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ABSTRACT
Network embedding aims to preserve vertex similarity in an em-

bedding space. Existing approaches usually define the similarity by

direct links or common neighborhoods between nodes, i.e. struc-

tural equivalence. However, vertexes which reside in different parts

of the network may have similar roles or positions, i.e. regular

equivalence, which is largely ignored by the literature of network

embedding. Regular equivalence is defined in a recursive way that

two regularly equivalent vertexes have network neighbors which

are also regularly equivalent. Accordingly, we propose a new ap-

proach named Deep Recursive Network Embedding (DRNE) to learn

network embeddings with regular equivalence. More specifically,

we propose a layer normalized LSTM to represent each node by

aggregating the representations of their neighborhoods in a recur-

sive way. We theoretically prove that some popular and typical

centrality measures which are consistent with regular equivalence

are optimal solutions of our model. This is also demonstrated by

empirical results that the learned node representations can well

predict the indexes of regular equivalence and related centrality

scores. Furthermore, the learned node representations can be di-

rectly used for end applications like structural role classification

in networks, and the experimental results show that our method

can consistently outperform centrality-based methods and other

state-of-the-art network embedding methods.
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1 INTRODUCTION
Network embedding [12, 33–35] has aroused considerable research

interests in recent years. The fundamental problem is how to pre-

serve the vertex similarity in an embedding space, i.e. if two vertexes

are structurally similar in the original network, they should have

the similar embedding vectors. There are multiple ways to quantify

the similarity of vertexes in a network. The most common one is

structural equivalence [18]. Two vertexes are structurally equiva-

lent if they share many of the same network neighbors. Most of

previous works on network embedding aim to preserve structural

equivalence through high-order proximities [33, 35], where net-

work neighbors are extended into high-order neighbors, e.g. direct

neighbors, neighbors-of-neighbors, etc.

There are, however, many cases in which vertexes have similar

roles or occupy similar positions without any common neighbor.

For example, two mothers have the same pattern of connections

with a husband and several children. Although the two mothers

are not structurally equivalent if they do not have the same rel-

atives, they do share similar roles or positions. These cases lead

us to an extended definition of vertex similarity known as regular
equivalence. Two vertexes are defined to be regularly equivalent

if they have network neighbors which are themselves similar (i.e.

regularly equivalent) [30]. It is apparent that regular equivalence

is a relaxation of structural equivalence. Structural equivalence

promises regular equivalence, but the reverse direction does not

hold. Comparatively, regular equivalence is more flexible and ca-

pable of covering a broad range of network applications related to

structural roles or node importance, but is largely ignored by the

literature of network embedding.

In order to preserve regular equivalence in network embedding,

i.e. two regularly equivalent nodes should have similar embed-

dings, a straightforward method is to explicitly calculate the regular

equivalence of all vertex pairs and require the similarities of node

embeddings to approximate their corresponding regular equiva-

lence. But this is infeasible for large-scale networks due to the high

complexity of calculating regular equivalence. An alternative is to

replace regular equivalence into simpler graph theoretic metrics,

such as centrality measures. Although many centrality measures

have been designed to characterize the role and importance of a

vertex, one centrality can only capture a specific aspect of network

role, making it difficult to learn general and task-independent node

embeddings. Not to mention that some centrality measures, like

betweeness centrality, also bear high computational complexity.

https://doi.org/10.1145/3219819.3220068
https://doi.org/10.1145/3219819.3220068


Figure 1: A simple graph to illustrate the rationality of why
recursive embedding can preserve regular equivalence. The
nodes with the same color are regularly equivalent.

How to effectively and efficiently preserve regular equivalence in

network embedding is still an open problem.

As mentioned, the definition of regular equivalence is recursive.

