT as the represen-
tations of nodes.

TADW suffers from high computational cost and the node
attributes just simply incorporated as unordered features lose the
much semantic information. Sun et al. [52] consider the content
as a special kind of nodes, and give rise to an augmented network,
as shown in Fig. 9. With this augmented network, they are able
to model the node-node links and node-content links in the latent
vector space. They use a logistic function to model the relationship
in the new augmented network, and by combining with negative
sampling, they can learn the representations of nodes in a joint
objective function, such that the representations can preserve the
network structure as well as the relationship between the node and
content.

Pan et al. [53] propose a coupled deep model that incorporates
network structure, node attributes and node labels into network
embedding. The architecture of the proposed model is shown in
Fig. 10. Consider a network with N nodes {vi}i=1,...,N , where
each node is associated with a set of words {wi}, and some nodes
may have |L| labels {ci}. To exploit this information, they aim to
maximize the following function:

L =(1− α)
N∑
i=1

∑
s∈S

∑
−b≤j≤b,j 6=0

logP (vi+j |vi)

α
N∑
i=1

∑
−b≤j≤b

logP (wj |vi) + α

|L|∑
i=1

∑
−b≤j≤b

logP (wj |ci),

(13)

where S is the random walks generated in the network and b
is the window size of sequence. Specifically, function P , which
captures the probability of observing contextual nodes (or words)

Inter-Node Relationship Modeling

Fig. 10: The framework of TriDNR [53]. Image extracted
from [53].

given the current node (or label), can be computed using the soft-
max function. In Eq. 13, the first term is also motivated by Skip-
Gram, similar to DeepWalk, which models the network structure.
The second term models the node-content correlations and the
third term models the label-node correspondences. As a result, the
learned representations is enhanced by network structure, node
content, and node labels.

LANE [54] is also proposed to incorporate the label informa-
tion into the attributed network embedding. Unlike the previous
network embedding methods, LANE is mainly based on spectral
techniques [55]. LANE adopts the cosine similarity to construct
the corresponding affinity matrices of the node attributes, network
structure, and labels. Then, based on the corresponding Laplacian
matrices, LANE is able to map the three different sources into
different latent representations, respectively. In order to build the
relationship among those three representations, LANE projects
all these latent representations into a new common space by
leveraging the variance of the projected matrix as the correlation
metric. The learned representations of nodes are able to capture
the structure proximities as well as the correlations in the label
informed attributed network.

Huang et al. [56] pay more attentions on the scalability
of attributed network embedding. The proposed method, named
AANE, is based on the decomposition of attribute affinity matrix
and the penalty of embedding difference between linked nodes.
AANE provides a distributed optimization algorithm to process
each node efficiently.

Wei et al. [57] study the problem of cross view link prediction
(CVLP) based on attributed network embedding, i.e., to recom-
mend nodes with only links to nodes with only attributes (or vice
versa). The proposed model learns the link-based and attribute-
based representations, and utilize the consensus to establish the
relations between them.

Although different methods adopt different strategies to inte-
grate node content and network topology, they all assume that
node content provides additional proximity information to con-
strain the representations of nodes.

5.2 Heterogeneous Information Network Embedding

Different from networks with node content, heterogeneous net-
works consist of different types of nodes and links. How to unify
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Fig. 11: Overview of the method proposed by Chang et al. [16]. Image extracted from [16].

the heterogeneous types of nodes and links in network embedding
is also an interesting and challenging problem.

Yann et al. [58] propose a heterogeneous social network
embedding algorithm for classifying nodes. They learn the rep-
resentations of all types of nodes in a common vector space, and
perform the inference in this space. In particular, for the node
ui with type ti, they utilize a linear classification function f tiθ to
predict its label and adopt the hinge-loss function ∆ to measure
the loss with the true label yi:

l∑
i=1

∆(f tiθ (ui), yi), (14)

where l is the number of labeled nodes. To preserve the local
structures in the latent space, they impose the following smooth-
ness constraint, which enforces that two nodes i and j will be
close in the latent space if they have a large weight Wij in the
heterogeneous network:∑

i,j

Wij‖ui − uj‖2. (15)

In this way, different types of nodes are mapped into a common
latent space. The overall loss function combines the classification
and regularization losses Eq. (14) and Eq. (15). A stochastic
gradient descent method is used here to learn the representations
of nodes in a heterogeneous network for classifying.

