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Abstract

Feature analysis is the extraction and comparison of signals from multimedia
data, which can subsequently be semantically analyzed. Feature analysis is
the foundation of many multimedia computing tasks such as object recognition,
image annotation, and multimedia information retrieval. In recent decades, con-
siderable work has been devoted to the research of feature analysis. In this work,
we use large-scale datasets to conduct a comparative study of four state-of-the-
art, representative feature extraction algorithms: color-texture codebook (CT),
SIFT codebook, HMAX, and convolutional networks (ConvNet). Our compar-
ative evaluation demonstrates that different feature extraction algorithms enjoy
their own advantages, and excel in different image categories. We provide key
observations to explain where these algorithms excel and why. Based on these
observations, we recommend feature extraction principles and identify several
pitfalls for researchers and practitioners to avoid. Furthermore, we determine
that in a large training dataset with more than 10, 000 instances per image
category, the four evaluated algorithms can converge to the same high level
of category-prediction accuracy. This result supports the effectiveness of the
data-driven approach. Finally, based on learned clues from each algorithm’s
confusion matrix, we devise a fusion algorithm to harvest synergies between
these four algorithms and further improve class-prediction accuracy.
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1. Introduction

Extracting useful features from a scene is an essential subroutine in many mul-
timedia data analysis tasks such as classification and retrieval. Remarkable
progress has been made in multimedia computing, computer vision and signal
processing in recent decades. Despite this finding, it is still notably difficult
for computers to accurately recognize an object or analyze the semantics of a
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scene. For example, suppose that we want to recognize a piece of white paper
in an image. A naive feature we can use is “a white two dimensional rectangle.”
However, such a feature will not work in most cases because of the following:

1. The paper may be folded.

2. The viewing angle of the piece of paper may not perpendicular, and hence
the paper does not appear to be rectangular.

3. Environmental factors such as occlusion and lighting can cause changes in
its shape and color.

The above challenges are all related to feature invariance issues. A second
challenge is called feature aliasing or feature selectivity: how well a feature can
differentiate one object from the others. For example, the feature “white two-
dimensional rectangle” can be used to describe many other objects: a piece of
white cloth, a white table, and a white wall, among others. The goal of feature
extraction is to find features that are both invariant and selective.

All traditional feature extraction approaches focus on some specific information
in the image. For example, the color-texture codebook (CT) focuses on the
statistics of colors and textures in small regions of an image. SIFT focuses on
local invariant shapes. Recently, neuro-based approaches such as HMAX and
convolution networks (ConvNet) have been proposed to model features accord-
ing to how the human visual system extracts features. HMAX [45] builds com-
puting models that use the pioneering neuroscience work of Hubel [22]. Hubel’s
work indicates that visual information is transmitted from the primary visual
cortex (V1) through extrastriate visual areas (V2 and V4) to the inferotemporal
cortex (IT). The IT, in turn, is a major source of input to the prefrontal cortex
(PFC), which is involved in linking perception to memory and action [33]. The
pathway from the V1 to the IT (called the visual frontend) consists of a number
of simple (lower) and complex (higher) layers. The lower layers attain simple
features that are invariant to scale, position and orientation at the pixel level.
Higher layers can combine simple features to recognize more complex features
at the object-part level. Pattern recognition at the lower layers is unsupervised,
whereas recognition at the higher layers involves supervised learning. This par-
ticular neuroscience-motivated model appears to enjoy at least a couple of ad-
vantages: (1) it balances feature selectivity (at lower layers) and invariance (at
higher layers), and (2) it models edges of an object and then combines edges to
recognize parts of an object and place these features in a hierarchical context.
Similar to HMAX, ConvNet is also a neuro-based approach. It differs from
HMAX primarily in the way that ConvNet iterates more over the data to learn
a model with a deep architecture [39]. This allows for the capture of both the
structure and detail of an object.

Herein, we perform comparative evaluation that demonstrates that different fea-
ture extraction algorithms have their own set of advantages and excel in different
image categories. We provide key observations about why certain algorithms
perform better with different image categories. Based on these observations, we
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establish feature extraction principles and identify several pitfalls for researchers
and practitioners to avoid:

1. When training data are insufficient, no scheme performs well. However,
because simple algorithms such as CT and SIFT do not require much data
to learn model parameters, they may be a better choice when training data
are scarce.

2. Increases in the amount of training data correlate with a jump in the
accuracy of complex models, such as HMAX and ConvNet. Different
feature extraction algorithms enjoy their own advantages, and excel in
different image categories.

3. When training data are abundant, all the four algorithms, simple or com-
plex, converge to the same level of accuracy.

The major contributions of this paper are summarized as follows:

1. Through our comparative analysis, we identify pitfalls of past studies:
either they did not use enough training data, or their testbed composition
already favors a particular feature extraction algorithm.

2. Through our large-scale comparative study, we demonstrate the benefit of
employing large training datasets in training, which can make both simple
and complex algorithms converge to the same level of accuracy.

3. We devise a fusion algorithm based on learned clues from each algorithm’s
confusion matrix. Our algorithm harvests synergies between these four
algorithms and further improves class-prediction accuracy.

4. We established a large testbed for the research community, namely an
annotated dataset of six million PicasaWeb images, which will be released
publicly with this paper.1

The rest of the paper is organized as follows. Section 2 surveys the related work.
Section 3 briefly introduces the four feature extraction algorithms evaluated in
this paper. Section 4 details an algorithm that fuses multiple feature extraction
methods that we demonstrate can perform better than any individual feature
extraction scheme alone. Section 5 explains the setup of our experiments and
presents their results. Finally, we offer concluding remarks in Section 6.

2. Related Work

The multimedia community has been striving to bridge the semantic gap [20,
46, 62] between low-level features and high-level semantics for decades. (Com-
prehensive surveys are given in [5, 20].) With high-quality image features, fancy
applications can significantly improve a user’s experience [9, 11, 30]. One key

1Downloads at https://sites.google.com/site/picasawebdataset/home
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problem is how to extract powerful features. Numerous feature extraction al-
gorithms have been developed for image annotation [46], as well as machine
learning algorithms [14, 36, 59, 60, 61]. Roughly speaking, image features can
be grouped into four types: color, texture, local features, and shapes. Color
features are the most straightforward image feature and therefore were the first
to receive sufficient study. Many color-based image retrieval algorithms have
been developed [18]. Typical color features include the color histogram [19],
color invariance [17], and color saliency [51]. Texture features, such as local
binary patterns (LBP) [34], pyramidal-structured wavelet transforms [37], and
tree-structured wavelet transform [8], are another significant set of signals for
recognizing objects. Color and texture features are usually combined to solve
image retrieval problems. Color-texture histograms are widely used for object
tracking and recognition. After a decade of using color and texture as the
main features for an image, a breakthrough came with the scale-invariant fea-
ture transform (SIFT) [32]. SIFT was a large step forward for extracting scale-
invariant features. SIFT features are local features, and have been demonstrated
to be effective in detecting near-replicas of images. SIFT has often been com-
bined with unsupervised learning algorithms to solve multiple image processing
problems. Recently, Y. Bengio [2] proved that it is theoretically impossible to
represent some functions by architectures that are too shallow. In response
to this finding, researchers learned from neuroscientists how the human visual
system works [22], and it has been proven to be a deep architecture. Since Hin-
ton’s work in 2006 [21], deep models have been developed with good results. The
earliest deep architectures include self-organizing neural networks [15] and the
predecessor of the convolutional network (ConvNet), which is applied in docu-
ment recognition [28]. For natural image processing, one of the representative
works is HMAX [45], which strikes a good balance between feature selectivity
and feature invariance. Furthermore, ConvNet [39] was introduced to establish a
deep unsupervised learning architecture to learn powerful features. These deep
learning features are based on edge detection and thus focus on the shapes of
objects. Because our evaluation covers color, texture, local feature and shape,
the conclusions that we draw hold for any subset of these combinations.

