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a b s t r a c t 

I.I.D. 2 hypothesis between training and testing data is the basis of numerous image classification meth- 

ods. Such property can hardly be guaranteed in practice where the Non-IIDness is common, causing in- 

stable performances of these models. In literature, however, the Non-I.I.D. 3 image classification problem 

is largely understudied. A key reason is lacking of a well-designed dataset to support related research. 

In this paper, we construct and release a Non-I.I.D. image dataset called NICO 

4 , which uses contexts to 

create Non-IIDness consciously. Compared to other datasets, extended analyses prove NICO can support 

various Non-I.I.D. situations with sufficient flexibility. Meanwhile, we propose a baseline model with Con- 

vNet structure for General Non-I.I.D. image classification, where distribution of testing data is unknown 

but different from training data. The experimental results demonstrate that NICO can well support the 

training of ConvNet model from scratch, and a batch balancing module can help ConvNets to perform 

better in Non-I.I.D. settings. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, machine learning has achieved remarkable

rogress in a wide range of applications [1–4] , mainly owing to the

evelopment of deep neural networks [5,6] . One basic hypothesis

f machine learning models is that the training and testing data

hould consist Independent and Identically Distributed (I.I.D.) sam-

les. However, this ideal hypothesis is fragile in real cases where

e can hardly impose constraints on the testing data distribution.

his implies that the model minimizing empirical error on train-

ng data does not necessarily perform well on testing data, leading

o the challenge of Non-I.I.D. learning. The problem is more seri-

us when the training samples are not sufficient to approximate

he training distribution itself. How to develop Non-I.I.D. learning

ethods that are robust to distribution shifting is of paramount

ignificance for both academic research and industrial applications.

Benchmark datasets, providing a common ground for competing

pproaches, are always important to promote the development of

 research direction. Take image classification, a prominent learn-

ng task, as an example. Its development benefits a lot from the
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enchmark datasets, such as PASCAL VOC [7] , MSCOCO [8] , and

mageNet [9] . In particular, it is the ImageNet, a large-scale and

ell-structured image dataset, that successfully demonstrates the

apability of deep learning and thereafter significantly accelerates

he advancement of deep convolutional neural networks. On these

atasets, it is easy to establish an I.I.D. image classification setting

y random data splitting. But they do not provide an explicit op-

ion to simulate a Non-I.I.D. setting. The dataset that can well sup-

ort the research on Non-I.I.D. image classification is still in va-

ancy. 

In this paper, we construct and release a dataset that is ded-

cately designed for Non-I.I.D. image classification, named NICO

Non-I.I.D. Image dataset with Contexts). The basic idea is to label

mages with both main concept and contexts. For example, in the

ategory of ‘dog’, images are divided into different contexts such as

grass’, ‘car’, ‘beach’, meaning the ‘dog’ is on the grass, in the car,

r on the beach respectively. With these contexts, one can easily

esign an Non-I.I.D. setting by training a model in some contexts

nd testing it in the other unseen contexts. Meanwhile, the degree

f distribution shift can be flexibly controlled by adjusting the pro-

ortions of different contexts in training and testing data. Till now,

ICO contains 19 classes, 188 contexts and nearly 25,0 0 0 images

n total. The scale is still increasing, and the current scale has been

ble to support the training of deep convolution networks from

cratch. 

The NICO dataset can support, but not limited to, two typical

ettings of Non-I.I.D. image classification. One is Targeted Non-I.I.D.
image classification: A dataset and baselines, Pattern Recognition, 
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Fig. 1. NI (represented by the bar-type) and testing error (represented by the curve- 

type) of each class in Dataset A. 
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image classification, where testing data distribution is known but

different from training data distribution. The other is General Non-

I.I.D. image classification, where testing data distribution is un-

known and different from training data distribution. Apparently,

the latter one is much more realistic and challenging. A model

learned in one environment could be possibly applied in many

other environments. In this case, the robustness of a model in the

environments with unknown distribution shift is a highly favorable

characteristic. It is especially critical in risk-sensitive applications

like medical and security. 

Due to the lack of a well-structured and reasonable-scaled

dataset, there is still no convolutional neural network model pro-

posed to address the general Non-I.I.D. image classification prob-

lem. In this paper, we propose a novel model CNBB 

5 (ConvNet with

Batch Balancing) as a baseline of exploiting CNN model for gen-

eral Non-I.I.D. image classification.The experimental results show

that the proposed batch balancing mechanism can help a Con-

vNet model to resist, to some extent, the negative effect brought

by Non-IIDness. 

In a word, NICO released in this paper is devoted to advance the

research about intelligence perception of efficient and robust pat-

tern recognition across diverse environments in visual field. The

works that focus on the human cognition, such as causality, al-

ways have better interpretability naturally and could design and

execute experiments in kinds of Non-I.I.D. settings, compare their

performances fairly in NICO. What’s more, the ability of adjusting

distribution shift controllably can indeed bring more explainabil-

ity to the models and experiments, expecially for deep learning

[10,11] . Also the CNBB proposed is a preliminary attempt to intro-

duce causal mechanism into the deep ConvNets. 