This enlightens us to learn network embedding in a recursive way,

i.e. the embedding of one node is aggregated by its neighbors’ em-

beddings. In one recursive step (as shown in Figure 1), if nodes

3 and 5, 4 and 6, 7 and 8 are regularly equivalent and thus have

similar embeddings already, then nodes 1 and 2 would have similar

embeddings, leading to their regular equivalence as true. It is based

upon this idea that we propose a novel Deep Recursive Network
Embedding (DRNE) method. More specifically, we transform the

neighbors of a node into an ordered sequence, and propose a layer

normalized LSTM (Long Short Term Memory networks) [14] to

aggregate the embeddings of neighbors into the embedding of a

targeting node in a non-linear way. We theoretically prove that

some popular and typical centrality measures are optimal solutions

of our model. This is also demonstrated by empirical results that the

learned node representations can well preserve pair-wise regular

equivalence and predict the values of multiple centrality measures

for each node. The learned node representations can be directly

used for end applications like structural role classification in net-

works, and the experimental results show that our method can

consistently outperform each single centrality measure, combina-

tion of multiple centrality measures and other node representation

learning methods.

It is worthwhile to highlight the following contributions of this

paper:

• We investigate a novel problem of learning node representa-

tions with regular equivalence, which is critical for network

analysis and largely ignored in the literature of network

representation learning.

• We find an effective and efficient way to incorporate global

regular equivalence related information into node represen-

tations, and propose a novel deep model DRNE to learn node

representations by aggregating neighbors’ representations

recursively in a non-linear way.

• We theoretically prove that the learned node representations

can well preserve pair-wise regular equivalence and reflect

several popular and typical node centralities. The empirical

results also show the significant advantages of our method

over centrality measures as well as other network embedding

methods in structural role classification.

The rest of the paper is structured as follows. In the next section,

we briefly survey recent related work. Section 3 presents the pro-

posedmodel in details. Experimental results are presented in section

4. Finally, Section 5 concludes the paper with a brief discussion.

2 RELATEDWORK
Recently, network representation learning [12, 23, 33, 39, 40] arouses

considerable research interests and an elaborate survey can be

found in [8]. Most of the existing network embedding methods are

developed along the line of preserving observed pair-wise similar-

ity and structural equivalence. For example, DeepWalk [28] uses

random walk to generate sequences of nodes from a network and

exploits a language model to learn node representations by treating

the sequences as sentences. node2vec [12] extends this idea and pro-

pose a biased second order randomwalkmodel. LINE [33] optimizes

an objective function which aims to preserve both the pairwise

similarity and structural equivalence of nodes. More macroscopic

structure, the community structure, is incorporated by M-NMF [36]

into embedding methods. Furthermore, [35] claims that the under-

lying structure of the network is highly non-linear and propose a

deep auto-encoder model to preserve the first-order and second-

order proximities of network structure. Besides, some recent works,

such as [15] and [19], affiliate node attribute into the networks and

smoothly embed both attribute information and topology structure

into a low-dimensional representation. Recently there is a paucity

of works related to our targeting problem. For example, RolX [13]

enumerates various hand-crafted structural features for nodes and

finds the more suited basis vector for this joint feature space. Sim-

ilarly, struc2vec [29] measures structural similarity by defining a

certain form of centrality heuristically. The explicit calculation of

pair-wise centrality similarities makes it unscalable. None of these

methods preserve regular equivalence while learning representa-

tions.

Regular equivalence, as a relaxed notion of structural equiva-

lence, can better capture the structural information. REGE [7] and

CATREGE [7] are proposed by searching for an optimal match-

ing between the neighbors of the two vertices iteratively. Ver-

texSim [18] uses the recursive method of linear algebra to construct

the measures of similarity. But this is infeasible for large-scale

networks due to the high complexity of calculating regular equiv-

alence. Besides, centrality measures are another way to measure

the structure information of nodes in networks. A set of central-

ities [3, 20, 21] have been proposed to study how to capture the

structural information better. Since each of them only captures

one aspect of structural information, a certain centrality cannot

well support different networks and applications. In addition, the

hand-crafted manner of designing centrality measures makes them

less comprehensive to incorporate regular equivalence related in-

formation.

In summary, there is still no sound solution to learning node

representations with regular equivalence.

3 DEEP RECURSIVE NETWORK EMBEDDING
In this section, we introduce the proposed method Deep Recursive

Network Embedding (DRNE). The framework is shown in Figure 2.



Figure 2: Framework of DeepRecursive Network Embedding (DRNE). (a): Sampling neighborhoods. (b): Sorting neighborhoods
by their degrees. (c): Layer-normalized LSTM to aggregate embeddings of neighboring nodes into the embedding of the target
node. Xi is the embedding of node i and LN means layer normalization. (d): A Weakly guided regularizer.