Though many comparative studies on features have been performed in the past,
they generally suffer from a couple of limitations. First, most studies employ a
relatively small training dataset; this results in better feature extraction algo-
rithms not having the opportunity to demonstrate their superiority with training
data increases. Second, some comparative studies’ results are highly dependent
on the makeup of the testbed. If categories of images favoring a particular al-
gorithm dominate a testbed, that algorithm certainly achieves the best result.
Unfortunately, most studies do not pay attention to these two limitations, which
results in their conclusions having limited applicability. More importantly, we
focus on studying representative state-of-the-art algorithms using large datasets.
Our dataset size is much larger than that used in previous attempts (e.g., [13])
for data-driven image classification [42, 63].

Because different feature extraction algorithms have different advantages in dif-
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ferent scenarios, it is a natural consideration to integrate different methods
together to overcome any drawbacks from one individual method that may be
an advantage to another [1, 56]. This fusion of methods leads to enhanced final
performance. There are various ways to combine multiple algorithms. These
traditional schemes aim to improve class-prediction accuracy by applying sta-
tistical learning to the same set of features. In our work, we pay attention to
employing different features, i.e., different views provided by different feature-
extraction algorithms. Our fusion method uses a confusion matrix to guide the
choice of the best feature sets (views) into the raw images and then makes a
collective class-prediction decision. Our approach differs from the traditional
ensemble schemes in two respects. First, most traditional fusion schemes com-
bine several feature sets into a single one and then use a statistical algorithm to
learn the best feature combination [10]. Second, most ensemble schemes work
on the same feature space and use statistical methods to mask prediction error.
Our approach builds on these schemes and emphasizes that we take advantage
of both multiple feature and statistical methods to reduce prediction error.

In general, ensemble methods can be classified into two groups: feature-level
and decision-level. The first group pays focuses on combining features. When
there are multiple feature sets, one of the most straightforward ways to com-
bine features is to fuse on the feature-level. Algorithms of this type include
stitching features together to create a super feature set [49] and constructing a
classifier from the super feature set in conjunction with some learned cost [52].
Giridharan et al. proposed a discriminative approach to fusion of multimodal
features of a video [23]. Wang et al. proposed a smart approach to fusion of
multiple visual features in a graph-based learning scheme [53, 54]. However,
these methods may encounter the curse of dimensionality or be confined by a
feature-dependent structure [57], which is hard to generalize to different fea-
ture sets. The second group, decision-level fusion [38], is a good method to
avoid the curse of dimensionality. Decision-level fusion can be implemented
by either voting or constructing features with meta-classifier results. For in-
stance, pairwise coupling, tree-structure ensemble, and error-correction output
coding [41] all attempt to work on the same feature set (the same feature space)
with robust statistical methods to minimize class-prediction error. Feature-level
fusion and decision-level fusion have also been compared using video datasets,
and the performance is related to semantic concepts [48]. In contrast to the
feature-level and decision-level approaches, our fusion method conducts statisti-
cal inference on multiple views (through different features generated by different
algorithms) of the raw images. As each view enjoys its own pros and cons, we
employ confusion matrices to guide the class-prediction process through the least
inter-class-confusion inference path. This approach not only avoids the curse of
dimensionality as in feature-level ensemble application but also displays a supe-
rior before to decision-level methods by using advantages from different feature
extraction algorithms.
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Figure 1: A framework of image classification including four pathways.

3. Feature Extraction Algorithms

In this section, we present four representative algorithms for image feature ex-
traction: color-texture codebook (CT), SIFT codebook, HMAX, and Convolution
Networks (ConvNet). Figure 1 depicts a framework that consists of these four
algorithms. The input to the framework is a set of images. After extracting
descriptors such as color-texture histograms, SIFT descriptors, HMAX edges,
and ConvNet’s encoding results, the framework conducts an unsupervised learn-
ing stage to learn codebooks or patch pools. Then, by matching the low-level
descriptors to the codebooks/patches, the final output of each algorithm can
be directly applied as the input to a supervised learning machine. This su-
pervised learning machine performs class prediction for each input image. To
facilitate further analysis of these four feature extraction algorithms, we outline
color-texture codebook in Section 3.1, SIFT codebook in Section 3.2, HMAX in
section 3.3, and ConvNet in Section 3.4.

Descriptions of the variables throughout this work are given in Table 1. We use
bold characters for matrices and vectors and plain characters for values.

3.1. Color-Texture Codebook

In the color-texture (CT) codebook algorithm, images are characterized by three
perceptual features: color, texture, and shape. These perceptual features are
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Table 1: Variable definitions.

Variable Explanation

I the image data
Gauss(x, y, σ) Gaussian value at some point
L(x, y, σ) Gaussian blurred value at some point
D(x, y, σ) difference of Gaussian at some point
Dxx, Dxy, Dyy partial diff of D
m(x, y) gradient magnitude
θ(x, y) orientation
tth, rth thresholds for parameters
rth thresholds for parameters
IS edge edge selection result
Iedge edge extraction result
P a patch
IS part part selection result
vpart part extraction result
FC filter for convolution layer
C output of a convolution layer
h Sigmoid function
vconvnet ConvNet feature
A confusion matrix
Aij value of confusion matrix at i,j
Xtr features for training data
Ytr labels for training data
Xv features for validating data
Yv labels for validating data
Xte features for testing data
Yte labels for testing data

Gf
i group for feature f , category i

considered to be low-level descriptors of small image regions (also called blocks).
The higher-layer feature-to-object mappings require a learning or clustering pro-
cess. There have been many proposed methods to represent color, texture, and
shape. What we describe in this subsection is a typical method that has been
demonstrated to be competitive in this representation family [50].

3.1.1. Color Feature Extraction

Although the wavelength of visible light ranges from 400 nanometers to 700
nanometers, research effort shows that the colors that can be named by all
cultures are generally limited to eleven [6]. In addition to black and white,
the discernible colors are red, yellow, green, blue, brown, purple, pink, orange,
and gray. Thus, the color-texture codebook algorithm first divides colors into
12 color bins: 11 bins for the above colors and one bin for outliers. At the
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coarsest resolution, we characterized color using a color mask of 12 bits. To
record color information at finer resolutions, we record eight additional features
for each color. These eight features are color histograms, color means (in H,
S, and V channels), color variances (in H, S, and V channels), and two shape
characteristics: elongation and spread. Color elongation characterizes the shape
of a color, and spread characterizes how that color scatters within the image [29].
We categorize color features in coarse, medium and fine resolutions.

