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ABSTRACT
Current recommender systems have achieved great successes in
online services, such as E-commerce and social media. However,
they still suffer from the performance degradation in real scenar-
ios, because various biases always occur in the generation process
of user behaviors. Despite the recent development of addressing
some specific type of bias, a variety of data bias, some of which
are even unknown, are often mixed up in real applications. Al-
though the uniform (or unbiased) data may help for the purpose
of general debiasing, such data can either be hardly available or
induce high experimental cost. In this paper, we consider a more
practical setting where we aim to conduct general debiasing with
the biased observational data alone. We assume that the observa-
tional user behaviors are determined by invariant preference (i.e. a
user’s true preference) and the variant preference (affected by some
unobserved confounders). We propose a novel recommendation
framework called InvPref which iteratively decomposes the invari-
ant preference and variant preference from biased observational
user behaviors by estimating heterogeneous environments corre-
sponding to different types of latent bias. Extensive experiments,
including the settings of general debiasing and specific debiasing,
verify the advantages of our method.
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1 INTRODUCTION
Recommender systems play a vital role in alleviating information
explosion on the web [17, 38]. The research community have pro-
posed plenty of recommendation techniques [33]. In recent years,
further efforts are devoted to integrate the powerful expression
ability of deep neural networks (DNN) [3] and graph convolution
networks (GCN) [16] into recommendation frameworks. Despite
their promising performances, real-world recommender systems
usually suffer from various types of biases that occur in the gen-
eration process of user behaviors. For example, user behaviors
are easily impacted by the exposure policy of a recommender sys-
tem (i.e. exposure bias [20]) or other users’ actions (i.e. conformity
bias [34]); popular items may have more chances to be clicked
(i.e. popularity bias [13]); the demographic, spatial and temporal
heterogeneity in population induces the shift of user or item distri-
butions (i.e. out-of-distribution recommendation[10]). The existing
recommender systems tend to unconsciously remember the variant
patterns from the biased observational data in the training phase,
and hence perform poorly when deployed in a testing environment
where the learned biased patterns produce negative effects.

In recent years, debiasing has become a research foci in the field
of recommendation. A variety of methods are proposed to address
a specific type of bias. For example, [28] reweights samples using
the frequency of items to balance the popularity; a data imputation
method [26] estimates the pseudo-labels for user-item interaction
to alleviate the problem of data missing not at random; [40] utilizes
expert knowledge to model the generation mechanism of specific
bias and remove its effect consequently; etc. However, various types
of data biases are often mixed up in real scenarios (e.g. a user’s
purchase behavior may be influenced by both popularity bias and
exposure bias). In addition, some unknown types of bias that are
difficult to predefine indeed exist in the complex feedback loop of
recommendation. Therefore, a more pragmatic setting is general
debiasing, aiming to achieve a model against multiple types of
(known or unknown) biases simultaneously.

With the goal of general debiasing, a stream of methods intro-
duces the unbiased uniform data which is collected by a random
logging policy, to supervise the training of models on biased data. To
name afew, knowledge distillation methods [5, 7, 21] train a teacher
model on the uniform dataset and then use it to guide the base
model trained on biased dataset; IPS-based methods [28] reweights
the samples from biased distribution to the unbiased distribution
by the estimated inverse propensity score (IPS) using auxiliary uni-
form data. However, such uniform data can either be unavailable or
induce high cost through experimental interventions. Some recent
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research attempt to deal with the general debiasing problem with
observational biased data alone [22, 36], but they require that all
the information determining user behaviors are observed, which is
often infeasible due to the existence of unobserved confounders1
[29]. For example, marketing policy apparently influences the user
preference to an item, but it is usually not encoded in user or item
profiles. Hence, it is demanded to address the latent bias induced
by unobserved confounders for general debiasing.

In this paper, we provide a generic conceptual framework of
data generation in recommendation from a view of causal graph
(as shown in Figure 1), where the observational user behaviors
are caused by invariant preference (i.e. the true preference) and
variant preference affected by latent confounders. Motivated by the
recent progress on invariant learning [4, 15, 24], we capture the
unobserved confounders through estimating pseudo environments
labels as the agents, and propose a novel Invariant Preference Learn-
ing (InvPref) framework to implement the conceptual framework.
Specifically, we estimate the pseudo labels of heterogeneous envi-
ronments via clustering in the user-item representation space, and
differentiate the invariant preference (i.e. environment-irrelevant
preference) and the variant preference (i.e. environment-relevant
preference) from observational behaviors in a way of adversarial
learning. As the invariant/variant preference learning step and the
environment estimation step can promote each other, we design
an iterative optimization process in our method. Extensive experi-
mental results from real-world datasets clearly demonstrate that
our method outperforms the benchmark models significantly in
multiple biased recommendation scenarios. Our implementation
can be found at https://github.com/AIflowerQ/InvPref_KDD_2022.

The main contributions of this paper are as follows:
• We investigate the new problem of general debiasing in
recommender systems when only the biased training data
with latent bias is available.
• We provide a generic conceptual framework of data genera-
tion in recommendation from a view of causal graph, where
the latent bias are described as latent confounding.
• We propose a novel Invariant Preference Learning (InvPref)
method which iteratively differentiate the invariant pref-
erence and variant preference from observational biased
behaviors.
• We conduct extensive experiments, including general debias
and specific debias scenarios, to verify the advantages of our
proposal.

2 RELATEDWORK
2.1 Debiasing in Recommender
As academia and industry gradually pay attention to the bias prob-
lem in recommendation scenarios, more and more debiasing meth-
ods have been proposed. These methods can be divided into two
streams. The first stream of methods is designed for specified bi-
ases based on expert knowledge: 1) IPS based method[27, 39]. This
class of methods performs debiasing by reweighting the samples.
For example, [13] reweights each sample based on the popularity
of the items, thereby mitigating the problem of popularity bias;

1A confounder can be regarded as a variable corresponding to a source of bias.