3.1 Notations and Definitions
Given a network G = (V ,E), where V is the set of nodes and

E ∈ V ×V is the set of edges. For a node v ∈ V ,N(v) = {u |(v,u) ∈
E} is the set of its neighborhoods. The learned embeddings are

defined as X ∈ R |V |×k
where k is the dimension and Xv ∈ Rk

represents the embedding of node v . We define the degree of node

v asdv = |N(v)| and function I (x) = 1 if x ≥ 0 otherwise 0.We also

give the strict mathematical definition of structural equivalence

and regular equivalence.

Definition 3.1 (Structural Equivalence). We denote s(u) = s(v) if
nodes u and v are structurally equivalent. Then s(u) = s(v) if and
only if N(u) = N(v).

Definition 3.2 (Regular Equivalence). We denote r (u) = r (v) if
nodes u and v are regularly equivalent. Then r (u) = r (v) if and
only if {r (i)|i ∈ N(u)} = {r (j)|j ∈ N(u)}.

3.2 Recursive Embedding
According to Definition 3.2, we learn node embeddings in a recur-

sive way that the embedding of a target node can be approximated

by the aggregation of its neighbors’ embeddings. Based on this

notion, we design the following loss function:

L1 =
∑
v ∈V

| |Xv −Aдд({Xu |u ∈ N(v)})| |2F , (1)

where Aдд is the aggregating function. In one recursive step, the

learned embedding of a node can preserve the local structure of

its neighbors. By updating the learned representations iteratively,

the learned node embeddings can incorporate the their structural

information in a global sense, which is consistent with the definition

of regular equivalence.

As the underlying structures of real networks are often highly

nonlinear [22], we design a deep model, the layer normalized Long

Short-Term Memory (ln-LSTM) [2] as the aggregating function.

LSTM is known to be effective for modeling sequences. However,

the neighbors of a node have no natural ordering in networks. Here

we use the degree of nodes as the criterion to sort neighbors into

an ordered sequence, mainly because degree is the most efficient

measure for neighbor ordering and degree often plays an important

role in many graph-theoretic measures, especially those related

with structural roles such as PageRank [27] and Katz [25].

Suppose the embeddings of the ordered neighbors are {X1, X2,

..., Xt , ..., XT }. At each time step t, the hidden state ht is a function
of input embedding Xt at time t and its previous hidden state ht−1,
i.e. ht = LSTMCell(ht−1,Xt ). When the embedding sequence is

processed by the LSTMCell recursively from 1 toT , the information

of hidden representationht will bemore andmore abundant.hT can

be regarded as the aggregating representation of the neighbors. To

learn long-distance correlations in long sequence, The LSTMutilizes

gating mechanisms. The forget gate decides what information we

are going to throw away from the memory, the input gate along

with old memory decides what new information we are going to

store in the memory and output gate decides what we are going

to output based on the memory. Specifically, The LSTM transition

equation LSTMCell is the following:

ft = σ (Wf · [ht−1,Xt ] + bf ), (2)

it = σ (Wi · [ht−1,Xt ] + bi ), (3)

ot = σ (Wo · [ht−1,Xt ] + bo ), (4)

C̃t = tanh(WC · [ht−1,Xt ] + bC ), (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t , (6)

ht = ot ∗ tanh(Ct ), (7)

where σ is the sigmoid function, · and ∗ represent matrix product

and element-wise product respectively, ft , it and ot are forget gate,
input gate and output gate respectively and Ct is the cell state. W∗

and b∗ are learned parameters.

Besides, in order to avoid the problems of exploding or vanishing

gradients [14] with the long sequences as inputs, we also introduced



Layer Normalization [2]. The layer normalized LSTM makes it

invariant to re-scaling all of the summed inputs. It results in much

more stable dynamics. Particularly, it recenters and re-scales the

cell state Ct after Equation 6 using the extra normalization like

follows:

C ′
t =

д

Σt
∗ (Ct − µt ), (8)

where µt = 1/k
∑k
i=1Ct i and Σt =

√
1/k

∑k
i=1(Ct i − µt )2 are the

mean and variance of Ct , and д is gain parameter scaling the

normalized activation.