3.1.2. Texture Feature Extraction

Texture is an important cue for image analysis. Studies have demonstrated
that characterizing texture features in terms of structure, orientation, and scale
(coarseness) fits well with models of human perception [35]. A wide variety of
texture analysis methods has been proposed in the past. We chose a discrete
wavelet transformation (DWT) using quadrature mirror filters [47] because of
its computational efficiency.

Each wavelet decomposition of a 2D image yields four subimages: a 1
2 × 1

2
scaled-down image of the input image and its wavelets in three orientations:
horizontal, vertical and diagonal. Decomposing the scaled-down image further,
we obtain a tree-structured or wavelet packet decomposition. The wavelet im-
age decomposition provides a representation that is easy to interpret. Every
subimage contains information on a specific scale and orientation and also re-
tains spatial information. We obtain nine texture combinations from subimages
of three scales and three orientations. Because each subimage retains the spa-
tial information of texture, the CT algorithm also computes the elongation and
spread of each texture channel. For further details, please consult [25, 50].

3.1.3. Color-Texture Codebook Construction

Many researchers suggest the addition of an unsupervised layer between raw
features and semantics. The bag of words (also known as bag of features) is one
widely used model and is suitable for clustering color and texture histograms
into a codebook [25] to reduce feature dimension.

3.2. SIFT Codebook

A SIFT [31] feature is a typical designed feature that is robust against orien-
tation, scale and location variance of an image. To apply SIFT features to
image classification, one needs first to extract SIFT descriptors and then clus-
ter those descriptors into a codebook [4, 24]. With the codebook, a feature of
fixed length can be extracted that meets the input requirement of a supervised
learning algorithm.

3.2.1. SIFT Descriptor Extraction

Four principle stages are conducted to extract invariant SIFT descriptors.
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Scale-space Extrema Detection. ADifference-of-Gaussian (DoG) function is used
to efficiently search the image on all scales and locations for interesting points or
keypoints. Keypoints are identified as local minima/maxima of the DoG images
across scales. A DoG image at point (x, y) is given by

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (1)

where L(x, y, kσ) is calculated by the convolution of the original image and a
Gaussion blur at scale kσ, i.e.,

L(x, y, kσ) = Gauss(x, y, kσ) ∗ I(x, y) (2)

and

Gauss(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

, (3)

where k is a constant multiplicative factor.

Keypoint Localization. For each candidate location of key points, location and
scale information are determined using a detailed model. Only stable key points
are kept. The strategies that determine stability include the interpolation
of nearby locations for accurate position, the elimination of low-contrast key
points, and the removal of edge responses. The quadratic Taylor expansion of
the Difference-of-Gaussian scale-space function is given by

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂2D

∂x2
x, (4)

where x = (x, y, σ). If the offset between the local maxima and this point is too
large, it is assumed that this local maxima is closer to another key point. Oth-
erwise, if the second-order of the Taylor expansion is less than a given threshold,
the point is discarded.

If we analyze the second-order Hessian matrix

H =

[

Dxx Dxy

Dxy Dyy

]

(5)

we can calculate Tr(H) = Dxx+Dyy = α+β andDet(H) = DxxDyy−(Dxy)
2 =

αβ. By solving for α and β and ensuring |α| > |β|, we can calculate r = α/β.
If (r + 1)2/r > (rth + 1)2/rth, the point is discarded because of edge effects.

Orientation Assignment. Each keypoint is assigned with one or more orienta-
tions based on local image gradient directions. The invariance of orientation,
scale, and location is guaranteed because all operations are relative to these
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transformations. The Gaussian-smoothed image L(x, y, σ) is taken so that all
computations are scale-invariant in nature. For an image sample L(x, y) at
scale σ, the gradient magnitude m(x, y) and orientation θ(x, y) are given by
equations 6 and 7, respectively, where Lx,y is the same as L(x+ 1, y).

m(x, y) =
√

(Lx+1,y − Lx−1,y)2 + (Lx,y+1 − Lx,y−1)2 (6)

θ(x, y) = tan
−1(

L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
) (7)

Keypoint Descriptor. Around each keypoint, local image gradients are mea-
sured. Shape distortion and change in illumination are invariant here. Orienta-
tion histograms are created in 4×4 pixel neighborhoods with each pixel having 8
bins, so the descriptor has a dimension of 128. The vector is normalized to unit
length to enhance invariance to affine changes in illumination. Four principle
stages are conducted to extract invariant SIFT descriptors. For further details,
please consult [31, 32].

3.2.2. SIFT Codebook Construction

Because each image has various numbers of interesting points and thus have
different stable SIFT features, we need to normalize the feature length when we
classify images. A typical way to do this is to cluster descriptors into several
representative centers, and then use those centers to measure the image instead
of a direct comparison of SIFT descriptors.

3.2.3. SIFT Feature Extraction

When classifying images, one must first explore a large population of images
and extract their SIFT descriptors. The SIFT descriptors are then clustered
into a codebook, which is the state-of-the-art conversion algorithm for applying
SIFT to obtain high level abstracted features [24]. After completing a codebook,
features can be extracted from new images by matching their SIFT descriptors
to corresponding entries in the codebook.

3.3. HMAX

The HMAX [45] algorithm is depicted in Figure 2. The figure shows that visual
information is transmitted from the primary visual cortex (V1) through the
extrastriate visual areas of the brain (V2 and V4) and then to the inferotemporal
cortex (IT). Physiological evidence indicates that the cells in V1 largely conduct
selection operations, and cells in V2 and V4 conduct pooling operations. Based
on this, M. Riesenhuber and T. Poggio establish a feed-forward theory of object
recognition [40] that provides a qualitative way to model the ventral stream
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Figure 2: Information flow in the visual cortex. (See the brain structure in [58].)

in the visual cortex. Their model suggests that the visual pathway consists
of multiple layers of computational units where simple S units alternate with
complex C units. The S units address signal selectivity, whereas the C units
address invariance. Lower layers recognize features that are invariant to scale,
position, and orientation at the pixel level. Higher layers detect features at the
object-part level from the combination of lower layer features. Pattern reading
at the lower layers is largely unsupervised, in contrast to recognition at the
higher layers, which involves supervised models.

Motivated by both physiological evidence [45] and computational learning the-
ories, the HMAX pipeline consists of five steps:

• Edge selection. Edge selection corresponds to the operation conducted by cells
in V1 and V2 [27], which detect edge signals at the pixel level.

• Edge pooling. Edge pooling also corresponds to cells in V1 and V2. The
primary operation is to pool strong, representative edge signals using a max
operator.

•Unsupervised Learning. To prevent too many features, which can lead to the
dimensionality curse, or too shallow architecture, which may lead to trivial so-
lutions, this unsupervised steps groups edges into patches to make the patches
both representative of shapes and without duplication.