2. Non-I.I.D. image classification 

2.1. Problem definition 

We first give a formal definition of Non-I.I.D. image classifica-

tion as follow: 

Problem 1. (Non-I.I.D. Image Classification) Given the training

data D train = (X train , Y train ) , where X train ∈ R 

n ×(c×h ×w ) represent the

images and Y train ∈ R 

n ×1 represent the labels. The task is to learn

a feature extractor g ϕ( · ) and a classifier f θ ( · ), so that f θ ( g ϕ( · ))

can predict the labels of testing data D test = (X test , Y test ) precisely,

where g ϕ (·) ∈ R 

n ×p and ψ ( D train ) � = ψ ( D test ). Moreover, accord-

ing to the availability of the prior knowledge on testing data,

we further define two different tasks. One is Targeted Non-I.I.D.

Image Classification where the testing data distribution ψ( D test )

is known. The other is General Non-I.I.D. Image Classification ,

which corresponds to a more realistic scenario where the testing

data distribution ψ( D test ) is unknown. 

In order to intuitively quantify the degree of distribution shift

between ψ( D train ) and ψ( D test ), we define the Non-I.I.D. Index as

follow: 

Definition 1. Non-I.I.D. Index (NI) Given a feature extractor g ϕ( · )

and a class C , the degree of distribution shift between training data

D 

C 
train 

and testing data D 

C 
test is defined as: 

NI(C) = 

∥∥∥∥∥
g ϕ (X 

C 
train 

) − g ϕ (X 

C 
test ) 

σ (g ϕ (X 

C )) 

∥∥∥∥∥
2 

, 

where X C = X C 
train 

∪ X C test , (·) represents the first order moment,

σ ( · ) is the std used to normalize the scale of features and
‖ · ‖ 2 represents the 2-norm. 

5 CNBB : ConvNet with Batch Balancing. 

p  

d  
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.2. Existence of Non-IIDness 

In real cases, the I.I.D. hypothesis can never be strictly satisfied,

eaning that Non-IIDness ubiquitously exists in previous datasets

12] . Here we take ImageNet as an example. ImageNet is in a hi-

rarchical structure, where each class (e.g. dog) contains multiple

ubclasses (e.g. different kinds of dogs). For each subclass, it pro-

ides training and testing (validation) subsets of images. To ver-

fy the Non-IIDness in ImageNet, we select 10 common animal

lasses (e.g. dog, cat) and construct a new dataset using 10 in-

tantiated subclasses (e.g. Labrador, Persian), each randomly drawn

rom those classes. Using the training and testing subsets, we train

nd evaluate a ConvNet on image classification task. The structure

f the ConvNet used in this paper is similar to AlexNet (details

een in Appendix ), and we take the last FC layer of the ConvNet

s the feature extractor g ϕ . Note that model structure is used in

ll subsequent analysis (including on NICO) for fair comparison,

nd thus selected by trading-off performance and required training

ata scale. But as a base model with sufficient learning capacity,

he specific model structure does not affect the conclusions. We

epeat this collection procedure for 3 times, obtain 3 new datasets

 Dataset A, Dataset B and Dataset C ) and calculate the NI and testing

rror for each class respectively. As an example, we plot the results

f DatasetA in Fig. 1 . We can find that: 

• NI is above zero for all classes, which implies the Non-IIDness

between training and testing data is ubiquitous even in large-

scale datasets like ImageNet. 
• Different classes have different NI values and higher NI value

corresponds to higher testing error. 

The strong correlation between NI and testing error can be fur-

her proved by their high pearson correlation coefficients ( r = 0 . 95 )

nd small p _ v alue (2e −15). 

One may argue that the numerical value of NI is conditioned

n feature extractor and could not be compared cross different

atasets due to the supervised learning. In fact, we only use it

o analyse the trend of distribution bias by some intervention be-

ween training and testing subsets from the one data source. To

earn the feature extractor and use it to compute NI in the same

ataset could guarantee that the change of NI is only caused by

he predefined specific intervention, which increases more control-

ability and explainability to the corresponding experiments. Oth-

rwise the unknown external disturb would be drawn in. In later

aragraph, we use NI to make an empirical analysis on the new

ataset we construct to prove that NICO can support various Non-

.I.D. situations flexibly and consciously. 
image classification: A dataset and baselines, Pattern Recognition, 
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Fig. 2. NI of each class in 3 different datasets constructed from ImageNet. Different 

datasets instantiate the same classes with different subclasses. 
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.3. Limitations of existing datasets 

Throughout the development of computer vision research,

enchmark datasets have always played a critical role on both pro-

iding a common ground for algorithm evaluation and driving new

irections. Specifically, for image classification task, we can enu-

erate several milestone datasets such as PASCAL VOC, MSCOCO

nd ImageNet. However, existing benchmark datasets cannot well

upport the Non-I.I.D image classification. First of all, despite the

anifested Non-IIDness in ImageNet and other datasets, as shown

n Fig. 1 , the overall degree of distribution shift between train-

ng and testing data for each class is relatively small, making

hese datasets less challenging from the angle of Non-I.I.D. im-

ge classification. More importantly, there is no explicit way to

ontrol the degree of distribution shift between training and test-

ng data in the existing datasets. As illustrated in Fig. 2 , if we

nstantiate the same class with different subclasses in ImageNet

nd obtain 3 datasets with identical structure, the NI of a given

lass is fairly unstable across different datasets. Without a con-

rollable way to simulate different levels of Non-IIDness, compet-

ng approaches cannot be evaluated fairly and systematically on

hose datasets. Those said, a dataset that is dedicatedly designed

or Non-I.I.D. image classification beyond the above limitations is

emanded. 