3.3 Regularization
L1 defined in Equation 1 expresses the recursive embedding pro-

cess according to Definition 3.2 without any other constraints. It

has such a strong expressive power that multiple solutions can be

derived as long as they satisfy the given recursive process. It is

risky for this model to degenerate to the trivial solution with all

the embeddings being 0. To avoid the trivial solution, we use node

degree as the weakly guided information and impose a constraint

that the learned embedding of a node should be able to approxi-

mate the degree of the node. Accordingly, we design the following

regularizer:

Lr eд =
∑
v ∈V

∥log(dv + 1) −MLP(Aдд({Xu |u ∈ N(v)}))∥2F , (9)

where dv is the degree of node v , MLP is single-layer multilayer

perceptron with rectified linear unit (ReLU) [11] activation which is

defined as ReLU (x) =max(0,x). In total, we minimize the objective

function by combining reconstruction loss of Equation 1 and the

regularizer of Equation 9:

L = L1 + λLr eд , (10)

where the λ is the weight of regularizer. Note that here the degree

information is not used as supervise information of network em-

bedding. Instead, it eventually plays an auxiliary role to induce the

solution to be far from the trivial solution. Thus, the λ here is quite

a small value.

Neighborhood Sampling. In real networks, the degree of nodes
often follow heavy-tailed distribution [9], i.e. a small number of

nodes have very high degree while the majority of nodes have very

small degree. In order to improve the efficiency, we downsample

the neighbors of nodes with large degree before inputing them into

the ln-LSTM. Specifically, we set an upper bound of the number

of the neighbors S . If the number of neighbors exceeds the upper

bound S , we downsample them into S different nodes. Figure 2 (a)

and (b) shows an example on how to sample from neighborhoods.

In power-law networks, the nodes with large degree carry more

unique structural information than the common nodes with small

degree. Thus we design a biased sampling strategy to keep the

nodes with large degree by setting the sampling probability P(v)
of node v being proportional to its degree dv , P(v) ∝ dv .

3.4 Optimization
To optimize the aforementioned model, the goal is to minimize the

overall loss L as a function of the neural network parameters set

θ and the embeddings X . Adam [16] is used to optimize these pa-

rameters. The derivatives are estimated using the BackPropagation

Through Time (BPTT) algorithm [37]. The learning rate α for Adam

is initially set to 0.0025 at the beginning of the training.

3.5 Theoretical Analysis
Our method is designed according to the recursive definition of reg-

ular equivalence. It is intuitive that the learned embedding should

be able to preserve regular equivalence and the empirical results

in section 4.3 also demonstrate it. As an additional evidence, here

we further theoretically prove that the resulted embeddings of our

method can well reflect several typical and common centrality mea-

sures which are closely related with regular equivalence. Without

loss of generality, we ignore the regularizer term in Equation 9

which is used for avoiding trivial solution.

Theorem 3.3. Degree centrality, eigenvector centrality [5], PageR-
ank centrality [27] are three optimal solutions of our model respec-
tively.

To prove Theorem 3.3, we first prove following lemmas:

Lemma 3.4. For any computable function, there exists a finite
recurrent neural network (RNN) [24] that can compute it.

Proof. This is a direct consequence of Theorem 1 in [32]. □

Theorem 3.5. If the centralityC(v) of nodev satisfies thatC(v) =∑
u ∈N(v) F (u)C(u) and F (v) = f ({F (u),u ∈ N(v)}) where f is any

computable function, then C(v) is one of the optimal solutions of our
model.