Chang et al. [16] propose a deep embedding algorithm for
heterogeneous networks, whose nodes have various types. The
main goal of the heterogeneous network embedding is to learn
the representations of nodes with different types such that the
heterogeneous network structure can be well preserved. As shown
in Fig. 11, given a heterogeneous network with two types of
data (e.g., images and texts), there are three types of edges, i.e.,
image-image, text-text, and image-text. The nonlinear embeddings
of images and texts are learned by a CNN model and the
fully connected layers, respectively. By cascading the extra linear
embedding layer, the representations of images and texts can be
mapped to a common space. In the common space, the similarities
between data from different modalities can be directly measured,
so that if there is an edge in the original heterogeneous network,
the pair of data has similar representations.

Huang and Mamoulis [59] propose a meta path similarity pre-
serving heterogeneous information network embedding algorithm.
To model a particular relationship, a meta path [60] is a sequence

of object types with edge types in between. They develop a fast
dynamic programming approach to calculate the truncated meta
path based proximities, whose time complexity is linear to the
size of the network. They adopt a similar strategy as LINE [10] to
preserve the proximity in the low dimensional space.

Xu et al. [61] propose a network embedding method for
coupled heterogeneous network. The coupled heterogeneous net-
work consists of two different but related homogeneous networks.
For each homogeneous network, they adopt the same function
(Eq. (6)) as LINE to model the relationships between nodes. Then
the harmonious embedding matrix is introduced to measure the
closeness between nodes of different networks. Because the inter-
network edges are able to provide the complementary information
in the presence of intra-network edges, the learned embeddings of
nodes also perform well on several tasks.

5.3 Summary
In the methods preserving side information, side information
introduces additional proximity measures so that the relation-
ships between nodes can be learned more comprehensively. Their
difference is the way of integrating network structures and side
information. Many of them are naturally extensions from structure
preserving network embedding methods.

6 ADVANCED INFORMATION PRESERVING NET-
WORK EMBEDDING

In this section, we review network embedding methods that take
additional advanced information into account so as to solve some
specific analytic tasks. Different from side information, the ad-
vanced information refers to the supervised or pseudo supervised
information in a specific task.

6.1 Information Diffusion
Information diffusion [62] is an ubiquitous phenomenon on the
web, especially in social networks. Many real applications, such
as marketing, public opinion formation, epidemics, are related to
information diffusion. Most of the previous studies on information
diffusion are conducted in original network spaces.

Recently, Simon et al. [63] propose a social network embed-
ding algorithm for predicting information diffusion. The basic idea
is to map the observed information diffusion process into a heat
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diffusion process modeled by a diffusion kernel in the continu-
ous space. Specifically, the diffusion kernel in a d-dimensional
Euclidean space is defined as

K(t, j, i) = (4Πt)−
d
2 e−

‖j−i‖2
4t . (16)

It models the heat at location i at time t when an initial unit heat
is positioned at location j, which also models how information
spreads between nodes in a network.

The goal of the proposed algorithm is to learn the repre-
sentations of nodes in the latent space such that the diffusion
kernel can best explain the cascades in the training set. Given the
representation uj of the initial contaminated node j in cascade c,
the contamination score of node i can be computed by

K(t, j, i) = (4Πt)−
d
2 e−

‖uj−ui‖
2

4t . (17)

The intuition of Eq. (17) is that the closer a node in the latent space
is from the source node, the sooner it is infected by information
from the source node. As the cascade c offers a guidance for the
information diffusion of nodes, we expect the contamination score
to be as closely consistent with c as possible, which gives rise to
the following empirical risk function:

L(U) =
∑
c

∆(K(., j, .), c), (18)

where function ∆ is a measure of the difference between the
predicted score and the observed diffusion in c. By minimizing
the Eq. (18) and reformulating it as a ranking problem, the optimal
representations U of nodes can be obtained.