. The NICO dataset 

In this section, we introduce the properties and collection pro-

ess of the dataset, followed by preliminary empirical results in

ifferent Non-I.I.D. settings supported by this dataset. 

.1. Context for Non-I.I.D. images 

The essential idea of generating Non-I.I.D. images is to enrich

he labels of an image with both conceptual and contextual labels.

ifferent from previous datasets that only label an image with the

ajor concept (e.g. dog), we also label the concrete context (e.g.

n grass) that the concept appears in. Then it is easy to simulate

n Non-I.I.D. setting by training and testing the model of a concept

ith different contexts. A good model for Non-I.I.D. image classi-

cation is expected to perform well in both training contexts and

esting contexts. 

In NICO, we mainly incorporate two kinds of contexts. One is

he attributes of a concept (or object), such as color, action, and

hape. Some examples of ‘context + concept’ pairs include white

ear, climbing monkey and double decker etc. The other kind of con-
Please cite this article as: Y. He, Z. Shen and P. Cui, Towards Non-I.I.D. 
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exts is the background or scene of a concept. The examples of

context + concept’ pairs include cat on snow, horse aside people and

irplane in sunrise etc. Samples of different contexts in the NICO

ataset are shown in Fig. 3 . 

In order to provide more flexible Non-I.I.D. settings, we tend

o select the contexts that occur in multiple concepts. Then for a

iven concept, a context may occur in both positive samples and

egative samples (that are sampled from other concepts). This pro-

ides another flexibility to let a context included in training posi-

ive samples appear or do not appear in training negative samples,

hich will yield different Non-I.I.D. settings. 

There are some related datasets that also supply contextual

nformation in addition to major concepts, such as NUSWIDE

13] and MSCOCO [8] . NUSWIDE dataset and its extended version

14] focus on social image understanding including the tasks of tag

ompletion, image retrieval and so on, launching the deep models

ike DCB [15] , WDMF [16] and WDML [17] . MSCOCO promotes the

esearches of various detection and segmentation a lot. However,

one of these datasets are towards Non-I.I.D. image classification

pecifically. That is to say, one cannot build and adjust the shift of

istribution to meeting various Non-I.I.D. settings well and conve-

iently. For example an image always has multiple and overlapping

ags for one category in NUSWIDE. So it’s hard to divide differ-

nt data distributions controllably, especially for the compositional

ias setting below. And the sample size of each context (tag) per

lass is quite imbalanced in other datasets. That says only NICO

an well support kinds of Non-I.I.D. researches about robust and

xplainable machine learning [18–21] . 

.2. Data collection and statistics 

Referring to ImageNet, MSCOCO and other classical datasets

22,23] , we first confirm two superclasses: Animal and Vehicle .

or each superclass, we select classes from the 272 candidates in

SCOCO, with the criterion that the selected classes in a super-

lass should have large inter-class differences. For context selec-

ion, we exploit YFCC100m [24] broswer 6 and first derive the fre-

uently co-occurred tag list for a given concept (i.e. class label). We

hen filter out the tags that occur in only a few concepts. Finally,

e manually screen all tags and select the ones that are consis-

ent with our definition of contexts (i.e. object attributes or back-

rounds and scenes). 

After obtaining the conceptual and contextual tags, we concate-

ate a given conceptual tag and each of its contextual tags to form

 query, input the query into the API of Google and Bing image

earch, and collect the top-ranked images as candidates. Finally, in

he phase of screening, we select images into the final dataset ac-

ording to the following criteria: 

• The content of an image should correctly reflect its concept and

context. 
• Given a class, the number of images in each context should be

adequate and as balance as possible across contexts. 

Note that we do not conduct image registration or filtering by

bject centralization, so that the selected images are more realistic

nd in wild than those in ImageNet. 

The NICO dataset will be continuously updated and expanded.

ill now, there are two superclasses: Animal and Vehicle , with 10

lasses for Animal and 9 classes for vehicle . Each class has 9 or 10

ontexts. The average size of contexts per class ranges from 83 to

15, and the average size of classes is about 1300 images, which is

imilar to ImageNet. In total, there are 25,0 0 0 images in the NICO

ataset. As NICO is in a hierarchical structure, it is easy to be ex-
image classification: A dataset and baselines, Pattern Recognition, 
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Fig. 3. Samples with contexts in NICO. Images in the first row are dogs of Animal , assigned to different contexts below it. The second and third row correspond to horse of 

Animal and boat of Vehicle respectively. 

Table 1 

Data size of each class in NICO. 