Proof. For simplicity, we suppose that all the activation function

of LSTM are linear activation. We prove this lemma by proving that

there exists a parameter setting {Wf ,Wi ,Wo ,WC , bf , bi , bo , bC }
in Equation 2-5 such that the node embedding Xu = [F (u),C(u)] is
a fixed point. We directly construct this parameter settings. Sup-

pose Wa,i donates the i-th row of Wa . With the input of sequence

{[F (u),C(u)],u ∈ N(v)}, setWf ,2 andWo,2 as [0, 0],Wi,2 as [1, 0],

WC,2 as [0, 1], bf ,2 and bo,2 as 1, bi,2 and bC,2as 0, then we can

easily obtain ht,2 = of ,2 ∗Ct,2 = Ct,2 = ft,2 ∗Ct−1,2 + it,2 ∗ C̃t,2 =
Ct−1,2 + F (t) ∗C(t). Thus hT ,2 =

∑
u ∈N(v) F (u)C(u) = C(v) where

T is the length of the input sequence. Besides, by Lemma 3.4, there

exists a parameter setting {W′
f ,W

′
i ,W

′
o ,W′

C , b
′
f , b

′
i , b

′
o , b′C } to ap-

proximate f . By set Wf ,1 as [W′
f , 0], Wo,1 as [W′

o , 0] and so on,

we can obtain that hT ,1 = f ({F (u),u ∈ N(v)}) = F (v). Thus
hT = [F (v),C(v)] and the node embedding Xv = [F (v),C(v)] is a
fixed point. This completes the proof. □

By the definitions of centralities in Table 1 with (F (v), f ({xi })),
we can easily obtain that degree centrality, eigenvector centrality,

PageRank centrality satisfy the condition of Theorem 3.5, which

completes the proof of Theorem 3.3.

According to Theorem 3.3, for any graph, there exists such a

parameter setting of our proposed method that the learned em-

beddings can be one of the three centralities. This demonstrates

the expressive power of our method in capturing different aspects

of network structural information that are related with regular

equivalence.



Table 1: Definition of centralities.

Centrality Definition C(v) F (v) f ({xi })

Degree dv =
∑
u ∈N(v) I (du ) 1/dv 1/(

∑
I (xi ))

Eigenvector 1/λ ∗
∑
u ∈N(v)C(u) 1/λ mean

PageRank

∑
u ∈N(v) 1/du ∗C(u) 1/dv 1/(

∑
I (xi ))

3.6 Analysis and Discussions
In this section, we present the out-of-sample extension and the

complexity analysis.

3.6.1 Out-of-sample Extension. For a newly arrived nodev , if its
connections to the existing nodes are known, we can directly feed

the embeddings of its neighbors into the aggregating function and

obtain the aggregated representation as the embedding of the node

with Equation 1. The complexity for such a procedure is O(dvk),
where k is the length of embeddings and dv is the degree of node v .

3.6.2 Complexity Analysis. During the training procedure, for a
single node v in each iteration, the time complexity of calculating

gradients and updating parameters is O(dvk
2), where dv is the

degree of node v , and k is the length of embeddings. Due to the

sampling process, the degree dv will not exceed the limited number

S . Thus the overall training complexity isO(|V |Sk2I ) where I is the
number of iterations. The length of embeddings k is usually set as

a small number such as 32, 64, 128. The limited number S is set as

300 in this work. And the number of iterations I is normally a small

number but independent with the number of nodes |V |. Therefore,

the complexity of training procedure is linear to the number of

nodes |V |.

4 EXPERIMENTS
In this section, We evaluate our method on different benchmarks

to prove its efficacy.

4.1 Baselines and Parameter Settings
• DeepWalk [28]: This algorithm learns node representations

by modeling a stream of short randomwalks. We set window

size as 10, walk length as 40 and walks per node as 40.

• LINE [33]: This algorithm learns feature representations

in two separate phases which preserve the first-order and

second-order proximities separately. The number of nega-

tive samples K = 5 and the mini-batch size of the stochastic

gradient descent is set to 1.

• node2vec [12]: Node2vec extends DeepWalk by proposing

a biased second order random walk model, making it more

flexible when generating the context of a node. The basic

parameter settings are the same as DeepWalk. We set p as

1 and q as 2 in node2vec to discover more neighborhood

information.

• struc2vec [29]: Struc2vec learns latent representations for the

structural identity of nodes. Due to its high computational

complexity, we use the combination of all optimizations

proposed in the paper for large networks.

• Centralities: Four popular centralities, i.e. Closeness cen-

trality [26], Betweenness centrality [4], Eigenvector central-

ity [6] and K-core [17], are used to measure node importance.