[27] derives an unbiased estimate of binary feedback modeling
for recommender systems, based on the idea of positive unlabeled
learning, so that it can reduce the popularity and exposure biases.
2) Data Imputation[11, 25]. These methods estimate pseudo-labels
for missing interactions to solve the Missing-Not-At-Random prob-
lem. [11] based on the assumption that the probability of users’
selection on items depends on users’ rating values for that item,
jointly modeling rating and missing data mechanism to alleviate
the selection bias. 3) Generative modeling[37, 40]. Such methods
model the mechanism of specific biases generation based on ex-
pert knowledge and eliminate the influence of bias in the inference
stage. For example, [32] models the causes of click bias in news
recommendation scenarios. In real production, there are often mul-
tiple or even unknown biases in the training data, which makes
it impractical to design a dedicated debiasing algorithm for each
bias. To make matters worse, different types of biases can be mixed.
This makes this stream of methods potentially difficult to deal with
real-world scenarios.

The second stream of methods is called unbiased data augmen-
tation methods. This stream of methods introduces an unbiased
uniform dataset (collected by a random logging policy)[28] to su-
pervise the training process of the model on biased data. There are
currently two main research lines for this type of method: 1)Knowl-
edge Distillation [5, 7, 21]. This line of methods train a teacher
model on an unbiased uniform dataset to guide the training process
on biased data. For example, [7] uses a uniform data set to optimize
the debiasing parameters by solving the double-layer optimization
problem with meta-learning technique; [21] and [5] train a teacher
model same with the base model on the uniform dataset to guide
the training of the base model. 2) IPS-based[27, 28]. This line of
methods study how to make the biased distribution of the training
data approximate the unbiased distribution of the uniform data by
sample reweighting. For example, [28] estimates the IPS for each
sample based on Naive Bayes using a small amount of uniform data.
However, the strategy of random recommendation can seriously af-
fect the user experience and may require large costs, and sufficient
scale and reliable unified data are often inaccessible.

At present, there are some researches on using Information
Bottleneck[31] to solve the problem of General Debiasing without
uniform data[22, 36]. These methods model the biases introduced
by the recommender policy itself based on causal graph, and use
Information Bottleneck technique to learn latent vector without the
information of recommender policy. These methods lack modeling
the influence of side information (e.g. season and public opinion)
on user preference. However, in real scenarios, there are various
sources of biases, and factors such as seasons and public opinion
will cause large biases in the user’s preference.

2.2 Invariant Learning
Invariant learning[4, 6, 24] assumes that there is heterogeneity in
observed data, that is, observed data originate from multiple differ-
ent environments. There are differences in the distribution of data in
environments. The goal of Invariant learning is to capture represen-
tations with invariant predictive ability across environments. [18]
theoretically and systematically analyzes the assumption strength
of existing invariant learning methods, and theoretically relaxes the
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푼:User representation, e.g., age 
and history of interaction.

푽: Item representation, e.g.,price 
and history of interaction.

푴:User invariant true preference 
for a specific item.

푨:User varitant preference for a 
specific item.

풀:Observed user reflects to item,  
e.g., click or rating score.

푪:Set of confounders.
푬:Environment, which is the 

agents of 푪.

Figure 1: Causal Graph View of Recommendation Bias

previous invariance assumption and proposes a corresponding solu-
tion. [2] prove that a form of the information bottleneck constraint
along with invariance helps address key failures of IRM[4]-based
methods, and propose a solution combining invariant learning
and information bottleneck. [23] propose a practical and easy-to-
implement weighting method to capture invariance for better gen-
eralization. [15] heuristically analyzes IRM failures and proposes
an alternative invariance penalty by revisiting the Gramian matrix
of the data representation.

3 METHOD
In this section, we first analyze the data generation in recommen-
dation scenarios where bias occurs owing to the confounders, from
a view of causal graph. Then we will introduce the details of our
proposed framework Invariant Preference Learning, which utilizes
the environment as the agents of confounders.

3.1 Causal View of Bias in Recommendation
To study the general biasing problem, we define a causal graph to
describe the generation of observational user behaviors in Figure
1. Note that we use capital letters (eg, U), lowercase letters (eg, 𝑢),
and calligraphic font letters (eg,U) to denote a variable, its specific
value, and sample space, respectively. In particular,
• U represents the user node, which contains the user’s behav-
ior history and profile (e.g. age and occupation).
• V represents the item node, which contains the history of
feedback from users and the profile (e.g. price and category).
• M represents the invariant true preference of user for item,
and the preference is a representation.
• A represents the variant user preference for the item affected
by latent confounders.
• Y represents the user feedback on the item in the observa-
tional data.
• C represents the set of confounders that may cause biases
in the observational data.
• E represents the environment which is the agents for C.

The distribution of observational data 𝑃 (𝑌,𝑈 ,𝑉 ) = 𝑃 (𝑌 |𝑈 ,𝑉 ) ·
𝑃 (𝑈 ,𝑉 ), where 𝑃 (𝑌 |𝑈 ,𝑉 ) denotes the generation mechanism of
users’ feedback 𝑌 . The estimation of 𝑌 is always biased because
𝑃 (𝑌 |𝑈 ,𝑉 ) is inevitably affected by the confounders𝐶 in recommen-
dation scenario, e.g. the marketing policy or recommender system
itself. However, the regular patterns in user behaviors imply that it
naturally assumes users’ feedback is determined by an invariant

Table 1: Notation and Definitions

Notation Annotation

𝐷 The training dataset.
𝐿 Size of embedding.