The cascade prediction problem here is defined as predicting
the increment of cascade size after a given time interval [18].
Li et al. [18] argue that the previous work on cascade prediction
all depends on the bag of hand-crafting features to represent the
cascade and network structures. Instead, they present an end-to-
end deep learning model to solve this problem using the idea of
network embedding, as illustrated in Fig. 12. Similar to Deep-
Walk [3], they perform a random walk over a cascade graph to
sample a set of paths. Then the Gated Recurrent Unite (GRU) [64],
a specific type of recurrent neural network [65], is applied to these
paths and learn the embeddings for these paths. The attention
mechanism is then used to assemble these embeddings to learn
the representation of this cascade graph. Once the representation
of this cascade is known, a multi-layer perceptron [66] can be
adopted to output the final predicted size of this cascade. The
whole procedure is able to learn the representation of cascade
graph in an end-to-end manner. The experimental results on the
Twitter and Aminer networks show promising performance on this
task.

6.2 Anomaly Detection

Anomaly detection has been widely investigated in previous
work [67]. Anomaly detection in networks aims to infer the
structural inconsistencies, which means the anomalous nodes that
connect to various diverse influential communities [21], [68], such
as the red node in Fig. 13. Hu et al. [21] propose a network
embedding based method for anomaly detection. In particular, in
the proposed model, the k-th element uki in the embedding ui of
node i represents the correlation between node i and community
k. Then, they assume that the community memberships of two

linked nodes should be similar. Therefore, they can minimize the
following objective function:

L =
∑

(i,j)∈E

‖ui − uj‖2 + α
∑

(i,j)/∈E

(‖ui − uj‖ − 1)2. (19)

This optimization problem can be solved by the gradient descent
method. By taking the neighbors of a node into account, the
embedding of the node can be obtained by a weighted sum of
the embeddings of all its neighbors. An anomaly node in this
context is one connecting to a set of different communities. Since
the learned embedding of nodes captures the correlations between
nodes and communities, based on the embedding, they propose a
new measure to indicate the anomalousness level of a node. The
larger the value of the measure, the higher the propensity for a
node being an anomaly node.

6.3 Network Alignment
The goal of network alignment is to establish the correspondence
between the nodes from two networks. Man et al. [22] propose a
network embedding algorithm to predict the anchor links across
social networks. The same users who are shared by different social
networks naturally form the anchor links, and these links bridge
the different networks. As illustrated in Fig. 14, the anchor link
prediction problem is, given source networkGs and target network
Gt and a set of observed anchor links T , to identify the hidden
anchor links across Gs and Gt.

First, Man et al. [22] extend the original sparse networks Gs

and Gt to the denser networks. The basic idea is that given a
pair of users with anchor links, if they have a connection in one
network, so do their counterparts in the other network [69], in
this way, more links will be added to the original networks. For
a pair of nodes i and j whose representations are ui and uj ,
respectively, by combining the negative sampling strategy, they
use the following function to preserve the structures of Gs and Gt

in a vector space:

log σ(uTi uj) +
K∑
k=1

Evk∝Pn(v)[log(1− σ(uTi uk))], (20)

where σ(x) = 1/(1 + exp(−x)). The first term models the
observed edges, and the second term samples K negative edges.

Then given the observed anchor links (vsi , u
t
j) ∈ T and the

representations ui and uj , they aim to learn a mapping function φ
parameterized by θ so as to bridge these two representations. The
loss function is defined as:

‖φ(ui; θ)− uj‖F . (21)

The mapping function can be linear or non-linear via Multi-Layer
Perceptron (MLP) [66]. By optimizing Eq. (20) and Eq. (21)
simultaneously, the representations that can preserve the network
structure and respect the observed anchor links can be learned.

