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ABSTRACT
Personalized pricing is a business strategy to charge different prices
to individual consumers based on their characteristics and behav-
iors. It has become common practice in many industries nowadays
due to the availability of a growing amount of high granular con-
sumer data. The discriminatory nature of personalized pricing has
triggered heated debates among policymakers and academics on
how to design regulation policies to balance market efficiency and
equity. In this paper, we propose two sound policy instruments,
i.e., capping the range of the personalized prices or their ratios.
We investigate the optimal pricing strategy of a profit-maximizing
monopoly under both regulatory constraints and the impact of
imposing them on consumer surplus, producer surplus, and social
welfare. We theoretically prove that both proposed constraints can
help balance consumer surplus and producer surplus at the expense
of total surplus for common demand distributions, such as uni-
form, logistic, and exponential distributions. Experiments on both
simulation and real-world datasets demonstrate the correctness of
these theoretical results†. Our findings and insights shed light on
regulatory policy design for the increasingly monopolized business
in the digital era.
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1 INTRODUCTION
Personalized pricing, once considered the idealized construction of
economic theories, has become common practice in many indus-
tries due to the availability of the increasing amount of consumer
data [31]. With the high granular data of consumers’ characteris-
tics, companies can precisely assess consumers’ willingness to pay
and develop pricing strategies appropriately. The main concern of
personalized pricing is that it transfers value from consumers to
shareholders, increasing inequality and inefficiency from a utili-
tarian standpoint [28]. As a result, effective regulatory policies are
required to balance the benefits between consumers and companies.

The discriminatory nature of personalized pricing has triggered
heated debates among policymakers and academics on designing
regulatory policies to balance market efficiency and equity [22–24,
28, 54]. Although several legal constraints on antitrust [12, 43], data
privacy [1, 2], and anti-discrimination [3, 31] have been proposed,
their impact on social welfare, especially on the balance between
consumer surplus and producer surplus, remains an open question.
Recently, Dubé and Misra [18] have demonstrated that regulatory
policies may be harmful to consumers, highlighting the challenges
of developing proper policies that can guarantee the benefits of
consumers.

In this paper, we study in designing effective policy instruments
to balance benefits between consumers and companies. Similar to
[16], we consider the most straightforward scenario where a mo-
nopoly sells a single product with fixed marginal cost to different
consumers. In addition, we assume that the monopoly can precisely
estimate each consumers’ willingness to pay and the purpose of the
monopoly is to find a personalized pricing strategy to maximize
its revenue while remaining compliant with either of the policy
instruments. We propose two sound policy instruments and prove
their effectiveness in balancing consumer surplus and producer
surplus. These two policies, named 𝜖-difference and 𝛾-ratio con-
straints, are introduced to regulate the range of personalized prices
by constraining the difference and ratio between the maximal price
and minimal price, respectively.

We draw conclusions on typical demand assumptions (strong
regularity condition, a variant of the standard regularity [42], or
monotone hazard rate (MHR) [26]) and common demand distri-
butions [9, 10, 16] (including uniform, logistic, exponential and
some power law distributions). The theoretical results are threefold.
(1) Firstly, both constraints can effectively balance the consumer
surplus and producer surplus, which means the consumer surplus
increases while the producer surplus decreases as the constraints
become stricter. This monotonicity property is satisfied by the full
range of regulatory intensity, i.e., from perfect price discrimination
(no regulation) [39] to uniform pricing (the strictest regulation)
if the demand distribution is MHR or the regulatory policy is the
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Figure 1: Graphical explanations of our major findings.

𝛾-ratio constraint. As for applying the 𝜖-difference constraint on
strongly regular demand distributions, the property also holds for
a large, despite not full, range of regulatory intensity. (2) Secondly,
we compare the trade-off between consumer surplus and producer
surplus achieved by the two constraints and show that 𝜖-difference
constraint outperforms 𝛾-ratio constraint. This means that the con-
sumer surplus under 𝛾-ratio constraint is smaller than that under
𝜖-difference constraint if the producer surplus under the two con-
straints is equal. (3) Thirdly, imposing either of the constraints
will inevitably, to some extent, harm the total surplus. This result
is reasonable, given that the efficiency-equity trade-off is largely
recognized in practice [39]. In addition, the perfect price discrimi-
nation achieves the maximal market efficiency and any regulatory
policies to avoid it will inevitably harm the total surplus. Graphical
explanations of these findings are shown in Figure 1. These theories
are validated by experiments on both simulation and real-world
datasets [44, 50, 55].

To conclude, for industry practitioners and policymakers, our
paper offers the following takeaways.
(1) We propose two sound and effective policy instruments on the

range of personalized prices, i.e., the difference or ratio between
the maximal price and minimal price, and study their impacts
on consumer surplus, producer surplus, and social welfare.

(2) For common demand distributions, both constraints can help
balance consumer surplus and producer surplus despite the
expense of total surplus, which implies that they can protect
consumers in the increasingly monopolized business in the
digital era.

(3) Comparatively, the𝛾-ratio constraint is more suitable for design-
ing policies on the grounds that ratios could be easily adapted to
various scenarios. The 𝜖-difference constraint has better perfor-
mance on the trade-off between consumer surplus and producer
surplus. As a result, the two constraints could be adopted in
different applications in practice.