𝑢, 𝑣, 𝑒 The label of user, item and environment.
s, t, q ∈ R𝐿 The embedding of user, item and environment.
S,T,Q The embedding set of user, item and environment.
𝑦𝑢,𝑣 The truth feedback in observed data.

m, a ∈ R𝐿 The invariant and variant preference.
𝑃𝑒 (𝑌 |𝑈 ,𝑉 ) The condition distribution of environment 𝑒 .

truth preference𝑀 (i.e.𝑀 ⊥⊥ 𝐶 |𝑈 ,𝑉 ), and another variant prefer-
ence 𝐴 reflecting his/her received disturbance from confounders.
As a result, we can generally formulate the observational user
behaviors as in Figure 1. Then the confounders 𝐶 will jointly in-
fluence user 𝑈 , item 𝑉 , and variant preference 𝐴. To address the
confounders, especially the unobserved ones, it is needed to em-
ploy agents of them from observational data. Here, we make the
Assumption 1 as follows.

Assumption 1. The training data 𝐷𝑒 B {(𝑦𝑒𝑗 , 𝑢
𝑒
𝑗
, 𝑣𝑒

𝑗
)}𝑛𝑒

𝑗=1
is col-

lected from heterogeneous environments 𝑒 ∈ E. The sample {(𝑦𝑒
𝑗
, 𝑢𝑒

𝑗
, 𝑣𝑒

𝑗
)}

from the environment 𝑒 follows the distribution 𝑃𝑒 (𝑌,𝑈 ,𝑉 ) of en-
vironment 𝑒 . ∀𝑒1, 𝑒2 ∈ E, 𝑒1 ≠ 𝑒2 ⇔ 𝑃𝑒1 (𝑌,𝑈 ,𝑉 ) ≠ 𝑃𝑒2 (𝑌,𝑈 ,𝑉 ).
And for any environment 𝑒 ∈ E, environment 𝑒 contains bias ⇔
𝑃𝑒 (𝑌,𝑈 ,𝑉 ) ≠ 𝑃𝜇 (𝑌,𝑈 ,𝑉 ), where 𝑃𝜇 (𝑌,𝑈 ,𝑉 ) is the ideal unbiased
data distribution.

The heterogeneity of environment can regared to be caused by
confounders. As a result, we can directly use it as the agents of
confounders, and make some modifications to the original graph.
We changed the original 𝐶 to the 𝐸 for the environment. As a
result, we propose a novel Invariant Preference Learning framework
according to the causal graph we defined, to solve the general
debiasing problem.

Problem 1 (General Debiasing Problem). Given heterogeneous
training data 𝐷 = {𝐷𝑒 } collected from multiple environments 𝑒 ∈ E
without explicit labels, the task is to exploit the latent heterogeneity
inside data and capture the invariant preference for general debiasing.

3.2 Framework
In order to address the General Debiasing problem in recommen-
dation, we propose a general debiasing framework named InvPref,
which consists of two interactive stages as follows:
• Environment Inference In order to exploit the latent
heterogeneity inside data, InvPref proposes to generate en-
vironments with a clustering algorithm based on 𝑝𝑒 (𝑦 |𝑢, 𝑣).
Specifically, given a (𝑢, 𝑣) pair, we infer its feedback 𝑦𝑢,𝑣,𝑒
under each environment 𝑒 and select the environment 𝑒𝑢,𝑣
corresponding to the result closest to 𝑦𝑢,𝑣 , which is the true
feedback of (𝑢, 𝑣).
• Invariant Preference Learning Given the learned envi-
ronments, we capture invariant and variant preference via
adversarial learning. Specifically, we use different embed-
dings to capture the invariant preference, variant preference
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Figure 2: The Framework of InvPref.

and latent environments respectively. To learn discrimina-
tive and invariant true user preference across multiple en-
vironments, InvPref jointly optimizes the recommendation
task and an environment classifier which is only used in the
training phase.

InvPref alternates the above two processes, making them recipro-
cally resonate. In testing, we only use the learned invariant pref-
erence to make prediction, which can greatly resist the influence
brought by potential biases. For clarity, we will introduce the In-
variant Preference Learning stage and Environment Inference stage
respectively in the following sections.

3.3 Invariant Preference Learning
We use s𝑖𝑛𝑣𝑢 ∈ R𝐿 and t𝑖𝑛𝑣𝑣 ∈ R𝐿 to denote the invariant embeddings
of user 𝑢 and item 𝑣 , respectively. Given 𝑢 and 𝑣 as inputs, the
invariant preference m𝑢,𝑣 of user 𝑢 for item 𝑣 is modeled as the
Hadamard product of user’s invariant preference embedding s𝑖𝑛𝑣𝑢

and item’s invariant embedding t𝑖𝑛𝑣𝑣 :

m𝑢,𝑣 = s𝑖𝑛𝑣𝑢 ⊙ t𝑖𝑛𝑣𝑣 (1)

which characterizes the invariant interaction between the user 𝑢
and item 𝑣 . With the invariant preferencem𝑢,𝑣 , we can calculate
the feedback 𝑦𝑚𝑢,𝑣 of user 𝑢 to item 𝑣 , which only depends on the
invariant preference:

𝑦𝑚𝑢,𝑣 = 𝜙𝑟 (m𝑢,𝑣), (2)

where 𝜙𝑟 (·) denotes the feedback predicting function and takes
different forms in explicit and implicit feedback:

𝜙𝑟 (x) =
{
x𝑇 1𝐿 for explicit feedback;
Sigmoid(x𝑇 1𝐿) for implicit feedback.

(3)

To capture discriminative and invariant true user preference
across multiple environments, we need to simultaneously maximize
the predictive power of M to Y and minimize the environment
information in M.