• Part selection. We model V2 to V4 step to look for image patches matching
prototypes (patches) produced in the previous step.

• Part pooling. Cells in V4 [16] have larger receptive fields than V1 and ad-
dress object-parts. Because of their large receptive fields, V4’s selectivity is
preserved over translation.

For further details about HMAX details, please consult Serre’s thesis [44].
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3.4. Convolutional Networks

Convolutional networks [28] combine local receptive fields, shared weights and
spatial or temporal sub-sampling to ensure shift, scale and distortion invari-
ance. Convolutional networks are widely used in multiple image processing and
machine learning tasks [43]. The input image is alternatively processed with
convolutional layers and sub-sampling layers to obtain features. Convolutional
layers and sub-sampling layers are similar to the edge selection and edge pooling
steps of HMAX. Indeed, the ConvNet algorithm was inspired by neuroscience.
With deep neural learning of multiple iterations, the output converges to one
pixel for each set of parameters. Each of these one-pixel values of the final layer
can be stitched together to form the final feature vector, which can then be ap-
plied directly as the input of a supervised learning algorithm. ConvNet learns
patches for the convolutional layer, which is similar to the function of patches
in HMAX. However, while HMAX picks patches randomly from the training
data to obtain a uniform distribution from all training data, ConvNet attempts
to learn the most informative patches for higher efficiency, which is the major
difference between the two algorithms.

3.4.1. Convolutional Layer

Several weight matrices are trained so that each matrix convolves with the image
to extract various features. Each weight matrix is a 5× 5 matrix that connects
every 25 pixel block in the input image. This operation is a 2D convolution:
C = I ∗ FC .

3.4.2. Sub-sampling Layer

Each unit of the sub-sampling layer is connected to a 2 × 2 neighborhood in
the corresponding feature map in the convolutional layer. These four inputs
are added together, multiplied by a trainable coefficient, and then added to a
trainable bias. The results of the convolutional layer are then passed through
a sigmoidal function. Because the 2× 2 receptive fields do not overlap, feature
maps in the sub-sampling layer are one-fourth of the area of the feature maps
in the corresponding convolutional layer.

3.4.3. Deep Learning and Learning from Data

Convolutional layers and sub-sampling layers alternate processing of the image
with different weights. The convolutional layer will ignore boundary values and
thus reduce the data scale by several pixels in both width and height. The
sub-sampling layer will reduce the data to one fourth of the original size. Thus,
if we continuously apply convolutional layer and sub-sampling layer processing
with the data to construct a deep learning architecture, the scale of the data
can reduce to a single value.

There are multiple weights provided to the convolutional layer, so the final
output is a vector. A deep learning procedure can convert the image into a vector
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with multiple weights. The weights in ConvNet can all be learned from multiple
iterations of feature extraction. With an updating stage in each iteration, the
weights can be learned from the data [3], and the feature becomes better and
better. For further details about convolutional networks, please consult [28, 39]

4. Fusion

The four feature-extraction algorithms produce features with different advan-
tages and drawbacks. In this section, we outline a fusion algorithm to harvest
synergies between these four algorithms to further improve class-prediction accu-
racy. This fusion algorithm not only takes advantages of multiple image features
but also avoids the curse of dimensionality. More precisely, with each feature
set, a classifier can be constructed to perform class prediction. By constructing
a confusion matrix (defined shortly) for a feature set, we can learn whether the
classifier can provide a reliable class-prediction for an unlabeled instance. If the
confusion matrix, which is trained by a validation data set, indicates that the
predicted top class (say, yellow bus) was often misclassified into another class
(say, yellow bulldozer), then the class prediction should not be fully trusted. In-
stead, we should look for assistance from any classifiers that are not confused by
the two classes to perform disambiguation. In other words, our fusion method
provides a result if one of the classifiers produces a highly confident prediction.
If confidence is low, we can check the confusion matrix for the possible confusion
set and make use of other classifiers to help further judge the prediction, so the
results can be more reliable. The overall procedure is presented in Figure 4.
The details are provided in the following paragraphs.

4.1. Data Preparing

The fusion algorithm first uses the training data to train individual SVM clas-
sifiers on each feature set produced by the four feature-extraction algorithms.
Figure 4 presents this data-preparing stage from steps #1 to #3, whose input
and output are defined as in Figure 3

4.2. Confusion Matrix

A confusion matrix is an M × M matrix showing the predicted and actual
classifications [26], where M is the number of categories. The confusion matrix
is denoted by A, where Aij stands for the probability that the actual label i
is predicted as label j. By predicting the validating data, the confusion matrix
can be constructed by counting the number of pairs of predicted labels and
actual labels. We normalize the confusion matrix by the sum of each row of the
matrix so that ∀i, j, Aij ∈ [0, 1]. A simple example of a confusion matrix and its
normalization is in Table 2. A confusion matrix is constructed by counting the
number of pairs of predicted labels and actual labels as in the left table, e.g., the
third value on the second row indicates that there are four instances predicted
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Input: M // # of categories
D // the length of a feature vector
δ // threshold to cut the gap
F // feature set {CT, SIFT, HMAX, ConvNet}
Ntr, Nv , Nte // # of training/validating/testing instances
{(xtr,f , ytr)|xtr,f ∈ Xtr,f , ytr ∈ Ytr, f ∈ F,

Xtr,f ∈ RNtr×D,Ytr ∈ {yi|i ∈ [0,M − 1]}}N
tr

// training data with label
{(xv,f , yv)|xv,f ∈ Xv,f , yv ∈ Yv , f ∈ F,

Xv,f ∈ RNv×D,Yv ∈ {yi|i ∈ [0,M − 1]}}N
v
)

// validating data with label

{xte,f |xte,f ∈ Xte,f ,Xte,f ∈ RNte×D|f ∈ F}
// testing data without label

w1, w2, w3 // weights for selecting top classifier

Output: Ŷte ∈ {yi|i ∈ [0,M − 1]}N
te

// predicted labels for testing data

Figure 3: Input and Output of Fusion

Table 2: A simple example of confusion matrix.

Category Predicted
Actural 1 2 3

1 8 1 1
2 0 6 4
3 1 4 5

Category Predicted
Actural 1 2 3

1 0.8 0.1 0.1
2 0 0.6 0.4
3 0.1 0.4 0.5

as category 3, but actually, they are category 2. Computing the sum of each row
and normalizing each value by the row sum, the normalized confusion matrix
is in the right table. Figure 4 presents the confusion matrix construction from
steps #4 to #16.