Animal Data size Vehicle Data size 

Bear 1609 Airplane 930 

Bird 1590 Bicycle 1639 

Cat 1479 Boat 2156 

Cow 1192 Bus 1009 

Dog 1624 Car 1026 

Elephant 1178 Helicopter 1351 

Horse 1258 Motorcycle 1542 

Monkey 1117 Train 750 

Rat 846 Truck 1000 

Sheep 918 
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panded. More statistics on NICO is reported in Table 1 . The dataset

can be downloaded through the link. 7 

3.3. Supported Non-I.I.D. settings 

By dividing a class into different contexts, NICO provides the

flexibility of simulating Non-I.I.D. settings in different levels. To

name a few, here we list 4 typical settings. 

Setting 1. Minimum bias . Given a class, we can ignore the con-

texts, and randomly split all images of the class into

training and testing subsets as positive samples. Then

we can randomly sample images belonging to other

classes into training and testing subsets as negative

samples. In this setting, the way of random sampling

leads to minimum distribution shift between training

and testing distributions in the dataset, which simu-

lates a nearly i.i.d. scenario. 

Setting 2. Proportional bias . Given a class, when sampling posi-

tive samples, we use all contexts for both training and

testing, but the percentage of each context is different

in training and testing subsets. For example, we can let

one context take the majority in training data while

taking minority in testing, which is consistent with

the natural phenomena that visual concepts follow a

power law distribution [25] .The negative sampling pro-

cess is the same as Setting 1. In this setting, the level

of distribution shift can be tuned by adjusting the pro-

portion difference between training and testing subsets

for each context. 
6 http://www.yfcc100m.org/ 
7 https://www.dropbox.com/sh/8mouawi5guaupyb/AAD4fdySrA6fn3PgSmhKwFgva? 

dl=0 

d  

s  

i  

p  

c

Please cite this article as: Y. He, Z. Shen and P. Cui, Towards Non-I.I.D. 
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Setting 3. Compositional bias . Given a class, not every testing

context that the positive samples belong to appears in

training subset simultaneously.Such a setting is quite

common in real scene, because available datasets could

not contain all the potential contexts in nature due to

the limitations of sampling time and space.Intuitively,

the distribution shift from observed contexts to un-

seen contexts is usually large. The less number of test-

ing contexts observed in training generally leads to

the higher distribution shift.A more radical distribution

shift can be further achieved by combining composi-

tional bias and proportional bias. 

Setting 4. Adversarial bias . Given a class, the positive sampling

process is the same as Setting 3. For negative sampling,

we tend to select the negative samples from the con-

texts that have not been (or have been) included in

positive training samples to form the negative training

(or testing) subset. In this way, the distribution shifting

is even higher than Setting 3, and the existing classifi-

cation model developed under i.i.d. assumption is more

prone to be confused. 

The above 4 settings are designed to generate Non-I.I.D. train-

ng and testing subsets. Under each setting, we can conduct either

argeted or General Non-I.I.D. image classification by assuming the

istribution of testing subset is known or unknown. 

.4. Empirical analysis 

To verify the effectiveness of NICO in supporting Non-I.I.D im-

ge classification, we conduct a series of empirical analysis. It is

orth noting that, in each setting, only the distribution of training

r testing data changes, while the structure of ConvNet and the

ize of training data keep the same. 

.4.1. Minimum bias setting 

In this setting, we randomly sample 80 0 0 images for train-

ng and 20 0 0 images for testing from Animal and Vehicle super-

lasses respectively. The average testing accuracy and NI over all

he classes are 49.6%, 3.85 for Animal superclass and 63.0%, 3.20

or Vehicle superclass. We can find that NI in NICO is much higher

han NI in ImageNet even if there is no explicit bias (due to ran-

om sampling) when we construct the training and testing sub-

ets. This is because the images in NICO are typically non-iconic

mages with rich contextual information and non-canonical view-

oints, which is more challenging from the perspective of image

lassification. 
image classification: A dataset and baselines, Pattern Recognition, 
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Fig. 4. NI in proportional bias setting. 
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Fig. 5. NI in compositional bias setting: average NI over all classes in Vehicle super- 

class with respect to the number of contexts used in training data. 

Fig. 6. NI in the combined setting of compotisional bias and proportional bias: av- 

erage NI over all classes in Vehicle superclass with respect to various dominant ratio 

of training data, where contexts in testing data is totally unseen in training. 
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.4.2. Proportional bias setting 

In this setting, we let all the contexts appear in both training

nd testing data, and randomly select one dominant context in

raining data (or testing data) for each class in Animal superclass.

uch experimental settings comply with the natural phenomena

hat a majority of visual contexts are rare except a few common

nes [25] . Specifically, we define the dominant ratio as follow: 

ominant Ratio = 

N dominant 

N minor 

, 

here N dominant refers to the sample size of the dominant con-

ext and N minor refers to the average size of other contexts where

e uniformly sample other contexts. We conduct two experiments

here either dominant ratio of training data or testing data is

xed, and vary the other one. We plot the results in Fig. 4 (a) and

b). From the figures, we can clearly find a consistent pattern that

he NI becomes higher as the discrepancy between dominant ra-

io of training data and testing data becomes larger. As a result, by

uning the dominant ratio of training data (or testing data), we can

asily simulate different extents of distribution shift as we want. 