2 RELATED WORKS
Personalized pricing and price discrimination. With the increas-

ing amount of consumers’ data, personalized pricing or price dis-
crimination have become common practice in grocery chains [15],

department stores [20], airlines [52], and many other industries
[28]. The value of personalized pricing for the companies are stud-
ied in [6, 21, 41, 51]. In addition, effective approaches have been
developed to achieve personalized pricing, including both online
[5, 30, 45] and offline algorithms [11, 13].

The price discrimination is often achieved by monopolies, i.e.,
firms that is the sole seller of a product without close substitutes
[39]. They have absolute market power and consumers have to
take the prices offered by them. There are three types of price
discrimination [48]. The most extreme case is first-degree price
discrimination (or perfect price discrimination equivalently), under
which circumstances the prices offered to consumers are exactly
their willingness to pay. Second-degree price discrimination occurs
when a company charges different prices for various quantities
consumed, such as buck discounts. Third-degree price discrimi-
nation divides the market into segments and charges a different
price to each segment. In this paper, we consider developing policy
instruments towards first-degree price discrimination.

Social welfare analysis under personalized pricing. The benefits
earned by consumers, producers, and society in a market are often
measured as welfare, i.e., consumer surplus, producer surplus (or
revenue equivalently), and total surplus respectively [39].

Under perfect price discrimination, consumer surplus is zero
while producer surplus is maximized. Several literatures also stud-
ied the welfare implications of third-degree price discrimination.
Schmalensee [47] and Varian [53] noted a necessary condition for
third-degree price discrimination to increase social welfare is that
output increase. Bergemann et al. [8] proved that an intermediary
between consumers and companies who knows the distribution of
consumers’ exact willingness to pay can design market segments
to maximize any linear combination of consumer surplus and seller
revenue. Cummings et al. [17] further studied the theoretical com-
putational efficiency of finding such segmentation. Recently, Dubé
and Misra [18] found that finer-grained personalized pricing in
third-degree price discrimination can increase consumer welfare,
which is contrary to the common belief that personalized pricing
will always harm consumers.

Fair regulation towards personalized pricing. The discriminatory
nature of personalized pricing has triggered heated debate among
policymakers and academics on designing fair regulatory policies
to restrict price discrimination [22–24, 28, 54]. People have devel-
oped legal constraints on antitrust [12, 43], data privacy [1, 2], and
anti-discrimination [3, 31]. The former two constraints can help
mitigate price discrimination by avoiding the formation of mo-
nopolies and precise estimations of consumers’ willingness to pay.
Anti-discrimination constraints aim to protect different subgroups
of consumers such as female and blacks. In this paper, similar to [16]
we suppose a monopoly with perfect information of consumers’
willingness to pay and consider the regulation towards first-degree
price discrimination, which differs from settings considered by the
legal constraints mentioned above.

Several constraints on pricing algorithms are also considered. Li
and Jain [37] studied the impact of consumers’ fairness concerns in
a duopoly market. Cohen et al. [16], Kallus and Zhou [31] proposed
several fair pricing constraints for anti-discrimination. Biggs et al.
[11] presented a customized, prescriptive tree-based algorithm and
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Table 1: Detailed properties of several distributions. Common demand distributions, including uniform, exponential, and lo-
gistic distributions are both monotone hazard rate (MHR) and strongly regular. Some power law distributions are also strongly
regular, despite not MHR.

Distribution Uniform Exponential Logistic Power law *

Support and parameters [0, 𝑎]. 𝑎 > 0 [0,∞). 𝜆 > 0 [0,∞). 𝑠 > 0, 𝜇 [0,∞). Δ > 0, 𝛼 > 0
Probability density function 1

𝑎 𝜆e−𝜆𝑣 e−(𝑣−𝜇)/𝑠
𝑠 (1+e−(𝑣−𝜇)/𝑠 )2 𝛼Δ𝛼 (𝑣 + Δ)−(𝛼+1)

Hazard rate function 𝑎
(𝑣−𝑎)2 𝜆 1

𝑠 (1+e−(𝑣−𝜇)/𝑠 )
𝛼

𝑣+Δ

MHR? ✓ ✓ ✓ ✗

Strongly regular? ✓, ∀𝑘 < 𝑎, 𝑘-strongly regular ✓, ∞-strongly regular ✓, ∞-strongly regular ✓, ∞-strongly regular if 𝛼 > 1
* To ensure the support of power law distribution is [0,∞), here we adopt the power law + shortscale distribution as shown in [59].

the depth of the tree can be considered as a restriction on the
segmentation granularity.

Fair machine learning. There are increasing concerns on fair-
ness [19, 40] and robustness [49, 60, 61] recently. Various fairness
notions, including group fairness [25, 33, 56], individual fairness
[19, 58], and causality-based fairness notions [14, 34, 36] are pro-
posed to protect different subgroups or individuals. Recently, several
works [27, 29, 32, 46] have connected fairness with welfare analysis
in allocating decisions. A thorough survey on fair machine learning
can be found in [40].