4.3. Confusion Groups

An analysis of the confusion matrix shows that each algorithm encounters dif-
ferent confused category sets. For instance, the CT algorithm cannot tell the
difference between a computer keyboard and calculator. The SIFT algorithm
confuses a school bus and a bulldozer. When a label i is predicted, the possi-
bility of the actual label being j is marked in the confusion matrix Aji. By
sorting {Aji|j} in descending order, we obtain the top possible labels by cutting
off the tail at a large gap location, i.e., disregard all values starting at the first
j′ where Aj′−1,i − Aj′,i < δ, where δ is the cutting off threshold. In addition,
the selected label should have a probability larger than 1/M , or else a random

selection would outperform it. A group Gf
i is constructed by collecting these

top possible labels. Refer again to Table 2 as an example. If the category 3
is predicted by this classifier, and δ = 0.15, the sorting will provide the order
0.5, 0.4, 0.1 in the column. Because 0.5 − 0.4 < 0.15 but 0.4 − 0.1 > 0.15 (or
because 0.1 < 1/M , M = 3), we keep 0.5 and 0.4 but discard 0.1 and the later
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Initialize:

1: for all f ∈ F do

2: cf ← SVM(Xtr,f ,Ytr) // train SVM classifier cf
3: end for

Compute confusion matrix:

4: for all f ∈ F do

5: Af ← 0 // confusion matrix set to zero
6: for all xv,f ∈ Xv,f do

7: ŷv,f ← cf (x
v,f ) // predict validating data with classifier cf

8: Af

yv,ŷv,f ← Af

yv,ŷv,f + 1

9: end for

10: for all i ∈ [0,m− 1] do

11: S ←
∑

j A
f
ij // compute sum of row

12: for all j ∈ [0,m− 1] do

13: Af
ij ← Af

ij/S // normalize by each row
14: end for

15: end for

16: end for

Generate confusion groups:

17: for all f ∈ F do

18: for all i ∈ [0,M − 1] do

19: V←ARG(SORT({Af
ji|j}))

// sort in descending order, get the corresponding labels

20: Gf
i ← {V0} // the first is always in the set

21: for all j ∈ [1,M − 1] do

22: if Af
i,Vj

> 1/M and Af
i,Vj−1

−Af
i,Vj

< δ then

23: Gf
i ← Gf

i ∪ {Vj}
24: else

25: break
26: end if

27: end for

28: end for

29: end for

Classify with confusion matrix guided ensemble:

30: for all xte ∈ Xte do

31: for all xte,f ∈ Xte,f do

32: ŷte,f ← cf (x
te,f ) // predict testing data with classifier cf

33: end for

34: for all f ∈ F do

35: sf
1
←

∑
Gf

ŷte,f // overall coverage

36: sf
2
←MAX(Gf

ŷte,f )−MAX2(Gf

ŷte,f )

// gap between the first two

37: sf
3
←MAX(Gf

ŷte,f ) // confidence of the top candidate

38: sf ← w1s
f
1
+ w2s

f
2
+ w3s

f
3

39: end for

40: U←ARG(SORT(sf ))
// sort in descending order, get the corresponding indexes

41: G← GU0

ŷte,U0
// candidates generated by predicted label

42: for all f ∈ F, f 6= U0 do

43: for all i ∈ G do

44: vfi ←
∑

j∈G Af
ij // voting values for f on i

45: end for

46: vi ←
∑

f∈F,f 6=U0
vfi

47: end for

48: ŷte ←ARG(MAX(vi))
49: end for

Figure 4: Flow chart for fusion by confusion matrix
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ones (if any). In our algorithm, we record categories 2 and 3 in the candidate
confusion group. That is to say, when this classifier predicts 3, it is more likely
to be actual category 2 or 3, i.e., Gf

3 = {2, 3}. By generating the confusion
groups of candidates, when a predicted label is given, it is reasonable to say the
actual label is most likely in this generated group. Figure 4 presents confusion
groups construction from steps #17 to #29.

4.4. Confusion Matrix-Guided Ensemble

Using classifier prediction results, we can narrow down the category scope. For
example, a predicted label computer keyboard from a classifier constructed by CT
may in reality be a computer keyboard, cellular telephone, or calculator. This
type of fuzzy accuracy is the main source of the prediction errors. However,
when one classifier provides the result computer keyboard with high confidence,
we can be quite sure that the actual category cannot be school bus or water-
melon. Because the confusion categories are sparse, confusion categories of high
confidence from one method can be a good input for another classifier to cor-
rectly prune results down to the correct result. The narrowed scope of categories
are then adopted by the second, third, and fourth classifiers to vote for the most
confident category, which is the prediction label of the fused method. It is im-
portant to decide the order of the classifiers for this hierarchical architecture.
For the first classifier, we wish to narrow down the candidate scope and at the
same time minimize the information loss, so we take the following metrics to
supervise the sorting of the classifiers:

• Large coverage. The coverage of possible labels should be large, i.e., we
prefer a higher probability that the actual label is in the group. The false
negative rate should be as small as possible.

• Large gap. The gap between the top category and the second category
should be large. This indicates that the prediction result is more stable.
Labels kept in the group should have a large gap with those outside, which
indicate that the group is constructed distinguishably. This second gap is
guaranteed by a proper threshold δ.

• High first confidence. The confidence of the first category should be high,
which indicates that the prediction result is more reliable. The confidence
here is defined by Af

ii/
∑

j A
f
ji.

An evaluation function consisting of the above metrics should provide a good
selection of the first classifier. Here we apply a linear-weighted combination
sf = w1s

f
1 + w2s

f
2 + w3s

f
3 , where sf1 , s

f
2 , s

f
3 are the total coverage, the gap,

and the first confidence respectively, and w1, w2, and w3 are the corresponding
weights. After the first classifier, the remaining classifiers are applied to decide
which of the candidate categories have the highest confidence in a weighted
voting manner. The ones with the maximum confidence is returned when they
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Figure 5: Accuracy for ImageNet dataset. X-axis shows the number of training
instances for each category. Y-axis shows the average accuracy.

are the top instances for each category. When the top candidates are still very
close, and we use the classifiers that are not confused between the candidates to
further disambiguate the result. For real examples and further analysis, please
refer to Section 5.3. Figure 4 presents this confusion matrix-guided ensemble
from steps #30 to #49.

5. Experiments

Our experiments were designed to address the following questions:

•How do feature extraction algorithms compare with one another?

•Given an image category, which feature extraction algorithm performs the
best, and why?

•What is the effect of the size of the training dataset?

•How does fusion perform compared with individual classifiers, and how do the
results of fusion change with the number of training instances?

To answer the above questions, we conducted experiments on two datasets: an
ImageNet dataset and a PicasaWeb dataset. The first dataset was constructed
from ImageNet [12]. As our experiments aimed to study the effects that training
dataset size has on feature extraction algorithms, we first selected 100 ImageNet
categories (each with 1, 100 images), and 10 PicasaWeb categories (each of which
we manually annotate for a total of 11, 000 images).

To make a fair comparison, feature vectors extracted from different algorithms
were set to be the same length: 1, 000. This was implemented by setting the
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Table 3: Best category statistics.