.4.3. Compositional bias setting 

Compared to proportional bias setting, compositional bias set-

ing simulates a condition where the knowledge obtained from

raining data is insufficient to characterize the whole distribution.

o do so, we choose a subset of contexts for a given class when

onstructing the training data and testing the model with all the

ontexts. By varying the number of contexts observed in training

ata, we can simulate different extents of information loss and dis-

ribution shift. From Fig. 5 , we can find that the NI consistently de-

reases when we could observe more contexts in training data. A

ore radical distribution shift can be achieved by combining the

otion of proportional bias and compositional bias. Given a partic-

lar class in Vehicle superclass, We choose 7 contexts for training

nd the other 3 contexts for testing, and further let one context

ominate the training data. By doing so, we can obtain a more se-

ere Non-I.I.D. condition between training and testing data than

revious two settings, as illustrated by the results from Fig. 6 . 
Please cite this article as: Y. He, Z. Shen and P. Cui, Towards Non-I.I.D. 
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.4.4. Adversarial bias setting 

Given a target class, we define a context as confounding con-

ext if it only appears in the negative samples of training data and

ositive samples of testing data. In this experiment, we choose four

lasses in Animal superclass as target classes and report the NI w.r.t

arious number of confounding contexts in Fig. 7 . The experimen-

al results indicate that the number of confounding contexts has

onsistent influence on the NI of different classes. Given any target

lass, we can simulate a more harsh distribution shift and further

onfuse the ConvNet by adding more confounding contexts. 
image classification: A dataset and baselines, Pattern Recognition, 
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Fig. 7. NI in the adversarial bias setting: NI of target class with respect to the num- 

ber of confounding contexts. 

Fig. 8. Range of average NI over Animal superclass for different settings supported 

in NICO. 
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8 CRLR : Causally Regularize Logistic Regression. 
Finally, we show the range of NI in different Non-I.I.D. settings

in Fig. 8 . We can see the level of NI in NICO is significantly higher

than ImageNet, and there is an obvious ascending trend from Min-

imum Bias to Adversarial Bias settings. 

The intention of releasing NICO is to appeal more attention and

promote the research about the intrinsic mechanism of stable and

robust learning cross various environments. Intuitively, such mech-

anisms should be consistent with human cognitive habits, such

as causality, possibly lighting up the way to the “strong AI” [26] .

However some skills that could still improve the performance to

some extent do not reveal the essential law of intelligence. For ex-

ample, a human would not find out the bounding box firstly be-

fore object classification and such localization methods still fail to

recognise when the attributes of object, like the color of a bear

in NICO, change in testing environments. Our position is to forbid

these methods to be applied in NICO for pursuing high scores only

and not approve the corresponding results. 

4. General Non-I.I.D. image classification 

In this section, we propose a novel model for General Non-I.I.D.

image classification. 

In the literature of Non-I.I.D. image classification, most previ-

ous methods are proposed for Targeted Non-I.I.D. image classifica-

tion. Domain adaptation and covariate shift methods [27–29] are

proposed to match distributions, transform feature space or learn

invariant features between training data and testing data. These

methods can achieve good performances but are less feasible in

practice due to the fact that they need prior knowledge on test-

ing data distribution. On the other hand, several methods are pro-

posed to liberalize the need of testing data information in Targeted

Non-I.I.D. image classification. For example, domain generalization

methods [30,31] only use training data to learn a domain-agnostic

model or invariant representations. However, these methods about

transfer learning [32,33] require the training data has multiple do-
Please cite this article as: Y. He, Z. Shen and P. Cui, Towards Non-I.I.D. 
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ains and we know which domain each sample belongs to. More-

ver, the performance of these methods is highly dependent on the

iversity of training data. 

Recently, growing attention has been paid on General Non-I.I.D.

earning. In the literature of causality [34] , an ideal model to re-

olve selection bias is to make policy based on causal variables,

hich keep stable across different domains [35] . Popular methods

ased on observational data to estimate the causal effect of a treat-

ent on the outcome include propensity score matching [36,37] ,

arkov blankets [38] and confounder balancing [39,40] and etc.

41] . Lately [42] leverages causality for predictive modeling. By per-

orming global confounder balancing, one can accurately identify

he stable features that are insensitive to unknown distribution

hift for prediction. Shen et al. [43] proposes a causally regular-

zed logistic regression called CRLR 

8 for General Non-I.I.D. image

lassification and achieves good performance in a relatively small

ataset. Other literatures, such as RSNMF [44] , expect to learn ro-

ust image representations with the help of sparse coding technol-

gy. However, due to the lack of well-structured and reasonable-

caled dataset, these methods cannot leverage the powerful deep

epresentation learning techniques (e.g. ConvNets) and therefore

re not favourable for large-scale image classification tasks. 

In this work, with the help of NICO, we extend the notion of

lobal confounder balancing into ConvNet, and propose a novel

odel called CNBB, ConvNet with Batch Balancing. 