6.4 Summary
Advanced information preserving network embedding usually
consists of two parts. One is to preserve the network structure
so as to learn the representations of nodes. The other is to
establish the connection between the representations of nodes
and the target task. The first one is similar to structure and
property preserving network embedding, while the second one
usually needs to consider the domain knowledge of a specific
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Fig. 12: The end-to-end pipeline of DeepCas proposed by Li et al. [18]. Image extracted from [18].

Fig. 13: The anomalous (red) nodes in embedding, and A, B, C,
D are four communities [21]. Image extracted from [21].
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Fig. 14: The illustrative diagram of network embedding for anchor
link prediction proposed by Man et al. [22]. Image extracted
from [22].

task. The domain knowledge encoded by the advanced information
makes it possible to develop end-to-end solutions for network
applications. Compared with the hand-crafted network features,
such as numerous network centrality measures, the combination of
advanced information and network embedding techniques enables
representation learning for networks. Many network applications
may be benefitted from this new paradigm.

All the aforementioned network embedding methods are sum-
marized in Table 1. Because some works lack of the technique
details, here we mainly summarize the time complexity of some
representative network embedding methods, shown in Table 2.
In particular, K is the representation dimension, and N and
|E| are the number of nodes and edges, respectively. I is the
number of iterations. L is the walk length and w is the number
of random-walk trials. e is the number of epochs, and S is the
number of sampled training triplets and J is a constant related
with the structure of deep neural network. m is the length of
node attributes. nz(X) is the number of non-zeros in matrix X.
As we can see, the time complexity of some network embedding
methods, such as DeepWalk, LINE, and Node2vec, is linear with
respect to the number of nodes N . Therefore, these methods are
usually scalable for large networks. While, some works, such
as GraRep, M-NMF, and LANE, have the quadratic complexity,
which may cause the scalability issue and limit them to be applied
to the large networks.

7 NETWORK EMBEDDING IN PRACTICE

In this section, we summarize the data sets, benchmarks, and eval-
uation tasks that are commonly used in developing new network
embedding methods.

7.1 Real World Data Sets
Getting real network data sets in academic research is always far
from trivial. Here, we describe some most popular real world
networks currently used in network embedding literature. The
data sets can be roughly divided into four groups according to
the nature of the networks: social networks, citation networks,
language networks, and biological networks. A summary of these
data sets can be found in Table 4. Please note that, the same name
may be used to refer to different variants in different studies. Here
we aim to provide an overview of the networks, and do not attempt
to describe all of those variants in detail.

7.1.1 Social Networks
• BLOGCATALOG [70]. This is a network of social

relationships of the bloggers listed on the BlogCatalog
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TABLE 1: A summary of different types of network embedding methods

Method Categorization Technique

Network alone Side information Advanced information Matrix factorization Random walk Deep neural network others

DeepWalk [3]
√ √

LINE [10]
√ √

GraRep [34]
√ √

SDNE [6]
√ √

Node2vec [25]
√ √

M-NMF [4]
√ √

Cao et al. [26]
√ √

Chen et al. [40]
√ √

HOPE [8]
√ √

SiNE [13]
√ √

Ou et al. [44]
√ √

MMDW [14]
√ √

Le et al. [50]
√ √

TADW [50]
√ √

Sun et al. [52]
√ √

Pan et al. [53]
√ √

LANE [54]
√ √

Yann et al. [58]
√ √

Chang et al. [16]
√ √

Huang et al. [59]
√ √

Xu et al. [61]
√ √

Simon et al. [63]
√ √

Li et al. [18]
√ √

Hu et al. [21]
√ √

Man et al. [22]
√ √

TABLE 2: The complexity of some representative network em-
bedding methods

Method Time complexity
DeepWalk [3] O(KN logN)

LINE [10] O(K|E|)
GraRep [34] O(N |E|+KN2)
SDNE [6] O(KI|E|)

Node2vec [25] O(KN)
M-NMF [4] O(KIN2)

Chen et al. [40] O(Kmax(|E|, NLw))
HOPE [8] O(K2I|E|)
SiNE [13] O(eNSJ)

TADW [50] O(N |E|+KI|E|+KmIN +K2IN)
TriDNR [53] O(K ∗ nz(X) log(m) +KN log(N))
LANE [54] O(mN2 +KIN2)

Yann et al. [58] O(|E|)

website. One instance of this data set can be found at
http://socialcomputing.asu.edu/datasets/BlogCatalog3.