(1) In order to optimize the predictive ability ofM to Y and facilitate
the use of Y𝑚 for specific recommendation tasks (e.g. rank and
rate predict), InvPref uses the observed feedback Y as supervision
information to optimize the loss term

L𝑖𝑛𝑣 =
1
|𝐷 |

∑︁
(𝑢,𝑣) ∈𝐷

ℓ𝑟𝑒𝑐 (𝑦𝑚𝑢,𝑣, 𝑦𝑢,𝑣), (4)

where ℓ𝑟𝑒𝑐 denotes the loss function in recommendation task, and
we use mean square error (MSE) for explicit feedback and binary
cross entropy loss (BCE) for implicit feedback.
(2) In order to guarantee the invariance across environments, we
need to filter environment information. In other words, invariant
preference should be able to confuse the classifier so that a well-
trained classifier cannot predict the environment label of the sample.
Inspired by Domain Generalization methods[8, 9, 19], we adopt the
domain adversarial learning.

We define a classifier 𝜙𝑐 parameterized by 𝜃𝑐 that identifies
sample environment labels using invariant preference and uses
cross entropy loss which is denoted as CE to measure the quality
of the classification.

L𝑒𝑛𝑣 =
1
|𝐷 |

∑︁
(𝑢,𝑣) ∈𝐷

CE(𝜙𝑐 (m𝑢,𝑣), 𝑒𝑢,𝑣) (5)

The goal of the classifier is to identify the environment labels of
the samples, i.e., to minimize the L𝑒𝑛𝑣 , while the goal ofm𝑢,𝑣 is to
confuse the classifier, i.e., to maximize the L𝑒𝑛𝑣 . In summary, the
goal of adversarial learning is

min
𝜙𝑐

max
S𝑖𝑛𝑣 ,T𝑖𝑛𝑣

L𝑒𝑛𝑣 (6)

where we maximize the L𝑒𝑛𝑣 with respect to S𝑖𝑛𝑣 and T𝑖𝑛𝑣 since
M = S𝑖𝑛𝑣 ⊙ T𝑖𝑛𝑣 .

In summary, the overall objective function of our invariant pref-
erence learning stage is:

L𝑝𝑟𝑒 𝑓 = L𝑖𝑛𝑣 − 𝛼 · L𝑒𝑛𝑣 (7)
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Algorithm 1 Invariant Preference Learning (InvPref)

Input: Training dataset 𝐷 consist of (𝑢, 𝑣) pairs.
Output: Invariant user embeddings S𝑖𝑛𝑣
and item embeddings T𝑖𝑛𝑣 .
Initialize S𝑖𝑛𝑣,T𝑖𝑛𝑣, S𝑣𝑎𝑟 ,T𝑣𝑎𝑟 ,Q, 𝜃𝑐 .
Random assign environment label for each (𝑢, 𝑣).
while not converged do

Stage 1: Invariant Preference Learning: Update S𝑖𝑛𝑣 , T𝑖𝑛𝑣 , 𝜃𝑐
according to Equation10 ∼ 12.
Stage 2: Environment Inference:
M Step: Fit models according to Equation 16, update

S𝑖𝑛𝑣,T𝑖𝑛𝑣, S𝑣𝑎𝑟 ,T𝑣𝑎𝑟 ,Q.
E Step·: Reallocate environment labels according to Equa-

tion 17.
end while
return: S𝑖𝑛𝑣andT𝑖𝑛𝑣 .

where 𝛼 is the hyper-parameter to balance the two loss. We aim to
find the saddle point 𝜃𝑐 , S,T such that

(S,T) = argmin{L𝑖𝑛𝑣 − 𝛼 · L𝑒𝑛𝑣}, (8)
𝜃𝑐 = argminL𝑒𝑛𝑣 . (9)

which can be obtained with the following gradient updates:

S← S − 𝜇
(
𝜕L𝑖𝑛𝑣
𝜕S

− 𝛼 𝜕L𝑒𝑛𝑣
𝜕S

)
, (10)

T← T − 𝜇
(
𝜕L𝑖𝑛𝑣
𝜕T

− 𝛼 𝜕L𝑒𝑛𝑣
𝜕T

)
, (11)

𝜃𝑐 ← 𝜃𝑐 − 𝜇𝛼
𝜕L𝑒𝑛𝑣
𝜕𝜃𝑐

, (12)

where 𝜇 is the learning rate.
In wide scenarios, it is convenient to update stationary points

with the help of gradient descent optimizers which are provided
by many mature machine learning frameworks. However, it is in-
feasible to directly update Equations(10-12) by gradient descent
algorithms. There is a little but important difference between them
and jointly optimizing a recommender model and an environment
classifier by gradient descent, that the gradients for recommenda-
tion and domain prediction are subtracted, not summed.

Inspired by [9], we introduce the gradient reversal layer(GRL)
betweenM and 𝜙𝑐 to make it is possible to update Equations(10-12)
by using gradient descent optimizers.

3.4 Environment Inference
In order to exploit the latent heterogeneity, InvPref proposes to
generate environments based on 𝑝𝑒 (𝑦 |𝑢, 𝑣), for which we design an
EM-based clustering algorithm. The clustering algorithm consists
of two steps. In M step, we use multiple models to fit the data from
the corresponding environment, and then in E step, we reallocate
the environment labels according to learned models. For simplicity,
the environment label 𝑒𝑢,𝑣 of sample (𝑢, 𝑣) is abbreviated as 𝑒 .
(1) Prediction Model
We use s𝑣𝑎𝑟𝑢 ∈ R𝐿 and t𝑣𝑎𝑟𝑣 ∈ R𝐿 to denote the variant embeddings
of user 𝑢 and item 𝑣 respectively, for capturing variant preferences
which affected by environment. For environment 𝑒 we use q𝑒 ∈ R𝐿

to denote its corresponding embedding. Given 𝑢 and 𝑣 as inputs,
the variant preference a𝑢,𝑣,𝑒 of user 𝑢 for item 𝑣 in environment 𝑒
is defined as the Hadamard product of s𝑣𝑎𝑟𝑢 , t𝑣𝑎𝑟𝑣 and q𝑒 :

a𝑢,𝑣,𝑒 = s𝑣𝑎𝑟𝑢 ⊙ t𝑣𝑎𝑟𝑣 ⊙ q𝑒 (13)

which models the variant interaction between user, item and envi-
ronment.