Besides, We concatenate all of the four previous centralities

into one vector as another baseline (Combined).

For our model, we generally set the length of embeddings k as 16,

the weight of the regularizer λ is 1, and the limited neighborhood

number S is 300. We will show that our model is not very sensitive

to these parameters in Section 4.5.

4.2 Network Visualization
In this section, we visualize the learned embeddings to intuitively

show that our model preserves regular equivalence.

Visualization on Barbell Network. The graph shown in Fig-

ure 3(a) consists of two complete graphs K1 and K2 connected by a

path graph P of length 10. Each complete graph has 10 nodes. {p1,
p2,...,p10} denotes the nodes of path graph P and pi connects pi+1
for i = 1, 2, ..., 9. p1 connects node b1 from K1 and p2 connects b2
from K2. As a result of the symmetry of barbell graph, there are

many node pairs with identical structural roles. All nodes from

{K1/{b1}} ∪ {K2/{b2}} should be regularly equivalent. Besides, all

node pairs (pi ,p11−i ), i = 1, ...10 and (b1,b2) should also be regu-

larly equivalent. The barbell graph is illustrated in Figure 3(a) and

the nodes are regularly equivalent.

Figure 3 shows the learned latent representations by different

baselines. From the results, we have following observations:

• We can see that the nodes from the two complete graph K1

and K2 have a large margin in the embedding spaces gen-

erated by DeepWalk, LINE and node2vec. DeepWalk and

LINE fail to preserve the structural importance, which is

natural since they only consider the pair-wise relationships.

Although node2vec could incorporate some local neighbor-

hood information, the algorithm still tend to focus on pair-

wise relationships.

• struc2vec and our proposed model DRNE achieve similar

results in this task. Both of them place nodes with similar

structural roles close in latent space. However, struc2vec only

preserves the similarities of local K-neighborhoods which

cannot reflect global structural information. Since the local

and global structural informations are fuzzy in such a small

symmetric graph, the performance of DRNE and struc2vec

cannot be differentiated. We will prove it in the next section.

Visualization on Karate Network. Karate network network

shown in Figure 4(a) is a well-known social network of a university

karate club. It captures 34 members and 78 pair-wise links between

members who interact outside the club. The learned latent repre-

sentations are shown in Figure 4. The color of nodes represents the

value of k-core, which measures the spreading efficiency of a node

and shows the global position of a node in the networks. The colors

red, light blue, light yellow, draw blue represent the k-core value

from 1 to 4 respectively.

From Figure 4, we can see that the results of DeepWalk, LINE

and node2vec are similar to those on the barbell graph. They can-

not distinguish the difference of global structures and mix them

together. The struc2vec confuses nodes with different k-core val-

ues in the right part of Figure 4(e). It is reasonable since struc2vec



(a) barbell graph (b) DeepWalk (c) LINE

(d) node2vec (e) struc2vec (f) DRNE

Figure 3: Visualization on Barbell graph. (a) Barbell graph. Latent representations in R2 learned by (b) DeepWalk, (c) LINE,
(d)node2vec, (e) struc2vec and (f) our proposed method DRNE.

(a) karate graph (b) DeepWalk (c) LINE

(d) node2vec (e) struc2vec (f) DRNE

Figure 4: Visualization on karate graph. (a) Karate graph. Latent representations in R2 learned by (b) DeepWalk, (c) LINE,
(d)node2vec, (e) struc2vec and (f) DRNE.

preserves only the similarities of local neighborhoods and cannot

capture the global structural roles. Our proposed model separates

the nodes with equivalent k-core values approximatively. From

left-top to right-bottom in Figure 4(f), the k-core value increases

gradually. This result demonstrates that our model can preserve

both the local neighborhood information and the global structural

roles information of the target networks.