• FLICKR [70]. This is a network of the contacts between
users of the photo sharing websites Flickr. One instance of
the network can be downloaded at http://socialcomputing.
asu.edu/datasets/Flickr.

• YOUTUBE [71]. This is a network between users of the
popular video sharing website, Youtube. One instance of
the network can be found at http://socialcomputing.asu.
edu/datasets/YouTube2.

• Twitter [72]. This is a network between users on a social
news website Twitter. One instance of the network can
be downloaded at http://socialcomputing.asu.edu/datasets/
Twitter.

7.1.2 Citation Networks

• DBLP [73]. This network represents the citation relation-
ships between authors and papers. One instance of the data
set can be found at http://arnetminer.org/citation.

• Cora [74]. This network represents the citation relation-
ships between scientific publications. Besides the link in-
formation, each publication is also associated with a word
vector indicating the absence/presence of the correspond-
ing words from the dictionary. One instance of the data set
can be found at https://linqs.soe.ucsc.edu/node/236.

• Citeseer [74]. This network, similar to Cora, also consists
of scientific publications and their citation relationships.
One instance of the data set can be downloaded at https:
//linqs.soe.ucsc.edu/node/236.

• ArXiv [75], [76]. This is the collaboration network con-
structed from the ArXiv website. One instance of the
data set can be found at http://snap.stanford.edu/data/
ca-AstroPh.html.

7.1.3 Language Networks
• Wikipedia [77]. This is a word co-occurrence network

from the English Wikipedia pages. One instance of the
data set can be found at http://www.mattmahoney.net/dc/
textdata.

7.1.4 Biological Networks
• PPI [78]. This is a subgraph of the biological network

that represents the pairwise physical interactions between
proteins in yeast. One instance of the data set can
be downloaded at http://konect.uni-koblenz.de/networks/
maayan-vidal.

7.2 Node Classification

Given some nodes with known labels in a network, the node
classification problem is to classify the rest nodes into different
classes. Node classification is one of most primary applications
for network embedding [3], [10]. Essentially, node classification
based on network embedding for can be divided into three steps.
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TABLE 3: A summary of real world networks

networks
structure and property

preserving network
embedding

network embedding
with side

information
classification link prediction clustering visualization

BLOGCATALOG
√ √ √ √ √

FLICKR
√ √ √ √ √

YOUTUBE
√ √ √ √ √

Twitter
√ √

DBLP
√ √ √ √ √ √

Cora
√ √ √ √ √ √

Citeseer
√ √ √ √ √ √

ArXiv
√ √

Wikipedia
√ √ √ √ √

PPI
√ √

First, a network embedding algorithm is applied to embed the
network into a low dimensional space. Then, the nodes with
known labels are used as the training set. Last, a classifier, such
as Liblinear [79], is learned from the training set. Using the
trained classifier, we can infer the labels of the rest nodes. The
popularly used evaluation metrics for multi-label classification
problem include Micro-F1 and Macro-F1 [70].

The multi-label classification application has been successfully
tested on four categories of data sets, namely social networks
(BLOGCATALOG [70], FLICKR [70], and YOUTUBE [71]),
citation networks (DBLP [73], Cora [74], and Citeseer [74]),
language networks (Wikipedia [77]), and biological networks
(PPI [78]).