Similar to the calculation of 𝑦𝑚𝑢,𝑣 which is the feedback decided
by invariant preference𝑚𝑢,𝑣 , we can calculate the user’s feedback
𝑦𝑎𝑢,𝑣,𝑒 which is only decided by variant preference a𝑢,𝑣,𝑒 .

𝑦𝑎𝑢,𝑣,𝑒 = 𝜙𝑟 (a𝑢,𝑣,𝑒 ) = 𝜙𝑟 (s𝑣𝑎𝑟𝑢 ⊙ t𝑣𝑎𝑟𝑣 ⊙ q𝑒 ) . (14)

Since the feedback 𝑦𝑢,𝑣,𝑒 in the observed data is affected by both
𝑀𝑢,𝑣 and 𝐴𝑢,𝑣,𝑒 , we construct a fusion function 𝑓 (·, ·) to predict
𝑦𝑢,𝑣,𝑒 by 𝑦𝑚𝑢,𝑣 and 𝑦𝑎𝑢,𝑣,𝑒

𝑦𝑢,𝑣,𝑒 = 𝑓 (𝑦𝑚𝑢,𝑣, 𝑦𝑎𝑢,𝑣,𝑒 ) =
{
𝑦𝑚𝑢,𝑣 + 𝑦𝑎𝑢,𝑣,𝑒 explicit feedback;
𝑦𝑚𝑢,𝑣 × 𝑦𝑎𝑢,𝑣,𝑒 implicit feedback.

(15)

(2) M Step
In M step, we fit the models to the user’s behavior across environ-
ments for environment clustering, which gives that:

L𝑣𝑎𝑟 =
∑︁

𝑒∈E𝑙𝑒𝑎𝑟𝑛

1
|𝐷𝑒 |

∑︁
(𝑢,𝑣) ∈𝐷𝑒

ℓ𝑟𝑒𝑐 (𝑦𝑢,𝑣,𝑒 , 𝑦𝑢,𝑣) (16)

where E𝑙𝑒𝑎𝑟𝑛 denotes the environments learned in E step, 𝐷𝑒 de-
notes the data from environment 𝑒 and ℓ𝑟𝑒𝑐 is the loss function
for the recommendation task. In M step, we minimize the L𝑣𝑎𝑟

with respect to the embeddings of users, items and environments
to better fit the data from each environments respectively.
(3) E Step
In E step, given |E𝑙𝑒𝑎𝑟𝑛 | models which jointly fit the training data,
we reallocate the environment label of each data point according
to their loss with respect to each model (which can be viewed as
the distance between the data point and the centre of the cluster):

𝑒𝑢,𝑣 ← arg min
𝑒∈E𝑙𝑒𝑎𝑟𝑛

{ℓ𝑟𝑒𝑐 (𝑦𝑢,𝑣,𝑒 , 𝑦𝑢,𝑣)} (17)

In summary, as for the environment inference, we iteratively
run M step and E step to obtain the learned environments E𝑙𝑒𝑎𝑟𝑛
as well as better embeddings of users, items and environments.

Remark 1 (Joint Optimization of the Whole Framework).
For clarity, we introduce the two stages of the proposed InvPref frame-
work respectively, while these two stages are jointly optimized. The
overall objective function of InvPref is given as:

L𝑚𝑎𝑗𝑜𝑟 = L𝑝𝑟𝑒 𝑓 + 𝛽 · L𝑣𝑎𝑟 (18)

As for the optimization of embeddings of users, items and environ-
ments, we directly perform gradient descent with L𝑚𝑎𝑗𝑜𝑟 , since the
clustering loss L𝑣𝑎𝑟 also affects the embeddings. As for the environ-
ment inference, we generate new environments according to the above
mentioned EM-based clustering algorithm. The pseudo-code of InvPref
is shown in Algorithm 1.

Remark 2 (Testing phase). Although we model both the in-
variant preference and the variant preference in our framework, in
testing phase, we only use the learned invariant preference to make
predictions, which we think is unbiased and can resist the potential
distributional shifts.



KDD ’22, August 14–18, 2022, Washington, DC, USA Zimu Wang et al.

Table 2: Implicit feedback without Uniform Data. InvPref achieves the best performance with a remarkable improvement.

Dataset Yahoo Coat

Top-K
NDCG Recall NDCG Recall

top3 top5 top7 top3 top5 top7 top3 top5 top7 top3 top5 top7

MF 0.519 0.589 0.641 0.554 0.728 0.857 0.338 0.372 0.409 0.252 0.373 0.484
IPS-B 0.528 0.601 0.653 0.561 0.741 0.871 0.357 0.384 0.422 0.270 0.381 0.492

SNIPS-B 0.531 0.608 0.658 0.562 0.752 0.877 0.356 0.385 0.425 0.268 0.384 0.498
Rel-B 0.537 0.608 0.656 0.584 0.762 0.880 0.353 0.397 0.430 0.275 0.419 0.520
ATMF 0.535 0.605 0.656 0.572 0.746 0.874 0.350 0.381 0.418 0.263 0.382 0.485
DR-B 0.535 0.605 0.656 0.569 0.744 0.869 0.360 0.386 0.424 0.271 0.381 0.493
DRJL-B 0.537 0.610 0.661 0.572 0.752 0.878 0.327 0.376 0.404 0.248 0.403 0.495
CVIB 0.540 0.614 0.660 0.572 0.755 0.869 0.356 0.389 0.426 0.269 0.391 0.497

InvPref 0.588 0.654 0.697 0.622 0.790 0.896 0.410 0.452 0.488 0.322 0.470 0.576

4 EXPERIMENT
We conduct experiments in real-world datasets, including both
general and specific bias, to evaluate the performance of InvPref,
in comparison with benchmark methods. Our experiments aim to
answer the following questions.
• RQ1: Does InvPref outperform other debias methods?
• RQ2: Does InvPref address various specific biases?
• RQ3: Does the environment act as the agents of confounders?
• RQ4: How does the environment inference influence invari-
ant preference learning?