3 PRELIMINARIES
3.1 Notations
We consider a single-period setting where a monopoly offers a sin-
gle product, with fixed marginal cost 𝑐 ≥ 0 to different consumers.
Let 𝑉 denote the consumers’ willingness to pay. 𝑉 is supported on
[0,𝑈 ] (𝑈 could be ∞, and in this case𝑉 is supported on [0,∞)) and
is drawn independently from a distribution 𝐹 , called demand dis-
tribution. Let 𝑓 (𝑣) be the probability density function, 𝐹 (𝑣) be the
cumulative density function, i.e., 𝐹 (𝑣) = P[𝑉 ≤ 𝑣]. In addition, we
introduce the survival function 𝑆 (𝑣) ≜ 1− 𝐹 (𝑣) and the hazard rate
function ℎ(𝑣) ≜ 𝑓 (𝑣)/𝑆 (𝑣). 𝑆 (𝑣) and 𝑓 (𝑣) can be expressed with
ℎ(𝑣) as 𝑆 (𝑣) = exp

(
−

∫ 𝑣

0 ℎ(𝑡)d𝑡
)
, 𝑓 (𝑣) = ℎ(𝑣) exp

(
−

∫ 𝑣

0 ℎ(𝑡)d𝑡
)
.

We suppose the monopoly could precisely estimate consumers’
willingness to pay and make personalized prices accordingly. The
pricing function is defined as 𝑝 : [0,𝑈 ] → [0,𝑈 ], which means a
consumer with willingness to pay 𝑉 is charged with price 𝑝 (𝑉 ).
We assume that the monopoly has enough supply to fulfill all the
demand. In addition, a consumer with willingness to pay𝑉 buys the
product only if𝑉 is at least the offered price 𝑝 (𝑉 ), i.e., the quantity
demanded of the consumer is I[𝑝 (𝑉 ) ≤ 𝑉 ]. Therefore, 𝑆 (𝑣) can be
considered as the overall quantity demanded function at price 𝑣 .

Under pricing strategy 𝑝 , the benefits of monopolies, consumers,
and society as a whole are measured by the producer surplus PS(𝑝)
(or revenue equivalently), consumer surplus CS(𝑝), and total sur-
plus TS(𝑝) respectively and are given by


PS(𝑝) = E[I[𝑝 (𝑉 ) ≤ 𝑉 ] (𝑝 (𝑉 ) − 𝑐) ],
CS(𝑝) = E[I[𝑝 (𝑉 ) ≤ 𝑉 ] (𝑉 − 𝑝 (𝑉 )) ],
TS(𝑝) = E[I[𝑝 (𝑉 ) ≤ 𝑉 ] (𝑉 − 𝑐) ] .

(1)

3.2 Assumptions on willingness to pay
To model the distribution of consumers’ willingness to pay, We
adopt regular and monotone hazard rate distributions from auction
theory and revenue management [4, 26, 42, 57]. For a thorough
analysis on social welfare, we slightly strengthen the assumption
on regularity as follows.

Definition 3.1 (𝑘-strongly regular distribution). We say 𝐹 is a
𝑘-strongly regular distribution if

(1) 𝐹 (·) is twice differentiable, and
(2) the function 𝑤 (𝑣) ≜ 𝑣 − 𝑆 (𝑣)/𝑓 (𝑣) is a monotone strictly

increasing function, and
(3) lim𝑣→𝑈 𝑤 (𝑣) > 𝑘 .

Furthermore, if 𝐹 is 𝑘-strongly regular for any 𝑘 > 0, we say 𝐹 is
∞-strongly regular.

Remark. Compared with standard regular distributions [42], 𝑘-
strongly regular distributions differ in two aspects. Firstly, we as-
sume the strict monotonicity of 𝑤 (𝑣) here while the standard one
assumes the non-decreasing property. Secondly, we further assume
the lower bound of the limit of 𝑤 (𝑣) when 𝑣 → 𝑈 . We add these
two additional assumptions to guarantee the existence and unique-
ness of the optimal pricing strategy under our proposed regulatory
policies.

In addition, monotone hazard rate distributions are defined as
follows.

Definition 3.2 (Monotone hazard rate (MHR) distribution). We
say 𝐹 is a monotone hazard rate distribution if 𝐹 (·) is twice differ-
entiable and the hazard rate ℎ(𝑣) = 𝑓 (𝑣)/𝑆 (𝑣) is non-decreasing.

The monotone hazard rate assumption is stronger than the
strongly regular assumption, given by the following proposition.

Proposition 3.1. Suppose 𝐹 is supported on [0,𝑈 ] and is a mono-
tone hazard rate distribution. Then ∀𝑘 < 𝑈 , F is also a 𝑘-strongly
regular distribution.