Table 2: The MSE value of predicting centralities on Jazz
dataset (∗10−2)

centrality closeness betweenness eignvector k-core

DeepWalk 0.6016 3.7188 2.1543 13.2755

LINE 0.5153 4.3919 1.5072 15.8179

node2vec 1.0489 3.4065 3.9436 39.2156

struc2vec 0.2365 0.25371 1.0544 9.0858

DRNE 0.1909 0.1261 0.5267 5.5683

Table 3: TheMSE value of predicting centralities on BlogCat-
alog dataset (∗10−2)

centrality closeness betweenness eignvector k-core

DeepWalk 0.2982 1.7836 1.1194 19.7016

LINE 0.3979 1.8425 1.5167 34.9079

node2vec 0.3573 1.6958 1.1432 24.1704

struc2vec 0.2947 1.6018 1.0445 25.3047

DRNE 0.1101 0.6676 0.3108 7.7210

Figure 5: Kendall rank correlation coefficient by fitting reg-
ular equivalence on Jazz and BlogCatalog dataset.

4.3 Regular Equivalence Prediction
In this section, we evaluate whether the learned embeddings pre-

serve regular equivalence on two real world datasets, i.e. Jazz [10]

and BlogCatalog [38]:

• Jazz [10]: This dataset is the collaboration network between

Jazz musicians in 2003. Each edge denotes that twomusicians

have played together in a band. It contains 198 nodes and

2742 edges.

• BlogCatalog [38]: This is the data set crawled from BlogCat-

alog. BlogCatalog is the social blog directory which manages

the bloggers and their blogs. The edges denote two blog-

gers are friends in BlogCatalog. It contains 10312 nodes and

333983 edges.

Here we set up two tasks, including regular equivalence predic-

tion and centrality score prediction.

For the first task, we use a commonly used regular equivalence-

based similarity measure method Vertex Similarity in Network

(VS) [18] as ground truth. The pairwise similarity of two nodes is

measured by the inner product of their embeddings. We rank node

pairs by their similarities and compare the result rank with the rank

by VS. Kendall rank correlation coefficient [1] is used to measure

the correlation of these two ranks. It is defined as follows:

τ (x ,y) =
| {(i, j) |(xi−x j )(yi−yj )>0} |−| {(i, j) |(xi−x j )(yi−yj )<0} |

n(n−1)/2 .

(11)

The results are shown in Figure 5. We can see that our method out-

performs all the baselines. It demonstrates our method can preserve

regular equivalence while learning representations.

For the second task, we calculate the four mentioned central-

ities in Section 4.1 as ground truth. Then we randomly hide 20

percentage of nodes and use the remaining nodes to train a linear

regression model to predict the centrality scores based on node

embeddings. After training, we use the regression model to predict

the centralities of the held-out nodes. Mean Square Error (MSE) is

used to evaluate the performance. The MSE is defined as follows:

MSE(Y , Ŷ ) =
1

n

n∑
i=1

(Y − Ŷ )2, (12)

where Y is the observed value and Ŷ is the predicted value. Since

the scales of different centralities are significantly different, we

rescale the MSE value by dividing it by the corresponding averaged

centrality values of all nodes.

The results are shown in Table 2 and Table 3. The observations

are illustrated as follows:

• Our method achieves significant improvements over the

baselines in predicting all the four centralities. It demon-

strates that our method has powerful representation ability

to preserve structural role related information.

• Compared with other baselines, struc2vec achieves higher

improvements on small and dense Jazz dataset than on large

and sparse BlogCatalog dataset. Because struc2vec can only

capture the structural information of local neighbors, which

is not sufficient to describe the regular equivalence of two

nodes in a large and sparse network. Comparatively, our

DRNE is able to capture global structural information due to

the recursive embedding procedure. The significant differ-

ence of DRNE and struc2vec in predicting k-core can fully

demonstrate this point, considering that k-core is designed

to reflect the global position of a node in networks.

4.4 Structural Role Classification
Classification [31] is a common and important network application.

In this structural role based classification task, the labels for nodes

are more related to their structural information than to the labels

of their adjacent nodes. In this section, we evaluate the ability of

learned embeddings in predicting the structural roles of nodes in a

given network. We compare our model with not only the state-of-

the-art network embeddingmethods but also four popular centrality
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Figure 6: Average accuracy for multi-class node classifica-
tion in air-traffic network. Left: Europe air-traffic. Right:
American air-traffic

measures, including closeness centrality, betweenness centrality,

eigenvector centrality and k-core.

We evaluate these methods in two air-traffic networks, i.e. Eu-

ropean air-traffic network and American air-traffic network [29].