Specifically, a social network usually is a communica-
tion network among users on online platforms. DeepWalk [3],
GraRep [34], SDNE [6], node2vec [25], and LANE [54] conduct
classification on BLOGCATALOG to evaluate the performance.
Also, the classification performance on FLICKR has been assessed
in [3], [6], [10], [54]. Some studies [3], [6], [10] apply their
algorithms to the Youtube network, which also achieves promising
classification results. A citation network usually represents the
citation relationships between authors or between papers. For
example, [10], [53] use the DBLP network to test the classification
performance. Cora is used in [14], [15]. Citeseer is used in [14],
[15], [53]. The classification performance on language networks,
such as Wikipedia, is also widely studied [10], [14], [15], [25].
The Protein-Protein Interactions (PPI) is used in [25]. Based on
NUS-WIDE [80], a heterogeneous network extracted from Flickr,
Chang et al. [16] validated the superior classification performance
of network embedding on heterogeneous networks.

To summarize, network embedding algorithms have been
widely used on various networks and have been well demonstrated
their effectiveness on node classification.

7.3 Link Prediction

Link prediction, as one of the most fundamental problems on net-
work analysis, has received a considerable amount of attention [7],
[82]. It aims to estimate the likelihood of the existence of an edge
between two nodes based on observed network structure [83].
Since network embedding algorithms are able to learn the vector
based features for each node, the similarity between nodes can be
easily estimated, for example, by the inner product or the cosine
similarity. A larger similarity implies that the two nodes may have
a higher propensity to be linked. Generally, precision@k and Mean
Average Precision (MAP) are used to evaluate the link prediction
performance [6].

The popularly used real networks for the link prediction
task can be divided into three categories: citation networks
(ARXIV [75], [76] and DBLP1), social networks (SN-TWeibo2,
SN-Twitter [72], Facebook [76], Epinions3, and Slashdot4), and
biological networks (PPI [78]). Specifically, [6] and [25] test the
effectiveness on ARXIV5. HOPE [8] applies network embedding
to link prediction on two directed networks SN-Twitter, which is
a subnetwork of Twitter6, and SN-TWeibo, which is a subnetwork
of the social network in Tencent Weibo7. Node2vec [25] tests the
performance of link prediction on a social network Facebook and
a biological network PPI. EOE [61] uses DBLP to demonstrate the
effectiveness on citation networks. Based on two social networks,
Epinions and Slashdot, SiNE [13] shows the superior performance
of signed network embedding on link prediction.

To sum up, network embedding is able to capture inherent
network structures, and thus naturally it is suitable for link predic-
tion applications. Extensive experiments on various networks have
demonstrated that network embedding can tackle link prediction
effectively.

7.4 Node Clustering
Node clustering is to divide the nodes in a network into clusters
such that the nodes within the same cluster are more similar
to each other than the nodes in different clusters. Network em-
bedding algorithms learn representations of nodes in low dimen-
sional vector spaces, so many typical clustering methods, such as
Kmeans [84], can be directly adopted to cluster nodes based on
their learned representations.

Many evaluation criteria have been proposed for clustering
evaluation. Accuracy (AC) and normalized mutual information
(NMI) [85] are frequently used to assess the clustering perfor-
mance on graphs and networks.

The node clustering performance is tested on three types of
networks: social networks (e.g., Facebook [87] and YELP [59]),
citation networks (e.g., DBLP [60]), and document networks (e.g.,
20-NewsGroup [88]). In particular, [16] extracts a social network
from a social blogging site. It uses the TF-IDF features extracted
from the blogs as the features of blog users and the “following”
behaviors to construct the linkages. It successfully applies network
embedding to the node clustering task. [4] uses the Facebook

1. http://dblp.uni-trier.de/
2. http://www.kddcup2012.org/c/kddcup2012-track1/data
3. http://www.epinions.com/
4. http://slashdot.org/
5. https://arxiv.org/
6. https://twitter.com/
7. http://t.qq.com/
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(a) SDNE (b) LINE (c) DeepWalk (d) GraRep (e) LE

Fig. 15: Network visualization of 20-NewsGroup by different network embedding algorithms, i.e., SDNE [6], LINE [10], DeepWalk [3],
GraRep [34], LE [81]. Image extracted from SDNE [6].