Both strongly regular and monotone hazard rate assumptions are
mild and common demand distributions [9, 10, 16], such as uniform,
exponential, logistic distributions, are satisfied by both of them. In
addition, some power law distributions are strongly regular, despite
not MHR. See Table 1 for detailed properties of these distributions.
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4 PROPOSED POLICY INSTRUMENTS AND
THEIR IMPACTS ON SOCIAL WELFARE

In this section, we propose two sound policy instruments and dis-
cuss the impacts of them on social welfare. The policy instruments
are regulatory constraints on the range of personalized prices as
shown in Section 4.1, namely the 𝜖-difference and 𝛾-ratio con-
straints. Then we prove the existence and uniqueness of the optimal
pricing strategy under either of the constraints in Section 4.2. After-
ward, we prove that both constraints can help balance the consumer
surplus and producer surplus (Section 4.3) at the expense of total
surplus (Section 4.4). We compare the trade-off between consumer
surplus and producer surplus under the two constraints in Sec-
tion 4.5. To simplify the proofs, we suppose the marginal cost 𝑐 is
zero in sections listed above. But the results could be applied to
general settings when 𝑐 > 0, which is shown in Section 4.6.

4.1 Proposed policy instruments
Without any constraint, the monopoly could charge each consumer
with his or her willingness to pay exactly, which is well known as
perfect price discrimination or first-degree price discrimination [48].
In this case, consumers get no benefits and the revenue is maximized.
Now we consider constraining the maximal price difference and
ratio for the pricing strategy 𝑝 .

Definition 4.1 (𝜖-difference fair). ∀0 ≤ 𝜖 < 𝑈 , we say pricing
strategy 𝑝 is 𝜖-difference fair if the maximal price difference is
no more than 𝜖 , i.e., max𝑣 𝑝 (𝑣) − min𝑣 𝑝 (𝑣) ≤ 𝜖 .

Definition 4.2 (𝛾-ratio fair). ∀𝛾 ≥ 1, we say pricing strategy 𝑝

is 𝛾-ratio fair if max𝑣 (𝑝 (𝑣) − 𝑐) ≤ 𝛾 · min𝑣 (𝑝 (𝑣) − 𝑐).

Remark. We subtract the price with the marginal cost here for
normalization. The ratio constraint is well defined because the
minimal price must be greater than the marginal cost from the
producer’s perspective. After the subtraction, the effective range
of 𝛾 is scale-free and is always [1,∞). By contrast, the range of
𝜖 depends on the support of the underlying demand distribution.
Therefore, the setting of 𝛾 is more generic in different applications.

Let 𝑝𝑙 = min𝑣 𝑝 (𝑣) be the upper price and 𝑝𝑢 = max𝑣 𝑝 (𝑣) be
the lower price. To maximize the revenue, 𝑝𝑙 must be greater than
marginal cost 𝑐 and the pricing strategy must be

𝑝 (𝑣) =


𝑝𝑢 , if 𝑣 ≥ 𝑝𝑢 ,

𝑣, if 𝑝𝑙 ≤ 𝑣 < 𝑝𝑢 ,

𝑝𝑙 , otherwise.
(2)

Hence, the optimal pricing strategy can be determined by the lower
price 𝑝𝑙 and the upper price 𝑝𝑢 . The corresponding producer sur-
plus, consumer surplus, and total surplus can be written as functions
of 𝑝𝑙 and 𝑝𝑢 .

PS(𝑝𝑙 , 𝑝𝑢 ) = (𝑝𝑢 − 𝑐)𝑆 (𝑝𝑢 ) +
∫ 𝑝𝑢

𝑝𝑙

(𝑣 − 𝑐) 𝑓 (𝑣)d𝑣,

CS(𝑝𝑙 , 𝑝𝑢 ) =
∫ 𝑈

𝑝𝑢

(𝑣 − 𝑝𝑢 ) 𝑓 (𝑣)d𝑣,

TS(𝑝𝑙 , 𝑝𝑢 ) =
∫ 𝑈

𝑝𝑙

(𝑣 − 𝑐) 𝑓 (𝑣)d𝑣.

(3)

As a result, the optimal pricing strategy can be formulated.
• The optimal 𝝐-difference fair pricing strategy can be given as

𝑝∗
𝑙
(𝜖), 𝑝∗𝑢 (𝜖) = arg max

𝑝𝑙 ,𝑝𝑢
PS(𝑝𝑙 , 𝑝𝑢 ), s.t. 𝑝𝑢 − 𝑝𝑙 ≤ 𝜖. (4)

• The optimal 𝜸-ratio fair pricing strategy can be given as

𝑞∗
𝑙
(𝛾 ), 𝑞∗𝑢 (𝛾 ) = arg max

𝑞𝑙 ,𝑞𝑢
PS(𝑞𝑙 , 𝑞𝑢 ), s.t. 𝑞𝑢 − 𝑐

𝑞𝑙 − 𝑐
≤ 𝛾 . (5)

The producer surplus, consumer surplus, and total surplus un-
der the optimal 𝜖-difference fair pricing strategy are given as fol-
lows: PS∗diff (𝜖) ≜ PS(𝑝∗

𝑙
(𝜖), 𝑝∗𝑢 (𝜖)), CS∗diff (𝜖) ≜ CS(𝑝∗

𝑙
(𝜖), 𝑝∗𝑢 (𝜖)),

and TS∗diff (𝜖) ≜ TS(𝑝∗
𝑙
(𝜖), 𝑝∗𝑢 (𝜖)), respectively. Similarly, the sur-

pluses under the optimal 𝛾-ratio fair pricing strategy are given as:
PS∗ratio (𝛾) ≜ PS(𝑞∗

𝑙
(𝛾), 𝑞∗𝑢 (𝛾)), CS∗ratio (𝛾) ≜ CS(𝑞∗

𝑙
(𝛾), 𝑞∗𝑢 (𝛾)), and

TS∗ratio (𝛾) ≜ TS(𝑞∗
𝑙
(𝛾), 𝑞∗𝑢 (𝛾)).