4.1 Experimental Setup
In this section we detail datasets used and baselines compared.

4.1.1 Dataset.

• Yahoo2 & Coat3. Both datasets consist of a biased dataset of
normal user interactions, and an unbiased uniform dataset
collected by a random logging strategy. The interaction be-
tween user and item is that user rates item (rate 1-5). We
randomly sample 10% of the uniform dataset for use by meth-
ods that require uniform data, and the remaining 90% as test
data (In the comparison with methods that do not require
data for training, we use all uniform data for test). In implicit
feedback, we treat interactions with scores ≥ 4 as positive
samples, and negative samples are collected from all possible
user-item pairs (regardless of whether user-item pairs are
observed or not) by a random sampling strategy. In explicit
feedback, we predict the user’s rating (1-5) for the item.
• MovieLens-1M4. This dataset contains user ratings (1-5)
for movies. We treat interactions with ratings ≥ 4 as positive
samples to construct implicit feedback, a more common sce-
nario in reality. We construct test data without popularity
bias according to the method of [37], and its sample size
accounts for 20% of the total data. The rest of the data is used
for training.

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=3
3https://www.cs.cornell.edu/~schnabts/mnar/
4https://grouplens.org/datasets/movielens/1m/

• MIND5. It is a widely used news dataset. It records which
news is exposed to users and which news users click on. In
the test phase, we use the set of news which exposed to users
as item pool. Thus, we eliminate exposure bias in testing.
For detail, we randomly sample 20% of the exposed items
clicked by users as test data and the rest as training data.

4.1.2 Evaluation metrics. We use the following metrics to measure
the performance of the model under implicit feedback.

NDCG@𝐾 measures the quality of recommendation through
discounted importance based on position.

𝐷𝐶𝐺𝑢@𝐾 =
∑︁

(𝑢,𝑣) ∈𝐷𝑡𝑒𝑠𝑡

𝐼 (𝑧𝑢,𝑣 ≤ 𝐾)
𝑙𝑜𝑔(𝑧𝑢,𝑣 + 1)

𝑁𝐷𝐶𝐺@𝐾 =
1
|U|

∑︁
𝑢∈U

𝐷𝐶𝐺𝑢@𝐾
𝐼𝐷𝐶𝐺𝑢@𝐾

,

where 𝐼𝐷𝐶𝐺𝑢@𝐾 is the ideal 𝐷𝐶𝐺𝑢@𝐾 , U is the space of users,
𝐷𝑡𝑒𝑠𝑡 is the test data, and 𝑧𝑢,𝑣 is the position of item 𝑣 in the rec-
ommended rank for user 𝑢.

Recall@𝐾 measures how many items recommended to user will
be interacted.

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾 =

∑
(𝑢,𝑣) ∈𝐷𝑡𝑒𝑠𝑡

𝐼 (𝑧𝑢,𝑣 ≤ 𝐾)
|𝐷𝑢

𝑡𝑒𝑠𝑡 |

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
1
|U|

∑︁
𝑢∈U

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝐾,

where 𝐷𝑢
𝑡𝑒𝑠𝑡 is the set of all interactions of the user 𝑢 in test data

𝐷𝑡𝑒𝑠𝑡 .
In explicit feedback, we use two commonly used distance eval-

uation metrics including Mean Squared Error (MSE) and Mean
Absolute Error (MAE).

𝑀𝑆𝐸 =
1

|𝐷𝑡𝑒𝑠𝑡 |
∑︁

(𝑢,𝑣) ∈𝐷𝑡𝑒𝑠𝑡

(𝑦𝑢,𝑣 − 𝑦𝑢,𝑣)2 .

𝑀𝐴𝐸 =
1

|𝐷𝑡𝑒𝑠𝑡 |
∑︁

(𝑢,𝑣) ∈𝐷𝑡𝑒𝑠𝑡

|𝑦𝑢,𝑣 − 𝑦𝑢,𝑣 |.

5https://paperswithcode.com/dataset/mind

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=3
https://www.cs.cornell.edu/~schnabts/mnar/
https://grouplens.org/datasets/movielens/1m/
https://paperswithcode.com/dataset/mind
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Table 3: Implicit Feedback with Uniform Data. InvPref outperforms all compared baselines.