Single Best Count

CT 8
SIFT 29
HMAX 5
ConvNet 33

Tie for Best Count

CT&SIFT 1
CT&ConvNet 5
SIFT&HMAX 7
SIFT&ConvNet 3
HMAX&ConvNet 9
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Figure 6: Good examples for HMAX. Categories include school, sports car, coil,
duck, and steering wheel.

cluster number for color-texture and SIFT codebook, setting the patch number
for HMAX, and setting the number of hidden units in the last layer for ConvNet.
After extracting features for each image, the data were divided into training
and testing sets for the supervised classifier. An 11-fold cross validation was
performed. The data were randomly divided into 11 parts of equal size: 10
parts were used for training and the remaining one for testing. To evaluate
the feature performance on different sizes of training instances, we also varied
the training data from 1 to 1, 000 instances for each category (10, 000 when
available) and evaluated the accuracy using the same 100 testing data set aside
for each fold. When we performed small experiments with only a part of the
training data, a random subset was sampled. We used SVMs for the supervised
learning, with PSVM [7] for large-scale data.
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5.1. Results with ImageNet Dataset

Figure 5 shows the overall results for the ImageNet dataset. When comparing
algorithms, each algorithm excels in categories with certain characteristics. It is
not very meaningful to compare average classification accuracies on all categories
because the composition of the testbed can be biased toward some algorithms.
For the ImageNet dataset, SIFT always achieved much better results than other
algorithms because the dataset contains a large number of categories favoring
SIFT (We will provide more analysis later). Therefore, we did not analyze the
exact values for overall accuracy, but only focused on the accuracy trends with
respect to the growth of the training instance number. We make two observa-
tions. First, when there are only several training instances, it is insufficient to
learn a practical model. No scheme can perform well. For example, when there is
only one training instance for each category, all algorithms just perform slightly
better than a random guess. However, as the simple algorithms, such as CT,
do not require much data to learn model parameters, their results are relatively
good when training data are sparse. For example, when the number of training
instances ranges from 10 to 100, CT achieves better results than HMAX and
ConvNet. Second, when the amount of training data increases, complex models
such as HMAX and ConvNet can improve the results significantly. On large
datasets, they achieve a higher rate of accuracy, and outperform CT when the
number of training data increases to approximately 200 and above.

Because it is meaningless to only compare the average accuracy over all cat-
egories, we provide a comprehensive analysis to examine for which categories
each algorithm provides the highest classification accuracy. The left part of
Table 3 shows the number of winning categories of single algorithms, and the
right part shows the tied winners (i.e., two methods achieve similar best results).
ConvNet enjoys the most winning categories (33 out of 100), and SIFT ranks
second with the ImageNet dataset. HMAX and ConvNet have nine common
best categories, which indicates they have similar strengths with certain image
categories because of their similar design. We also notice that there is no cate-
gory where three or four algorithms all achieve the same best result at the same
time. In the rest of this subsection, we list each feature extraction algorithm’s
advantages and present some illustrative image examples.

5.1.1. Color-Texture Codebook

Though simple, color-texture codebook enjoys the best performance for 11 cat-
egories. Figure 7 shows that these categories exhibit similar global color and/or
texture distributions. The categories school bus and bulldozer both obviously
have high yellow color percentages. Fire extinguisher has a good deal of red.
Penguin exhibits a simple black-white pattern. Laptop displays uniform color
on screens. Eggs have regular pure color or dots as texture. Wine bottle has
constant green bottle with white caption. Category car tire exhibits an obvious
pattern of tire texture.
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Figure 7: Good examples for CT. Categories include school bus, bulldozer, fire
extinguisher, penguin, laptop, egg, wine bottle, and car tire.
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5.1.2. SIFT Codebook

SIFT codebook focuses on characterizing local shapes. After detecting interest-
ing points in an image, a 128-dimension SIFT descriptor is extracted for each
interesting point. The SIFT descriptor is powerful for recognizing the local
structures of objects. For example, a ruler has the narrow, rectangle-like ends
and calibrations for length; both are regular local structures. These types of
local structures cannot be detected by global matching or region statistics algo-
rithms. Among the ImageNet dataset categories we constructed, 36 out of 100
categories favor SIFT for the local shape matching. These categories adhere to
one of the following conditions.

Matching by Local Shapes. The first condition relates to objects with regular
local shapes. These can be divided into two types: 1) when part of the object
matches the whole object, and 2) when one object matches multiple objects
of the same category. Successful categories for the first type include ruler and
calculator (see Figure 8), where some images contain a whole ruler or calculator,
and some contain only a part of the object. Similar conditions also exist for chip
and electric guitar, which indicates significant local shape adhere to a local-to-
whole mapping. For the second type, the successful category includes pineapple,
where images have various numbers of units on pineapples. Similar conditions
also exist for strawberry, grape and deviled egg, where the images have various
numbers of the same object, which can only be solved by a local matching
algorithm.

Matching by Near Duplication. The second condition is based on SIFT’s strength
in detecting near-duplicates. Although some images do not have obvious local
structure, their positions of interesting points are stable, and their appearance
based on local shapes is almost the same within categories. With enough data,
similar images can be recognized in a near-duplicate detection way. Good ex-
ample categories include trilobite, palm, Bengal tiger, sea turtle, octopus, Dal-
matian, tabloid, and pizza, which are shown in Figure 9, where shapes of objects
in one image can be quite similar to those in others, but may not be identical.

5.1.3. HMAX

HMAX extracts global patches. Its strength lies in its ability to identify whole
objects instead of getting confused by focusing on their parts. Examples are
shown in Figure 6. For example, schools must be recognized as a house with
windows but not just windows. Sports car should have the whole shape with
wheels instead of wheels only. The part-to-object feature extraction pipeline
of the HMAX algorithm is a strength in its object detection method. HMAX
outperforms SIFT in terms of recognizing objects as a whole than its parts.

The other strength of HMAX is that it focuses on dominant signals because of
its max operation in its part selection step (see the HMAX description in Sec-
tion 3.3). The max operation eliminates details in a patch. This allows HMAX
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Figure 8: Good examples for SIFT: matching by local shapes. Categories include
ruler, calculator, chip, electric guitar, pineapple, strawberry, grape, and deviled
egg.
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Figure 9: Good examples for SIFT: matching by near duplication. Categories
include trilobite, palm, bengal tiger, sea turtle, octopus, dalmatian, tabloid, and
pizza.
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Figure 10: Good examples for ConvNet: patches with informative details. Cat-
egories include light bulb, bag, spoon, cellular telephone, binoculars, teapot, ear-
phone, and hammer.

to outperform ConvNet when applied to objects that may have distracting de-
tails such as people wearing different clothes. Other examples are coil, duck and
steering wheel where different details are recognized better by HMAX than by
ConvNet.

5.1.4. ConvNet

ConvNet also relies on patches and focuses on global shape. Whereas HMAX
focuses on characterizing objects, ConvNet also involves telling objects apart
from one another. In other words, ConvNet was designed for classification.
ConvNet learns patches carefully from training data through multiple iterations
of convolution and sampling. Indeed, after so much more tuning, ConvNet wins
the most number of categories when applied to the ImageNet dataset.