4.2 Existence and uniqueness of the optimal
pricing strategy

In this subsection, we prove the existence and uniqueness of the
optimal pricing strategy under either of the constraints.

4.2.1 𝜖-difference fair.

Proposition 4.1. When 𝑐 = 0, if 𝐹 is a 𝑐-strongly regular distri-
bution, then the solution (𝑝∗

𝑙
(𝜖), 𝑝∗𝑢 (𝜖)) to Equation 4 exists and is

unique. In addition, 𝑝∗
𝑙
(𝜖) and 𝑝∗𝑢 (𝜖) are differentiable.

The proof of the Proposition 4.1 is based on the following lemma.

Lemma 4.2. If 𝐹 is a 𝑐-strongly regular distribution, then ∀0 ≤ 𝜖 <

𝑈 , 𝑟𝜖 (𝑣) ≜ 𝑣 − 𝜖 − 𝑆 (𝑣)/𝑓 (𝑣 − 𝜖) is strictly increasing. In addition,
lim𝑣→𝑈 𝑟𝜖 (𝑣) > 0.

Afterward, we can prove the proposition.

Proof of Proposition 4.1. It is obvious that 𝑝∗𝑢 (𝜖) − 𝑝∗
𝑙
(𝜖) = 𝜖 .

Hence, 𝑝∗
𝑙
(𝜖) = arg max𝑝𝑙 PS(𝑝𝑙 , 𝑝𝑙+𝜖). The derivative of PS(𝑝𝑙 , 𝑝𝑙+

𝜖) is

𝐺𝑙 (𝑝𝑙 , 𝜖) ≜
d PS
d𝑝𝑙

= 𝑆 (𝑝𝑙 + 𝜖) − 𝑝𝑙 𝑓 (𝑝𝑙 ) = 𝑓 (𝑝𝑙 )
(
𝑆 (𝑝𝑙 + 𝜖)
𝑓 (𝑝𝑙 )

− 𝑝𝑙

)
.

According to Lemma 4.2, 𝑆 (𝑝𝑙 + 𝜖)/𝑓 (𝑝𝑙 ) − 𝑝𝑙 = −𝑟𝜖 (𝑝𝑙 + 𝜖) is
strictly decreasing w.r.t. 𝑝𝑙 . In addition,

lim
𝑝𝑙→0

(
𝑆 (𝑝𝑙 + 𝜖)
𝑓 (𝑝𝑙 )

− 𝑝𝑙

)
=
𝑆 (𝜖)
𝑓 (0) > 0,

lim
𝑝𝑙→(𝑈 −𝜖 )

(
𝑆 (𝑝𝑙 + 𝜖)
𝑓 (𝑝𝑙 )

− 𝑝𝑙

)
= − lim

𝑣→𝑈
𝑟𝜖 (𝑣) < 0

which implies the solution to d PS/d𝑝𝑙 = 0 exists and is unique. As
a result, for all 0 ≤ 𝜖 < 𝑈 , the solution

(
𝑝∗
𝑙
(𝜖), 𝑝∗𝑢 (𝜖)

)
exists and is

unique.
In addition,𝐺𝑙 (𝑝∗𝑙 , 𝜖) = 0 is the implicit function that determines

the relationship between 𝑝∗
𝑙

and 𝜖 and 𝐺𝑙 (𝑝∗𝑙 , 𝜖) is differentiable.
Notice that according to Lemma 4.2, we have

d𝑟𝜖
d𝑣 =

𝑓 2 (𝑣 − 𝜖) + 𝑓 (𝑣) 𝑓 (𝑣 − 𝜖) + 𝑆 (𝑣) 𝑓 ′(𝑣 − 𝜖)
𝑓 2 (𝑣 − 𝜖)

> 0,
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Hence,
𝜕𝐺𝑙

𝜕𝑝𝑙

(
𝑝∗
𝑙
, 𝜖

)
= −𝑓 (𝑝∗

𝑙
+ 𝜖) − 𝑓 (𝑝∗

𝑙
) − 𝑝∗

𝑙
𝑓 ′ (𝑝∗

𝑙
)

= −
(
𝑓 (𝑝∗

𝑙
+ 𝜖) + 𝑓 (𝑝∗

𝑙
) +

𝑆 (𝑝∗
𝑙
+ 𝜖)

𝑓 (𝑝∗
𝑙
) 𝑓 ′ (𝑝∗

𝑙
)
)

= − 𝑓 (𝑝∗
𝑙
) · d𝑟𝜖

d𝑣

����
𝑣=𝑝∗

𝑙
+𝜖

< 0.