social network to demonstrate the effectiveness of community
preserving network embedding on node clustering. [59] is applied
to more social networks including MOVIE, a network extracted
from YAGO [89] that contains knowledge about movies, YELP,
a network extracted from YELP that is about reviews given to
restaurants, and GAME, extracted from Freebase [90] that is re-
lated to video games. [26] tests the node clustering performance on
a document network, 20-NewsGroup network, which consists of
documents. The node clustering performance on citation networks
is tested [59] by clustering authors in DBLP. The results show the
superior clustering performance on citation networks.

In summary, node clustering based on network embedding is
tested on different types of networks. Network embedding has
become an effective method to solve the node clustering problem.

7.5 Network Visualization
Another important application of network embedding is network
visualization, that is, generating meaningful visualization that
layouts a network on a two dimensional space. By applying
the visualization tool, such as t-SNE [91], to the learned low
dimensional representations of nodes, it is easy for users to see
a big picture of a sophisticated network so that the community
structure or node centrality can be easily revealed.

More often than not, the quality of network visualization
by different network embedding algorithms is evaluated visually.
Fig. 15 is an example by SDNE [6] where SDNE is applied to
20-NewsGroup. In Fig. 15, each document is mapped into a two
dimensional space as a point, and different colors on the points
represent the labels. As can be seen, network embedding preserves
the intrinsic structure of the network, where similar nodes are
closer to each other than dissimilar nodes in the low-dimensional
space. Also, LINE [10], GraRep [34], and EOE [61] are applied
to a citation network DBLP and generate meaningful layout of the
network. Pan et al. [53] show the visualization of another citation
network Citeseer-M10 [92] consisting of scientific publications
from ten distinct research areas.

7.6 Open Source Software
In Table 4, we provide a collection of links where one can find the
source code of various network embedding methods.

8 CONCLUSIONS AND FUTURE RESEARCH DIREC-
TIONS

The above survey of the state-of-the-art network embedding algo-
rithms clearly shows that it is still a young and promising research
field. To apply network embedding to tackle practical applications,
a frontmost question is to select the appropriate methods. In

Fig. 16: Relationship among different types of network embedding
methods.

Fig. 16 we show the relationship among different types of network
embedding methods discussed in this survey.

The structure and property preserving network embedding is
the foundation. If one cannot preserve well the network structure
and retain the important network properties, in the embedding
space serious information is loss, which hurts the analytic tasks in
sequel. Based on the structure and property preserving network
embedding, one may apply the off-the-shelf machine learning
methods. If some side information is available, it can be in-
corporated into network embedding. Furthermore, the domain
knowledge of some certain applications as advanced information
can be considered.

In the rest of this section, we discuss several interesting
directions for future work.

8.1 More Structures and Properties
Although various methods are proposed to preserve structures and
properties, such as first order and high order proximities, commu-
nities, asymmetric transitivity, and structural balance, due to the
complexity of real world networks, there are still some particular
structures that are not fully considered in the existing network
embedding methods. For example, how to incorporate network
motifs [93], one of the most common higher-order structures in
a network, into network embedding remains an open problem.
Also, more complex local structures of a node can be considered
to provide higher level constraints. The current assumption of
network embedding is usually based on the pairwise structure, that
is, if two nodes have a link, then their representations are similar.
This assumption can work well for some applications, such as
link prediction, but it cannot encode the centrality information
of nodes, because the centrality of a node is usually related to
a more complex structure. As another example, in several real
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TABLE 4: A summary of the source code

Structure and property preserving network embedding
Methods Source code

DeepWalk [3] https://github.com/phanein/deepwalk
LINE [10] https://github.com/tangjianpku/LINE

GraRep [34] https://github.com/ShelsonCao/GraRep
SDNE [6] http://nrl.thumedia.org/structural-deep-network-embedding