.1. ConvNet with batch balancing 

The key idea in CRLR is global confounder balancing, which suc-

essively sets each feature as treatment variable, and learns an op-

imal set of sample weights that can balance the distribution of

reated and control groups for any treatment variable. Thereafter,

he correlations among features will be disentangled and their true

ffects on class label can be more accurately estimated. 

To introduce the notion of global confounder balancing into

eep learning, we mainly face two challenges: 

• Confounder balancing methods assume features to be in binary

form, while we generally have continuous features in ConvNet. 
• For global confounder balancing, we need to learn a new set of

sample weights for all the training samples in one iteration. 

This is not feasible for ConvNet where we cannot feed all the

raining data into the model at once. 

To overcome these challenges, we introduce a quantization loss

or feature binarization and propose a batch confounder balancing

ethod. Specifically, given a batch of training images, we define

he quantization loss as follows: 

ossq = −
n ∑ 

i =1 

‖ 

g ϕ (x i )) ‖ 

2 
2 , (1)

here n refers to the batch size, x i refers to the ith sample in a

atch and g ϕ refers to the feature extractor (here we use the last

C layer in ConvNet as g ϕ). By minimizing Lossq , we can amplify

he feature activated by tanh function from (−1 , 1) to approach to

−1 , 1 } . 
Following the CRLR, we successively regard each feature as

reatment, calculate the balancing loss of confounders and sum

t over all the features globally. Formally, we solve the batch
image classification: A dataset and baselines, Pattern Recognition, 

https://doi.org/10.1016/j.patcog.2020.107383


Y. He, Z. Shen and P. Cui / Pattern Recognition xxx (xxxx) xxx 7 

ARTICLE IN PRESS 

JID: PR [m5G; June 21, 2020;12:3 ] 

c

m

w  

I  

f  

o  

D  

a  

M  

o  

fi  

s

 

a  

c  

p

m  

w  

b

 

m

4

 

b  

t

4

 

e  

d  

D  

s  

a  

C  

l  

A

Fig. 9. Info flow in CNBB. The gray and purple lines refer to the forward and back- 

ward processes respectively. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 2 

Performances of different methods on test accuracy (%) for 

proportional bias in Animal superclass. 

Exp2 1 : 5 1 : 1 2 : 1 3 : 1 4 : 1 

CNN 37.17 37.80 41.46 42.50 43.23 

CNN + BN 38.70 39.60 41.64 42.00 43.85 

CNBB 39.06 39.60 42.12 43.33 44.15 

Table 3 

Performances of different methods on test accuracy (%) for 

composional bias in Vehicle superclass. 

Exp3 3 4 5 6 7 

CNN 40.61 42.32 43.34 44.03 44.03 

CNN + BN 41.98 38.85 43.12 44.71 44.31 

CNBB 41.41 43.34 44.54 45.96 45.16 

t  

v  

m

 

I

 

 

 

 

 

onfounder balancing problem as follows: 

in 

W 

Lossb = 

p ∑ 

j=1 

∥∥∥∥
g ϕ (X ) T − j 

· (W � I j ) 

W 

T · I j 
−

g ϕ (X ) T − j 
· (W � (1 − I j )) 

W 

T · (1 − I j ) 

∥∥∥∥
2 

2 

+ α‖ W ‖ 2 2 s.t. 

n ∑ 

i =1 

W i = 1 , W ≥ 0 , (2) 

here W represents sample weights, I j means the jth column of

 , and I ij refers to the treatment status of sample i when setting

eature j as treatment variable, and ‖ W ‖ 2 2 can reduce the variance

f weights to prevent the weights from overfitting outlier samples.

ifferent from CRLR, we define the confounder balancing loss w.r.t.

 batch of training samples instead of the whole training samples.

oreover, the sample weights and model parameters are jointly

ptimized through a supervised way in CRLR, while in CNBB we

rst fix the model parameters (a.k.a. representation) and learn the

ample weights W through an unsupervised way. 

As far as we have learnt an optimal set of sample weights for

 batch which can balance the confounder distribution, then we

ombine the weighted softmax loss and quantization loss and pro-

ose our CNBB model: 

in 

θ,ϕ 
Lossp = −

n ∑ 

i =1 

w i ln ( f θ (g ϕ (x i )) · y i ) + λLossq, (3)

here f θ refers to softmax layer and λ is a trade-off parameter

etween classification and quantization. 

Algorithm 1 gives the complete steps of the batch balancing

ethod and Fig. 9 illustrates it intuitively. 

.2. Experiments on NICO 

In this section, we evaluate the proposed ConvNet with batch

alancing (CNBB) in the task of General Non-I.I.D. image classifica-

ion based on NICO. 

.2.1. Experimental settings 

One should note that only category labels are available in our

nvironment which is the most common in real and the most fun-

amental image classification task. Although some methods, like

CE [15] , attempt to learn refined semantics with rich weakly-

upervised information, contexts of class are actually hidden vari-

bles here. For fair comparison, we choose a typical structure of

NN and CNN with batch normalization [45] (CNN+BN) as base-

ines. The latter is a popular method in deep learning to improve
lgorithm 1 ConvNets with batch balancing (CNBB). 