Dataset Yahoo Coat

Top-K
NDCG Recall NDCG Recall

top3 top5 top7 top3 top5 top7 top3 top5 top7 top3 top5 top7

MF 0.513 0.587 0.637 0.557 0.739 0.862 0.331 0.360 0.402 0.258 0.375 0.485
IPS-U 0.524 0.603 0.650 0.564 0.756 0.874 0.308 0.348 0.384 0.243 0.370 0.470

SNIPS-U 0.528 0.606 0.654 0.567 0.757 0.875 0.326 0.353 0.389 0.255 0.354 0.467
Rel-U 0.531 0.607 0.654 0.591 0.768 0.882 0.350 0.394 0.428 0.287 0.426 0.524
DR-U 0.532 0.609 0.655 0.571 0.760 0.874 0.342 0.373 0.409 0.267 0.385 0.486
DRJL-U 0.529 0.607 0.652 0.571 0.769 0.874 0.328 0.376 0.403 0.258 0.392 0.488
CausE 0.527 0.601 0.652 0.572 0.753 0.880 0.338 0.366 0.405 0.275 0.379 0.483
KD 0.536 0.610 0.657 0.579 0.760 0.877 0.339 0.372 0.401 0.274 0.389 0.473
AD 0.577 0.646 0.690 0.615 0.782 0.893 0.362 0.414 0.451 0.288 0.452 0.553

InvPref 0.587 0.651 0.697 0.619 0.788 0.896 0.383 0.432 0.469 0.310 0.465 0.568

Table 4: Explicit Feedback without Uniform Data.

Dataset Yahoo Coat

Metric MSE MAE MSE MAE

MF 1.420 0.867 1.252 0.852
IPS-B 1.019 0.778 1.083 0.811

SNIPS-B 0.989 0.782 1.071 0.811
ATMF 0.999 0.802 1.152 0.830
DR-B 1.011 0.793 1.182 0.865
DRJL-B 1.007 0.772 1.072 0.808
CVIB 0.987 0.784 1.171 0.854

InvPref 0.949 0.765 0.998 0.783

4.1.3 Baselines. We compare mainstream methods in recommen-
dation debiasing, including both methods designed for special bias
and methods oriented toward general debiasing.
• Special Bias Method Methods used to reduce special bias:
IPS-B[28], SNIPS-B[30], Rel-B[27](designed only for implicit
feedback), DR-B[14], DRJL-B[35], ATMF[26], Fair[1],MACR[37],
WMF[12] and EXMF[20].
• General Debias using uniform data Method Methods
that rely on uniform data.: IPS-U[28], SNIPS-U[30], Rel-U[27](designed
only for implicit feedback), DR-U[14],
DRJL-U[35], CausE[5] , KD[21] and AD[7].
• GeneralDebiaswithout uniformdataMethod: CVIB[36].

Limited to the space, we detail the baselines in the appendix A.Note
that InvPref does not use the uniform data in all settings.

4.2 RQ1: Does InvPref outperform other debias
methods?

In this section, we first compare the performances of methods in
general debiasing setting. We conduct experiments on Yahoo and
Coat datasets, including explicit feedback and implicit feedback.
According to the results in table 2-5, we can observe that:
• Compared to other baselines, InvPref achieves the best per-
formance with a remarkable improvement for all the metrics
in each case, demonstrating the superiority of our model.

Table 5: Explicit Feedback with Uniform Data.

Dataset Yahoo Coat

Metric MSE MAE MSE MAE

MF 1.415 0.926 1.255 0.853
IPS-U 0.981 0.768 1.208 0.822

SNIPS-U 0.982 0.781 1.202 0.828
DR-U 0.993 0.775 1.215 0.815
DRJL-U 0.981 0.776 1.178 0.830
CausE 0.996 0.797 1.127 0.819
KD 0.988 0.783 1.205 0.834
AD 0.988 0.769 1.010 0.788

InvPref 0.947 0.764 0.998 0.783

• Compared to MF, the methods (e.g. IPS-B, Rel-B) that address
specific biaseswithout leveraging uniform data can still bring
about some benefits in general debiasing setting, implying
various biases are mixed in real applications.
• However, the inability of solving other bias types leads to
their relatively poor performances. Even the doubly-robust
methods (e.g. DR-B, DRJL-B) cannot achieve the promised
performance, showing their limitations.
• The attempt of introducing the uniform data into methods
targeting specific biases (e.g. SNIPS-U, DRJL-U) does not
achieve desired performance, indicating rough utilization of
uniform data even produces negative effect. It is because the
size of uniform data is always quite small, easily inducing
the overfitting in this dataset.
• The methods can take advantage of auxiliary uniform data if
carefully designed. For example, CausE and KD train another
teacher model; AD further avoids the overfitting problem
through meta-learning technology and reaches competitive
results. However, the scarcity of uniform data restrains the
power of this kind of method.
• The CVIB performs effectively in implicit feedback setting,
but its lack of modeling the unobserved confounders makes
its performance far inferior to our proposal, verifying the
necessity of considering unobserved confounders that widely
exist in real scenarios.
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(a) Average frequency of items in the sample sets from
each environment.

(b) Environment number influences performance. (c) The performance gradually improves along training,
proving the promotion of our two steps

Figure 3: Exploratory experiments. The first is conducted on the MovieLens-1M dataset and the others are on the Yahoo dataset.

Table 6: Performance of Dealing with Popularity Bias on
MovieLens-1M dataset.

Top-K
NDCG Recall

top20 top30 top40 top20 top30 top40

MF 0.079 0.085 0.092 0.071 0.097 0.119
Fair 0.090 0.097 0.104 0.083 0.112 0.137

MACR 0.101 0.108 0.114 0.093 0.123 0.148
InvPref 0.098 0.106 0.113 0.094 0.124 0.150

Table 7: Performance of Dealingwith Exposure Bias onMIND
dataset.

Top-K
NDCG Recall

top10 top20 top30 top10 top20 top30

MF 0.222 0.260 0.283 0.362 0.499 0.591
WMF 0.235 0.276 0.300 0.379 0.522 0.618
EXMF 0.228 0.267 0.289 0.362 0.497 0.588
InvPref 0.236 0.278 0.300 0.386 0.532 0.624

4.3 RQ2: Does InvPref address various specific
biases

In this section, we choose two common bias scenarios, exposure
bias and popularity bias, to verify the ability of InvPref to deal with
various specific biases. For each bias type, we compare with the
typical approaches designed for it respectively. From the results
reported in Tables 6-7, InvPref achieves the best performance on
both NDCG and Recall under exposure bias, while obtains the best
performance on Recall and 2nd best on NDCG under popularity
bias, proving our framework well describes types of biases that
occur in generation procedure of user behaviors.