Patches with informative details. As ConvNet involves a deep learning pipeline
to learn feature weighting parameters, it can pick up detailed information on
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Figure 11: Good examples for ConvNet: patches for deformable objects. Cate-
gories include frog, bear, owl, snail, ibis, mayfly, beaver, and mushroom.
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an object if those details may help telling objects apart. While enjoying better
overall classification accuracy, it is understandable that ConvNet may overfit
training data. One positive example for ConvNet is the light bulb (Figure 10),
which has some regular shapes with various decorations. By just extracting
the rounded top, the information may still be ambiguous in regards to telling
a light bulb from a ping pong ball for example, so a set of well-tuned patches
characterizing the interiors can be useful. The categories bag and spoon are other
examples which have a rectangular shape with various patterns and orientations.
The cellular telephone itself has a regular shape, and different models may have
vastly different appearances. Though SIFT can perform well with computer
keyboard images (see Figure 8), each of which has a similar appearance, SIFT
does not do well with the category cellular telephone. Similar categories also
include binoculars, teapot, earphone, and hammer. While shapes are important
for classification, details are informative, and in some cases a learned set of
patches can lead to more accurate results.

Patches for Deformable Objects. ConvNet performs well at identifying deformable
objects such as the frogs and bears in Figure 11. With adequate training in-
stances, ConvNet can capture an object at different orientations and different
interior appearances. These living creatures do not have a regular local shape,
so SIFT cannot detect interesting points well. HMAX does not perform as well
as ConvNet when only parts of an object appear in an image, such as frogs’
bodies or bears’ heads. The random patch sampling algorithm in HMAX gives
it less opportunity to capture object parts at different locations. These are rea-
sons why ConvNet gives the best performance on deformable objects. Similar
categories also include owl, snail, ibis, mayfly, beaver, and mushroom, which
are all deformable objects solved by ConvNet when given a large-scale training
dataset.

Notice that ConvNet often requires more training data than other schemes to
start performing well. If we fix the number training instances as 100, ConvNet is
often outperformed by HMAX or SIFT. When the number of training instances
increases, ConvNet is able to recognize complex objects. We will further discuss
the impact of training data size in Section 5.2.

5.2. Data-Driven Results with a Large Dataset

5.2.1. PicasaWeb Dataset Construction

Our goal was to construct a large-scale dataset with many images in each cate-
gory. Therefore, we need a huge number of images and frequent tags for image
collections. The procedure for constructing such a set includes the three parts.

Image Collection. To ensure a huge number of images, we collected 6.8 million
of images from PicasaWeb with a “creative commons” license offered by users,
which allows use and sharing for non-commercial purposes.
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Tag Selection. To pool frequent tags, we applied a data-driven scheme. A total
of 30, 000 images were randomly selected from the dataset and annotated man-
ually by 40 raters. Each rater explored each image to annotate as many tags as
possible. These tags were then counted and sorted by frequency. The top tags
were frequent tags for the selected images. After a manual filtering to remove
meaningless ones, the tags are processed according to this order in the following
steps.

Image Annotation for Each Tag. The most frequent tag was selected for an-
notation first. Among the correlated images with the tag from the annotated
30, 000 preprocessing set, up to 500 images were selected as “seeds.” Color
histograms were extracted and applied in a k-nearest neighbor manner to sort
all the remaining images in the 6.8 million image dataset. These images were
scanned by the raters one by one to check whether it is a positive appearance of
the corresponding tag. If we collected more than 11, 000 images containing the
tag, this tag was marked as “successful,” and we moved on to the next tag with
the same procedure. Otherwise, if 200, 000 images were already scanned, but we
still did not have 11, 000 positive ones, we rejected the tag and moved on to the
next one. Note that we assume that the negative appearances of tags always
outnumber the positive ones; this is also the real case in practice. Therefore, we
gathered 11, 000 positive images and at least 11, 000 negative images for each
“successful” tag.

5.2.2. Experimental Results

For the purpose of this large-scale experiment, we collected 10 “successful” cat-
egories each with an excess of 11, 000 labeled instances. These categories are as
follows: shoulder bag, horse/Equus caballus, baby/babe/infant, seashore/coast/seacoast/sea-
coast, city/metropolis, mountain/mount, afterglow, gravel/crushed rock, dog/domestic
dog/Canis familiaris, andmotorcycle/bike. Figure 12 shows the average category-
prediction accuracy, whereas Figure 13 presents the results of individual cate-
gory examples. We can make three critical observations that are detailed as
follows:

• Data-Driven Works

When the training dataset size increases to 10, 000 for each category,
all algorithms converge to a similar level of average accuracy as in Fig-
ure 12. This illustrates why the fusion algorithm performs far better
when the training data size is small but performs only a little better than
individual methods when the training data size is large. Moreover, as
shown in Figure 13, for most individual categories, such as shoulder bag,
city/metropolis, and dog/domestic dog/Canis familiaris, all feature extrac-
tion algorithms reach almost the same level of class-prediction accuracy.
It is surprising to see that the simplest model, CT, achieves comparable
results when compared with other advanced models and applied to a large-
scale PicasaWeb dataset. When the amount of training data is abundant,
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Figure 12: Accuracy for PicasaWeb dataset. X-axis shows the number of train-
ing instances for each category. Y-axis shows the average accuracy.

a simple model can also be competitive, which has also been confirmed
for the text domain [55]. We also noticed that, for some categories, such
as mountain/mount and motorcycle/bike, it appears that room for im-
provement exists for more training instances. Categories favoring each
algorithm still exist, which agrees with the previous experiments.

• Different Winners on Different Testbeds.

As we have illustrated through a per-category analysis, different algo-
rithms may work better for different image categories. SIFT is the overall
winner for the ImageNet dataset, whereas SIFT is almost the worst, and
CT is the overall winner for the PicasaWeb dataset. In other words, two
different datasets reach different conclusions when comparing feature ex-
traction algorithms. This is because the ImageNet dataset contains more
categories that are suitable for SIFT but the PicasaWeb dataset contains
less. Results similar to this have often been used to justify one algo-
rithm as being superior to another in the literature without noticing the
dataset-composition limitation. Only a careful analysis using individual
categories is able to provide sufficient justification to claim an algorithm
to be superior to others.

• Different Winners with Different Training-Size Values

As discussed in the previous section, the best algorithm for classifying a
category can change with a different number of training instances. This
observation was also demonstrated for the PicasaWeb dataset. As shown
in Figure 12, when the number of training instances is approximately
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Figure 13: Examples for large data. Categories include schoulder bag, city, dog,
seashore, mountain, motocycle, gravel, horse, baby, and afterglow.
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10, CT is better than HMAX, and SIFT is better than ConvNet, which
demonstrates that when the training data are sparse, the simple models
may achieve better results than complex models. With the increase of the
number of training instances, however, complex models, such as HMAX
and ConvNet, can achieve better results. In Figure 12, when the number
of instance increases beyond some level (approximately 20 instances on
this dataset), the performance of HMAX and ConvNet improve. The
above two descriptions were also demonstrated in the ImageNet dataset.
Moreover, different algorithms may converge to similar good results when
the training data are abundant. These results should warn those who want
to compare algorithms that the comparison must be carefully performed on
several sizes of training data to justify its conclusion. Combined with the
second observation, both the testbed size and test-category composition
can affect the conclusion of an algorithm-comparison.