Node2vec [25] https://github.com/aditya-grover/node2vec
DNGR [26] https://github.com/ShelsonCao/DNGR
M-NMF [4] http://nrl.thumedia.org/community-preserving-network-embedding
GED [40] https://users.ece.cmu.edu/∼sihengc/publications.html

Ou et al. [44] http://nrl.thumedia.org/non-transitive-hashing-with-latent-similarity-components
HOPE [8] http://nrl.thumedia.org/asymmetric-transitivity-preserving-graph-embedding

Network embedding with side information
Methods Source code

MMDW [14] https://github.com/thunlp/mmdw
TADW [15] https://github.com/thunlp/tadw
TriDNR [53] https://github.com/shiruipan/TriDNR

Advanced information preserving network embedding
Methods Source code

Information diffusion [63] https://github.com/ludc/social network diffusion embeddings
Cascade prediction [18] https://github.com/chengli-um/DeepCas
Anomaly detection [21] https://github.com/hurenjun/EmbeddingAnomalyDetection

Collaboration prediction [23] https://github.com/chentingpc/GuidedHeteEmbedding

world applications, an edge may involve more than two nodes,
known as a hyperedge. Such a hypernetwork naturally indicates
richer relationships among nodes and has its own characteristics.
Hypernetwork embedding is important for some real applications.

The power law distribution property indicates that most nodes
in a network are associated with a small number of edges.
Consequently, it is hard to learn an effective representation for
a node with limited information. How this property affects the
performance of network embedding and how to improve the
embeddings of the minority nodes are still largely untouched.

8.2 The Effect of Side Information
Section 5 discusses a series of network embedding algorithms that
preserve side information in embedding. All the existing methods
assume that there is an agreement between network structure
and side information. To what extent the assumption holds in
real applications, however, remains an open question. The low
correlation of side information and structures may degrade the
performance of network embedding. Moreover, it is interesting to
explore the complementarity between network structures and side
information. More often than not, each information may contain
some knowledge that other information does not have.

Besides, in a heterogeneous information network, to measure
the relevance of two objects, the meta path, a sequence of object
types with edge types in between, has been widely used. How-
ever, meta structure [89], which is essentially a directed acyclic
graph of object and edge types, provides a higher-order structure
constraint. This suggests a huge potential direction for improving
heterogeneous information network embedding.

8.3 More Advanced Information and Tasks
In general, most of network embedding algorithms are designed
for general purposes, such as link prediction and node classi-
fication. These network embedding methods mainly focus on
general network structures and may not be specific to some target
applications. Another important research direction is to explore
the possibility of designing network embedding for more specific
applications. For example, whether network embedding is a new

way to detect rumors in social network [94], [95]? Can we use
network embedding to infer social ties [96]? Each real world
application has its own characteristics, and incorporating their
unique domain knowledge into network embedding is a key. The
technical challenges here are how to model the specific domain
knowledge as advanced information that can be integrated into
network embedding in an effective manner.

8.4 Dynamic Network Embedding
Although many network embedding methods are proposed, they
are mainly designed for static networks. However, in real world
applications, it is well recognized that many networks are evolving
over time. For example, in the Facebook network, friendships
between users always dynamically change over time, e.g., new
edges are continuously added to the social network while some
edges may be deleted. To learn the representations of nodes in a
dynamic network, the existing network embedding methods have
to be run repeatedly for each time stamp, which is very time
consuming and may not meet the realtime processing demand.
Most of the existing network embedding methods cannot be
directly applied to large scale evolving networks. New network
embedding algorithms, which are able to tackle the dynamic nature
of evolving networks, are highly desirable.

8.5 More embedding spaces
The existing network embedding methods embed a network into
the Euclidean space. In general, the principle of network em-
bedding can be extended to other target spaces. For example,
recently some studies [97] assume that the underlying structure
of a network is in the hyperbolic space. Under this assumption,
heterogeneous degree distributions and strong clustering emerge
naturally, as they are the simple reflections of the negative curva-
ture and metric property of the underlying hyperbolic geometry.
Exploring other embedding space is another interesting research
direction.
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