The nodes represent airports and the edges indicate the existence

of direct flights. The total number of landings plus takeoffs or the

total number of people that pass the airports can be used to mea-

sure their activities that reflects their structural roles in the flight

networks. One of four possible labels is assigned for each airport

by splitting their activity distribution uniformly.

After obtaining the embeddings of the airports, we train a logis-

tic regression to predict the labels based on the embeddings. We

randomly sample 10% to 90% of the nodes as the training samples

and use the left nodes to test the performance. Averaged accuracy is

used to evaluate the performance. The results are shown in Figure

6. The curves with solid line indicate network embedding methods

and the other curves with dashed line indicate centrality methods.

From the results, we have following observations:

• Our model DRNE outperforms all the other baselines on

these two datasets. It demonstrates the effectiveness of our

proposed method. Moreover, Our model outperforms the

combined centralities, it indicates that DRNE can preserve

more comprehensive regular equivalence related informa-

tion than manually defined centrality measures.

• The relative improvement of our method over the best base-

line struc2vec in American air-traffic network is more ob-

vious than that in European air-traffic network. Note that

struc2vec can only preserve the similarity of local K-neighbors,

and cannot capture the global structural information in the

larger American air-traffic network. This demonstrates the

importance of preserving global structural information as in

DRNE.

4.5 Parameter Sensitivity
In this section, we evaluate the scalability and how parameters

influence the performance. Especially, we evaluate the effect of the

embedding dimension k , the weight of regularizer λ and the upper

bound of neighborhood size S . For brevity, we report the results in
classification task with flight datasets.

4.5.1 Effect of parameter k . We show how the dimension of em-

bedding space k affects the performance in Figure 7(a). Since higher

embedding dimensions can embody more information, the perfor-

mance raises firstly when the number of embedding dimension

increases. Then after the dimension k exceeds 16, the performance

becomes stable. This demonstrates that our algorithm is insensitive

to embedding dimensions.

4.5.2 Effect of parameter λ. Figure 7(b) shows how the weight

of regularizer λ affects the performance. We select the λ from {0.1,

0.5, 1.0, 1.5, 2.0}. The performance curve is relatively stable, demon-

strating that our model is not sensitive to this parameter. This also

support our notion that the degree information is used to avoid

trivial solution, rather than supervise information for learning em-

beddings.

4.5.3 Effect of parameter S . The parameter S controls the maxi-

mum number of neighbors when sampling. As shown in Figure 7(c),

when this parameter increases in early range, the performance be-

comes better since more neighborhoods contains more structural

informations. However, the performance drops when the parame-

ter S is too large. The main reason is that the gradients explode or

vanish when the sequences are too long in an LSTM model. The

setting of parameter S needs to trade-off between the obtained in-

formation and the capacity of optimizer. In practice, we choose the

parameter as 300 so that we can obtain enough information within

the capacity of the optimizer.

4.6 Scalability
To testify the scalability, we test training time per epoch. The result

is shown in Figure 8. The parameters of struc2vec are set as the

default value with all proposed optimizations reported in [29]. We

can observe that the training time of our model scales linearly

with the number of nodes, and the slope of the curve is close to 1

(the bottom dashed line). struc2vec scales super-linearly (closer to

n1.5), and the slope of the curve is close to 1.5 (the top dashed line).

Our model DRNE is much faster than struc2vec by several order

of magnitude. This result conforms to the complexity analysis in

Section 3.6.2 and proves that our proposed methods is linear to the

number of nodes and can scale to large graphs.

5 CONCLUSION
In this paper, we propose a novel deep model to learn node repre-

sentations with regular equivalence in networks. Assuming that

the regular equivalence information of a node has been encoded by

the representations of its neighboring nodes, we propose a layer

normalized LSTM model to learn node embeddings recursively. For

a given node, the structural importance information of far-distance

nodes can be recursively propagated to its neighbor nodes and

thus can be embedded into its embeddings. Therefore, the learned

node embeddings can reflect their structural information in a global

sense, which is consistent with regular equivalence and central-

ity measures. The empirical results demonstrate that our method

can significantly and consistently outperform the state-of-the-art

algorithms.
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number of neighbors S .
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