According to the implicit function theorem [35, Theorem 1.3.1],
𝑝∗
𝑙
(𝜖) is differentiable, which implies that 𝑝∗𝑢 (𝜖) is also differentiable.

□

4.2.2 𝛾-ratio fair. Similarly, the existence and uniqueness of the
optimal pricing strategy that is 𝛾-ratio fair are given as follows.

Proposition 4.3. When 𝑐 = 0, if 𝐹 is a 𝑐-strongly regular distri-
bution, then the solution (𝑞∗

𝑙
(𝛾), 𝑞∗𝑢 (𝛾)) to Equation 5 exists and is

unique. In addition, 𝑞∗
𝑙
(𝛾) and 𝑞∗𝑢 (𝛾) are differentiable.

4.3 Balancing consumer surplus and producer
surplus

A stronger constraint can inevitably lead to the decrease in producer
surplus. However, it remains a question on whether the constraints
can lead to an increase in consumer surplus. To answer it, we
first show that the lower price 𝑝𝑙 and upper price 𝑝𝑢 have close
relationships with total surplus and consumer surplus.

Proposition 4.4. Total surplus is strictly decreasing w.r.t. lower
price 𝑝𝑙 when 𝑝𝑙 > 𝑐 . Consumer surplus is strictly decreasing w.r.t.
upper price 𝑝𝑢 .

With this proposition, the impact of the constraints on consumer
surplus can be measured by the monotonicity of the optimal upper
price 𝑝∗𝑢 (𝜖) and 𝑞∗𝑢 (𝛾).

4.3.1 𝜖-difference fair.

Theorem 4.5. When 𝑐 = 0, if F is a monotone hazard rate dis-
tribution, then 𝑝∗𝑢 (𝜖) is strictly increasing and CS∗diff (𝜖) is strictly
decreasing w.r.t. 𝜖 .

Remark. We should notice that, a stronger constraint represents a
smaller 𝜖 . As a result, according to the theorem, when 𝐹 is MHR, a
stronger constraint will lead to a decrease in optimal upper price
𝑝∗𝑢 , as well as an increase in consumer surplus.

Proof. ∀0 < 𝜖 < 𝑈 , it is obvious that 𝑝∗𝑢 (𝜖) − 𝑝∗
𝑙
(𝜖) = 𝜖 . The

optimal 𝑝∗𝑢 is given by 𝑝∗𝑢 (𝜖) = arg max𝑝𝑢 PS(𝑝𝑢 − 𝜖, 𝑝𝑢 ). The de-
rivative of PS(𝑝𝑢 − 𝜖, 𝑝𝑢 ) is

𝐺𝑢 (𝑝𝑢 , 𝜖) ≜
d PS
d𝑝𝑢

= 𝑆 (𝑝𝑢 ) − (𝑝𝑢 − 𝜖) 𝑓 (𝑝𝑢 − 𝜖).

According to Proposition 4.1, 𝐺𝑢 (𝑝∗𝑢 , 𝜖) = 0 is the implicit function
that determines the relationship between 𝑝∗𝑢 and 𝜖 . According to
[35, Theorem 1.3.1], the derivative of 𝑝∗𝑢 (𝜖) is given by

d𝑝∗𝑢
d𝜖 = −

𝜕𝐺𝑢

𝜕𝜖

(
𝑝∗𝑢 , 𝜖

)
𝜕𝐺𝑢

𝜕𝑝𝑢
(𝑝∗𝑢 , 𝜖)

=
𝑓 (𝑝∗𝑢 − 𝜖) + (𝑝∗𝑢 − 𝜖) 𝑓 ′(𝑝∗𝑢 − 𝜖)

𝑓 (𝑝∗𝑢 ) + 𝑓 (𝑝∗𝑢 − 𝜖) + (𝑝∗𝑢 − 𝜖) 𝑓 ′(𝑝∗𝑢 − 𝜖) .

Because 𝐹 is a monotone hazard rate distribution, ℎ(𝑣) is non-
decreasing, which implies, dℎ

d𝑣 =
𝑓 ′ (𝑣)𝑆 (𝑣)+𝑓 2 (𝑣)

𝑆2 (𝑣) ≥ 0. As a result,
𝑓 ′(𝑝∗𝑢 − 𝜖) ≥ −𝑓 2 (𝑝∗𝑢 − 𝜖)/𝑆 (𝑝∗𝑢 − 𝜖). Hence,

𝑓 (𝑝∗𝑢 − 𝜖) + (𝑝∗𝑢 − 𝜖) 𝑓 ′ (𝑝∗𝑢 − 𝜖)

≥𝑓 (𝑝∗𝑢 − 𝜖) − (𝑝∗𝑢 − 𝜖) · 𝑓 (𝑝
∗
𝑢 − 𝜖) 𝑓 (𝑝∗𝑢 − 𝜖)
𝑆 (𝑝∗𝑢 − 𝜖)

=𝑓 (𝑝∗𝑢 − 𝜖)
(
1 − 𝑆 (𝑝∗𝑢 )

𝑆 (𝑝∗𝑢 − 𝜖)

)
> 0.