Input: Train dataset D train = { (x i , y i ) | i = 1 , . . . , n } 
Output: Non-linear parameters θ and ϕ
Initialize θ (0) , ϕ 

(0) and t 1 ← 0 

repeat 

Sample batch of images { (x 1 , y 1 ) , . . . , (x m 

, y m 

) } 
Extract image features { g 

ϕ (t 1 ) 
(x i ) , . . . , g ϕ (t 1 ) 

(x m 

) } 
Calculate indicator matrix I of features 

Initialize sample weights W 

(0) and t 2 ← 0 

repeat 

Optimize W 

(t 2 +1) to minimize Lossb in Eq. 2 

t 2 ← t 2 + 1 

until Lossb converges or t 2 reaches maximum 

Predict { f 
θ (t 1 ) 

(g 
ϕ (t 1 ) 

(x 1 )) , ., f θ (t 1 ) 
(g 

ϕ (t 1 ) 
(x m 

)) } 
Optimize θ (t 1 +1) and ϕ 

(t 1 +1) to minimize Lossp in Eq. 3 

t 1 ← t 1 + 1 

until Lossp converges or t 1 reaches maximum 

return: θ and ϕ 
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he generalization ability of CNN by normalizing the scale of acti-

ations. All the methods are implemented using PyTorch and opti-

ized by stochastic gradient descent. 

We design four experiments according to the supported Non-

.I.D. settings of NICO in Section 3.3 

• Minimum bias (Exp 1): In this experiment, we randomly sam-

ple 80 0 0 images for training and 20 0 0 images for testing. 
• Proportional bias (Exp 2): In this experiment, we fix the dom-

inant ratio of training data to 5:1, and vary the dominant ratio

of testing data from 1:5 to 4:1. 
• Compositional bias (Exp 3): In this experiment, we vary the

number of contexts observed in training data from 3 to 7 while

let all the contexts appear in testing data. 
• Combined Proportional & Compositional bias (Exp 4): To simu-

late a more harsh condition, for each class, we randomly select

7 contexts for training and the other 3 contexts for testing. Fur-

thermore, we vary the dominant ratio of training data from 1:1

to 5:1 while fix the dominant ratio of testing data to 1:1. 

.2.2. Experimental results 

We calculate the average testing accuracy of all the methods

or each experiment. First of all, CNBB is comparable with CNN in

he minimum bias setting, with a slightly higher accuracy (49.94%

.s. 49.60%), and CNN+BN performs worst (46.48%). For the other

hree experiments with explicit distribution shift between training

ata and testing data, CNBB outperforms the other baselines at al-

ost every setting, as shown in Tables 2–4 , indicating its effective-

ess in Non-I.I.D. image classification. Note that the performance

f CNN with batch normalization is relatively unstable compared

o original CNN across different experiments. It is mainly because,

n the General Non-I.I.D. setting, the agnostic distribution shift be-

ween training and testing data cannot be effectively normalized

nly based on the training data. Comparatively, the batch balanc-
image classification: A dataset and baselines, Pattern Recognition, 
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Table 4 

Performances of different methods of test accuracy (%) for 

combined proportional & compositional bias in Vehicle super- 

class. 

Exp4 1 : 1 2 : 1 3 : 1 4 : 1 5 : 1 

CNN 37.07 35.20 34.53 34.13 33.73 

CNN + BN 33.87 32.93 31.20 30.93 30.67 

CNBB 38.98 36.89 35.87 35.33 35.02 

Table 5 

The range of NI with respect to the average 

improvement of performance to CNN. 

Experiment Improvement NI 

Exp1 0.33% 3.81–3.93 

Exp2 1.22% 4.17–4.53 

Exp3 1.22% 4.13–4.34 

Exp4 1.49% 4.44–4.90 

Fig. 10. Parameter sensitivity analysis of Exp4. Testing accuracy with respect to the 

trade-off parameter λ in Eq. (2) while we set dominant ratio of training data to 3:1. 

The blue area represents the improvement of CNBB against CNN. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

d  

B  

N  

s  

s  

t  

p  

i  

i

 

i  

t  

p  

t  

f  

a  

o  

w  

t  

p

D

A

 

o  

t  

j  

I

A

Table A.1 

Basic structure of ConvNet used in this 

paper. 

Structure of ConvNet 

Layer Filter height & width 

input 3 (64 ∗ 64) 

conv 64 (64 ∗ 64) 

relu 

maxpool 64 (32 ∗ 32) 

conv 128 (32 ∗ 32) 

relu 

maxpool 128 (16 ∗ 16) 

conv 256 (16 ∗ 16) 

relu 

maxpool 256 (8 ∗ 8) 

conv 512 (8 ∗ 8) 

relu 

maxpool 512 (4 ∗ 4) 

conv 1024 (4 ∗ 4) 

relu 

maxpool 1024 (2 ∗ 2) 

fc 512 1 

relu 

fc 50 1 

tanh 

fc 10/9 1 

softmax 
ing module can enable CNBB to identify more stable features and

therefore resist the negative effect brought by distribution shift to

some extent. 

We further summarize the improvement of CNBB over the best

baseline in different experiments. From Table 5 , we can clearly

find that with the discrepancy between the training and testing

data getting larger (indicated by higher NI ), CNBB gains larger im-

provement over baselines, which demonstrates the advantage of

our method in more challenging Non-I.I.D. settings. 