4.4 RQ3: Does the environment act as the agents
of confounders?

In this section, we verify whether it is reasonable to utilize the
environment as the agents of confounders. Because we are not
exactly aware of which are the confounders in real applications,
we predefine the item popularity as the confounder in popularity
scenario. From the results in Figure 3(a), it is apparently to see:
the samples are clearly clustered into distinct environments in the

training phase according to the degree of item popularity, implying
the validity of introducing heterogeneous environments.

4.5 RQ4: How does the environment inferring
influence invariant preference learning?

In this section, we study the role of environment inferring in our
proposed framework. According to the Figure 3(b), we can find
that:

• The performance of InvPref becomes better as the number of
environments increases. It suggests that more environments
are needed to present the heterogeneity in data.
• However, it would hurt the learning process of InvPref ow-
ing to the over sparse samples in each environment, if the
number of environments is too large.
• After rounds of iterative optimization, the environment in-
ferring and invariant preference learning promote each other
until both of them converge finally.

5 CONCLUSION
In this paper, we investigate the problem of general debiasing in rec-
ommendation when only the biased observational data is available.
We first provide a generic conceptual framework of data generation
in recommendation from a view of causal graph. It regards the ob-
servational user behaviors are determined by invariant preference
and the variant preference. Further, we introduce the environment
as the agents of confounders and propose a novel Invariant Prefer-
ence Learning(InvPref) method. We conduct extensive experiments
to support our contributions. The backbone of InvPref is MF, which
is not an advanced recommendation model. How to perform Gen-
eral Debiasing on SOTA recommenders without uniform data is
still unsolved. Another interesting research direction can be deal-
ing with the challenge brought by implicit feedback in General
Debiasing setting without uniform data.
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APPENDIX
A BASELINE DETAILS
In this section we detail all baselines compared as follow:
• MF. This is one of the most basic recommendation models.
The embeddings of users and items is learned by decompos-
ing the user-item interaction matrix, and their inner product
is used to predict the feedback.
• IPS-B/IPS-U. This is the most basic IPS-based debiasing rec-
ommendation algorithm. This method uses the inverse of
the estimated propensity score as the weight of the observed
sample to adjust for the biased distribution of the observed
data.
• SNIPS-B/SNIPS-U. In order to solve the problem of large vari-
ance of traditional IPS-based methods, the academic commu-
nity proposes self-normalized IPS. The objective function of
this method is as follows,

L𝑆𝑁𝐼𝑃𝑆 =

∑
(𝑢,𝑣) ∈𝐷

ℓ𝑟𝑒𝑐 (𝑦̂𝑢,𝑣 ,𝑦𝑢,𝑣 )
𝑝𝑢,𝑣∑

(𝑢,𝑣) ∈𝐷
1

𝑝𝑢,𝑣

where 𝑝𝑢,𝑣 is the propensity score and ℓ𝑟𝑒𝑐 is a recommen-
dation loss.
• Rel-B/Rel-U. Based on the idea of positive unlabeled learn-
ing, an unbiased estimate of binary feedback modeling for
recommender systems is derived. Its objective function is as
follows

L𝑅𝑒𝑙 =
1
|𝐷 |

∑︁
(𝑢,𝑣) ∈𝐷

[
𝑦𝑢,𝑣

𝑝𝑢,𝑣
ℓ1𝑢,𝑣 + (1 −

𝑦𝑢,𝑣

𝑝𝑢,𝑣
)ℓ0𝑢,𝑣

]
where ℓ1𝑢,𝑣 and ℓ0𝑢,𝑣 means recommendation loss to positive
feed back and negative feedback separately.
• DR-B/DR-U. This method combines the basic data imputa-
tion method (which assigns predefined scores to unobserved
user-item interactions) with the basic IPS method. As long
as one of the two components is accurate, unbiased learning
can be achieved.

• DRJL-B/DRJL-U. The method jointly learns an imputation
model for pseudo-label generation, which is then combined
with the basic IPS method.
• ATMF. This method debiases the recommendation model
through an asymmetric tri-training method. Specifically, two
pre-models are trained on observed data and then used to
generate pseudo-labels. According to them, the base model
and pre-models are continuously trained until convergence.
• CVIB. By separating the task-aware mutual information term
in the original information bottleneck Lagrangian into fac-
tual and counterfactual parts, we derive a contrastive in-
formation loss and an additional output confidence penalty,
which facilitates balanced learning between the factual and
counterfactual domains.
• CausE. Train a teacher model on uniform data and extract
unbiased information using the alignment term between the
base-model and teacher-model embeddings. Specifically, it
minimizes the distance(e.g. 𝑙2) between the base-model and
the teacher-model’s embedding.
• KD. Train a separate teacher model on the uniform data, and
then transfers the model s knowledge to the normal training
on biased data.
• AD. The state-of-the-art method that utilize the unbiased
information. leverages another (small) set of uniform data
to optimize the debiasing parameters by solving the bi-level
optimization problem with meta-learning.
• EXMF. The method introduces exposure variables to model
the probability of exposure. Exposure probabilities are then
converted into confidence weights to reduce exposure bias.
• WMF. The method is a heuristic that reduces exposure bias
by assigning lowerweights to unobserved samples in implicit
feedback.
• Fair. In the training phase, the method uses a regular term
to constrain the scores of products with different popularity
to be as close as possible to reduce the popularity bias.
• MACR. This method models the generation mechanism of
popularity bias based on a pre-defined causal graph. When
inferring, it adopts counterfactual reasoning to eliminate the
influence of popularity bias.
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