As a result, d𝑝∗𝑢/d𝜖 > 0 and 𝑝∗𝑢 is strictly increasing w.r.t. 𝜖 . In
addition, according to Proposition 4.4, CS∗diff (𝜖) is strictly decreas-
ing. □

However, when 𝐹 is not a monotone hazard rate distribution,
even if 𝐹 is a strongly regular distribution, we can not guarantee the
monotonicity of 𝑝∗𝑢 (𝜖). But we can show that 𝑝∗𝑢 (𝜖) is monotone
over a range of 𝜖 .

Theorem 4.6. When 𝑐 = 0, if 𝐹 is a 𝑐-strongly regular distribution,
let 𝜖0 be the solution to equation 𝜖 − 2𝑝∗

𝑙
(𝜖) = 0. Then when 𝜖 > 𝜖0,

𝑝∗𝑢 (𝜖) is strictly increasing and CS∗diff (𝜖) is strictly decreasing w.r.t. 𝜖 .

Remark. We first notice that 𝑝∗
𝑙
(𝜖) is decreasing and show it in The-

orem 4.8. This implies 𝜖 − 2𝑝∗
𝑙
(𝜖) is strictly increasing. In addition,

𝑝∗
𝑙
(𝜖) ≤ 𝑝∗

𝑙
(0). As a result, the solution to 𝜖 − 2𝑝∗

𝑙
(𝜖) = 0 exists

and 𝜖0 ≤ 2𝑝∗
𝑙
(0), which means 𝜖0 is not greater than the double

of uniform price. We empirically show that the range of 𝜖 > 𝜖0 is
fairly large on a class of common strongly regular but not MHR
demand distributions, i.e., power law distributions in Section 5.

Proof. ∀0 < 𝜖 < 𝑈 , consider the numerator of d𝑝∗𝑢 (𝜖)/d𝜖 ,
𝑓 (𝑝∗𝑢 − 𝜖) + (𝑝∗𝑢 − 𝜖) 𝑓 ′ (𝑝∗𝑢 − 𝜖) = 𝑓 (𝑝∗

𝑙
) + 𝑝∗

𝑙
𝑓 ′ (𝑝∗

𝑙
)

=ℎ (𝑝∗
𝑙
) exp

(
−

∫ 𝑣

0
ℎ (𝑡 )d𝑡

)
+ 𝑝∗

𝑙

(
ℎ (𝑝∗

𝑙
) exp

(
−

∫ 𝑣

0
ℎ (𝑡 )d𝑡

))′
= exp

(
−

∫ 𝑝∗
𝑙

0
ℎ (𝑡 )d𝑡

) (
ℎ (𝑝∗

𝑙
) + 𝑝∗

𝑙
ℎ′ (𝑝∗

𝑙
) − 𝑝∗

𝑙
ℎ2 (𝑝∗

𝑙
)
)

≥ℎ (𝑝∗
𝑙
) exp

(
−

∫ 𝑝∗
𝑙

0
ℎ (𝑡 )d𝑡

) (
1 − 2𝑝∗

𝑙
ℎ (𝑝∗

𝑙
)
)
.

The last inequality is due to the monotonicity of𝑤 (𝑣) = 𝑣 − 1/ℎ(𝑣),
which means𝑤 ′(𝑣) = 1+ℎ′(𝑣)/ℎ2 (𝑣) ≥ 0. The relationship between
𝑝∗
𝑙

and 𝜖 is given by 𝐺𝑙 (𝑝∗𝑙 , 𝜖) = 𝑆 (𝑝∗
𝑙
+ 𝜖) − 𝑝∗

𝑙
𝑓 (𝑝∗

𝑙
) = 0, i.e.,

exp
(
−

∫ 𝑝∗
𝑙
+𝜖

𝑝∗
𝑙

ℎ(𝑣)d𝑣
)
− 𝑝∗

𝑙
ℎ(𝑝∗

𝑙
) = 0.

Because 𝑤 (𝑣) is strictly increasing, then ∀𝑣 ∈ (𝑝∗
𝑙
, 𝑝∗

𝑙
+ 𝜖], 𝑤 (𝑣) >

𝑤 (𝑝∗
𝑙
), which implies that 𝑣 − 1/ℎ(𝑣) > 𝑝∗

𝑙
− 1/ℎ(𝑝∗

𝑙
). Hence,

ℎ(𝑣) > 1
𝑣 − 𝑝∗

𝑙
+ 1/ℎ(𝑝∗

𝑙
) .

As a result,∫ 𝑝∗
𝑙
+𝜖

𝑝∗
𝑙

ℎ(𝑣)d𝑣 >

∫ 𝑝∗
𝑙
+𝜖

𝑝∗
𝑙

1
𝑣 − 𝑝∗

𝑙
+ 1

ℎ (𝑝∗
𝑙
)

d𝑣 = ln
(
1 + ℎ(𝑝∗

𝑙
)𝜖

)
.