5.3. Fusion Evaluation

To build a category-classifier relationship for fusion, we split the original training
data randomly into 90% training and 10% validating (up to the nearest integer).
We train individual classifiers with the training data and predict the validating
data to construct confusion matrices in Section 5.3.1. Our fusion algorithm
begins with at least two data instances because both training and validation sets
require at least one data instance. The parameters for the fusion in Section 5.3.2
are as follows: gap threshold δ set to 0.05 and the weights w1 = 0.5, w2 = 0.25,
w3 = 0.25. This section shows the fusion results for the ImageNet dataset.
Fusion results for the PicasaWeb dataset are shown together with the previous
large data analysis.

5.3.1. Confusion Matrix

Previous sections discussed different performances with different categories. In
fact, this was the inspiration for our fusion algorithm. By looking into the details
of classification results, we constructed the confusion matrices in Figure 14,
which reveal insights of feature differences among different feature extraction
methods. The first four subfigures are confusion matrices for the four feature
sets, CT, SIFT, HMAX, and ConvNet, respectively. The last subfigure is for our
fusion results, which is discussed in the fusion section. We selected the highest
values for non-diagonal positions until 10 categories were covered. Therefore,
the categories in each figure look different. In the confusion matrix, each row
corresponds to the ground truth label, whereas each column corresponds to the
predicted label. Each value in the confusion matrix is between 0 and 1.

The pizza and deviled egg pair suffers from high confusion values for all methods
(although HMAX has a slightly lower confusion value than the rest). This
confusion arises because both categories have complex toppings with similar
color, texture and shape. CT misclassifies many tabloids as belonging to the
category disc because they both have various amounts of text on the surface.
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Fortunately, this confusion does not happen through the “eyes” of the other
three feature sets. SIFT finds it hard to distinguish hammer or knife from
pincer for their similar local structure, but other feature sets easily address this
ambiguity. CT may find their slightly different color and HMAX and ConvNet
may find their global shape. HMAX appears to meet its bias condition for
the categories long trousers and spoon. In this condition, when a classifier
constructed by HMAX predicts a label long trousers or spoon, these consistently
have low confidence levels. This confusion by HMAX can be substantially helped
by using the other algorithms. ConvNet cannot distinguish the categories garlic
and deviled egg. Other features can disambiguate this pair well however. For
most of the confusion conditions, there is not much overlap on all feature sets.
Our fusion algorithm is designed to use the trusted results and dismiss the
confused results.

5.3.2. Fusion

As introduced in Section 4, the four classifiers are fused to construct a more
powerful ensemble. For comparison, we also build a naive weighted-voting fusion
algorithm. The voting scheme is quite simple: calculate the confidence for each
category when validating data as the weights, and vote across the four features.

Refer again to Figure 5. Our fusion result performs better than both individual
features alone and the weighted voting method. The key reason for this is our
full usage of the confusion matrices.

Refer again to the confusion matrices presented in Figure 14. The figure at
the bottom is the confusion matrix of the fusion scheme. Clearly, the confu-
sion values in that matrix are smaller than those in the confusion matrices of
the individual classifiers. Specifically, for the pizza and deviled egg pair, their
confusion value is still high in the fused matrix but less than that in either of
the individual matrices. This example indicates that our fusion scheme reduces
confusion and thus improves classification accuracy.

Let us use an hammer example to explain how the fusion scheme helps. The
SIFT algorithm returns pincer. The CT algorithm returns sextant as Figure 14
shows. The HMAX algorithm returns umbrella, and the ConvNet algorithm
returns earphone. None of these results is correct, but we can extend them
for fusion. The SIFT algorithm extends the candidates to hammer, knife, and
pincer with a coverage of 81%. The CT algorithm extends the candidates to
hat, sextant, deviled egg, and pineapple with a coverage of 33%. The HMAX
algorithm extends the candidates to umbrella, skeleton key, and ruler with a
coverage of 5.2%. Lastly, the ConvNet algorithm extends the candidates to
earphone, spectacles, and steering wheel with a coverage of 38.1%. So the highest
coverage SIFT is selected for the first classifier. Hammer, knife and pincer are
voted on by the remaining three algorithms. In this example, hammer is voted
with the highest confidence, and so the fusion algorithm predicts the class as
hammer. No individual features provide a correct result on this case, but a
fusion algorithm can mine correlations between categories and take advantage
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of multiple feature-extraction algorithms to obtain a better chance of getting a
correct result.

We also observe that when the number of training instances is small, the fu-
sion approach significantly increases the accuracy. However, when the number
of training increases, the gap between the fusion and individual methods de-
creases. The reason is that when the number of training instances is small, each
feature is insufficient for learning a great deal of information, which leads to
more confusion. With a fusion algorithm, the confusion stemming from lack of
information is greatly decreased. When the number of training instances in-
creases, however, confusion of this sort decreases, and, accordingly, so does the
gap.

6. Conclusion

In this paper, we investigated four representative feature extraction algorithms,
color-texture codebook (CT), SIFT codebook, HMAX, and convolutional net-
works (ConvNet). Comprehensive experiments were conducted that revealed
differences between these algorithms. We discussed our results using two dif-
ferent views. The first view is the image-category view. We provided an ex-
tensive analysis of different categories, and found that different algorithms each
have their own advantages that can give them an edge in different categories.
This finding is one of the main reasons why different algorithms may achieve
significantly different or even contradictory results with different datasets. In
addition to the inter-category analysis, this actually reveals patterns of intra-
category variance. Different feature extraction algorithms discover different
intra-category invariant information, and thus perform differently. The second
view is the number of training instances. We observed that different algorithms
may perform differently depending on the number of training instances. Simple
algorithms tend to perform better when the training data size is small. When the
number of training instances reaches up to and beyond a certain amount, com-
plex models can experience a sudden jump in accuracy. To analyze even larger
number of training instances, we constructed a new large-scale image dataset
from PicasaWeb. With this dataset, we observed that all the four algorithms
we studied converge to a good accuracy level with an abundance of training in-
stances. The observation demonstrated the validity of the data-driven approach.
Our experimental results reveal that both training data size and dataset cate-
gory composition can affect the results of algorithm comparisons. Extreme care
must be taken by researchers to avoid such pitfalls to ensure the reporting of
reliable results.

Finally, we devised and studied a fusion algorithm based on confusion matrices
to harvest synergies between these four algorithms. The key idea is that when
an algorithm is confused between classes x and y for recognizing an object,
one should direct the recognition of the object to an algorithm that can clearly
distinguish the two classes. Our fusion method can improve class-prediction
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accuracy by substantial margins when the training dataset size ranges from
small to moderate (below 1, 000). When the dataset size is large (approaching
5, 000), improvement still exists, although it is less significant. Fusion methods
that can take advantage of having different views of the raw data can continue
to improve class-prediction accuracy even when individual views have reached
their limits.

We believe that our proposed confusion matrix-guided fusion scheme can be
formulated into an optimization problem to obtain statically optimal class pre-
diction. Our future work will be devoted into formally formulating the problem
and comparing different design considerations.
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