Finally, we analyze the hyperparameter α. α eventually plays

the role of trading-off the valid sample size and degree of batch

balancing. In theory, when α is extremely large, the weights of

samples tend to be uniform, resulting in a largest valid sample

size. When α is zero, the algorithm tends to converge to a situation

where sample weights concentrate on only a few images, although

leading to an optimal batch balancing. Both of valid sample size

and degree of batch balancing are critical for the performances of

Non-I.I.D. image classification. As in Eq. (2) , we tune the hyperpa-

rameter α with 9 values (1e3 to 5e5) in all the experiments. Taking

the case where training dominant ratio is 3:1 in Table 4 as an ex-

ample, a convex hull is clear in Fig. 10 . Along with the increasing

α, the gain of CNBB will tend to vanish eventually. The results fully

demonstrate the effectiveness of batch balancing module. 

5. Conclusion and future works 

In this paper, we introduce a new dataset NICO for promot-

ing the research on Non-I.I.D. image classification. To the best of
Please cite this article as: Y. He, Z. Shen and P. Cui, Towards Non-I.I.D. 
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ur knowledge, NICO is the first well-structured Non-I.I.D. image

ataset with reasonable scale to support the training of ConvNets.

y incorporating the idea of context, NICO can provide various

on-I.I.D. settings and create different levels of Non-IIDness con-

ciously. We also propose a simple baseline model with ConvNet

tructure for General Non-I.I.D. image classification problem, where

esting data bear agnostic distribution shift from training data. Em-

irical results clearly demonstrate the capability of NICO on train-

ng the ConvNets and the superiority of the proposed model in var-

ous Non-I.I.D. settings. 

Our future works will focus on the followings. Firstly, both qual-

ty and quantity of NICO continue to be improved. Orthogonal con-

exts, denoised images and proper area ratio of objects will be ex-

lored to make NICO more controllable to tune bias and response

o the Non-I.I.D uniquely. And we will expand the scale of dataset

rom all the levels for adequate demands. Secondly, more settings

bout different forms of Non-I.I.D are expected to be exploited. So

ther visual concepts may be added to NICO if needed and the

ays of using NICO to meet new settings will be given in de-

ail. Thirdly, more effective models will be designed for addressing

roblems in different settings of Non-I.I.D image classification. 
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Table A.2 

Data size of each context for every class in Animal superclass. 

Animal 

Bear black brown eating grass in forest in water lying on ground on snow on tree white 

245 220 133 243 169 217 97 111 70 104 

Bird eating flying in cage in hand in water on branch on grass on ground on shoulder standing 

187 203 90 94 81 239 242 276 77 101 

Cat at home eating in cage in river in street in water on grass on snow on tree walking 

274 270 109 141 177 50 140 137 50 131 

Cow aside people at home eating in forest in river lying on grass on snow spotter standing 

56 77 147 131 139 162 147 135 75 123 

Dog at home eating in cage in street in water lying on beach on grass on snow running 

92 264 122 87 139 143 280 158 238 101 

Elephant eating in circus in forest in river in street in zoo lying on grass on snow standing 

122 114 160 178 90 162 69 103 69 111 

Horse aside people at home in forest in river in street lying on beach on grass on snow running 

124 86 146 73 77 141 165 165 138 143 

Monkey climbing eating in cage in forest in water on beach on grass on snow sitting walking 

88 168 77 140 118 50 106 102 168 100 

Rat at home eating in cage in forest in hole in water lying on grass on snow running 

126 169 57 85 50 85 50 124 50 50 

Sheep aside people at sunset eating in forest in water lying on grass on road on snow walking 

50 66 116 95 71 109 132 111 87 81 

Table A.3 

Data size of each context for every class in Vehicle superclass. 

Vehicle 

Airplane around cloud aside mountain at airport at night in city in sunrise on beach on grass taking off with pilot 

87 76 153 76 55 70 104 53 128 128 

Bicycle in garage in street in sunset on beach on grass on road on snow shared velodrome with people 

143 113 134 131 219 125 163 225 220 166 

Boat at wharf cross bridge in city in river in sunset on beach sailboat with people wooden yacht 

219 190 194 265 196 168 252 143 248 281 

Bus aside traffic light aside tree at station at yard double decker in city on bridge on snow with people 

35 165 95 74 221 199 45 124 51 

Car at park in city in sunset on beach on booth on bridge on road on snow on track with people 

80 149 89 102 112 36 146 184 89 39 

Helicopter aside mountain at heliport in city in forest in sunset on beach on grass on sea on snow with people 

165 185 69 124 160 107 147 156 180 58 

Motorcycle in city in garage in street in sunset on beach on grass on road on snow on track with people 

194 148 173 157 122 99 162 134 185 168 

Train aside mountain at station cross tunnel in forest in sunset on beach on bridge on snow subway 

63 158 36 100 94 46 54 129 70 

Truck aside mountain in city in forest in race in sunset on beach on bridge on grass on road on snow 

62 77 91 134 155 97 44 78 145 117 
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