This implies

𝑝∗
𝑙
ℎ(𝑝∗

𝑙
) = exp

(
−

∫ 𝑝∗
𝑙
+𝜖

𝑝∗
𝑙

ℎ(𝑣)d𝑣
)
<

1
1 + ℎ(𝑝∗

𝑙
)𝜖 ,
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and ℎ(𝑝∗
𝑙
) <

−𝑝∗
𝑙
+
√
(𝑝∗

𝑙
)2+4𝑝∗

𝑙
𝜖

2𝑝∗
𝑙
𝜖

. Let 𝑡 (𝜖) = 𝑝∗
𝑙
(𝜖)/𝜖 . Then when

𝜖 > 𝜖0, because of the monotonicity of 𝑝∗
𝑙

according to Theorem 4.8,
𝑡 (𝜖) < 𝑝∗

𝑙
(𝜖0)/𝜖0 = 1/2. Therefore, when 𝜖 > 𝜖0,

𝑝∗
𝑙
ℎ(𝑝∗

𝑙
) < 1

2

(
−𝑡 +

√
𝑡2 + 4𝑡

)
<

1
2

©«−1
2 +

√(
1
2

)2
+ 4 · 1

2
ª®¬ =

1
2 .

Hence,
𝑓 (𝑝∗𝑢 − 𝜖) + (𝑝∗𝑢 − 𝜖) 𝑓 ′ (𝑝∗𝑢 − 𝜖)

≥ℎ (𝑝∗
𝑙
) exp

(
−

∫ 𝑝∗
𝑙

0
ℎ (𝑡 )d𝑡

) (
1 − 2𝑝∗

𝑙
ℎ (𝑝∗

𝑙
)
)

>ℎ (𝑝∗
𝑙
) exp

(
−

∫ 𝑝∗
𝑙

0
ℎ (𝑡 )d𝑡

) (
1 − 2 · 1

2

)
= 0,

which implies d𝑝∗
𝑢

d𝜖 > 0 and 𝑝∗𝑢 is increasing when 𝜖 > 𝜖0. As a
result, according to Proposition 4.4, CS∗diff (𝜖) is strictly decreasing
when 𝜖 > 𝜖0. □

4.3.2 𝛾-ratio fair. As shown above, 𝜖-difference fair can not guar-
antee the increase of consumer surplus when demand distribution
is strongly regular. However, as for the 𝛾-ratio constraint, the mono-
tonicity of consumer surplus will always hold.

Theorem 4.7. When 𝑐 = 0, if F is a 𝑐-strongly regular distribution,
𝑞∗𝑢 (𝛾) is strictly increasing and CS∗ratio (𝛾) is strictly decreasing w.r.t.
𝛾 .

Remark. Similar to 𝜖-difference fair, a stronger constraint corre-
sponds to a smaller 𝛾 here. As a result, a stronger constraint on
𝛾-ratio fair will lead to the decrease in optimal upper price 𝑞∗𝑢 (𝛾)
and increase in consumer surplus.

4.4 Drop on total surplus
In this subsection, we show that imposing either of the constraints
will harm total surplus. This result is reasonable, given that the
efficiency-equity trade-off is primarily recognized in practice [39].
In addition, the perfect price discrimination achieves the maximal
market efficiency and any regulatory policy attempting to avoid
perferct price discrimation will inevitably harm the total surplus.
Similar to previous sections, stronger constraints represent smaller
𝜖 and 𝛾 in the two constraints.

4.4.1 𝜖-difference fair.

Theorem 4.8. When 𝑐 = 0, if F is a 𝑐-strongly regular distribution,
then 𝑝∗

𝑙
(𝜖) is strictly decreasing and TS∗diff (𝜖) is strictly increasing

w.r.t. 𝜖 .

Proof. ∀0 < 𝜖 < 𝑈 , according to Proposition 4.1, 𝐺𝑙 (𝑝∗𝑙 , 𝜖) = 0
is the implicit function that determines the relationship between
𝑝∗
𝑙

and 𝜖 . According to [35, Theorem 1.3.1], the derivative of 𝑝∗
𝑙
(𝜖)

is given by

d𝑝∗
𝑙

d𝜖 = −
𝜕𝐺𝑙

𝜕𝜖

(
𝑝∗
𝑙
, 𝜖

)
𝜕𝐺𝑙

𝜕𝑝𝑙

(
𝑝∗
𝑙
, 𝜖

) = −
𝑓 (𝑝∗

𝑙
+ 𝜖)

𝑓 (𝑝∗
𝑙
+ 𝜖) + 𝑓 (𝑝∗

𝑙
) + 𝑝∗

𝑙
𝑓 ′(𝑝∗

𝑙
) .

According to the proof of Proposition 4.1,

𝑓 (𝑝∗
𝑙
+ 𝜖) + 𝑓 (𝑝∗

𝑙
) + 𝑝∗

𝑙
𝑓 ′(𝑝∗

𝑙
) = − 𝜕𝐺𝑙

𝜕𝑝𝑙

(
𝑝∗
𝑙
, 𝜖

)
> 0.

Hence, d𝑝∗
𝑙

d𝜖 < 0 and 𝑝∗
𝑙
(𝜖) is strictly decreasing. As a result, accord-

ing to Proposition 4.4, TS∗diff (𝜖) is strictly increasing w.r.t. 𝜖 . □

4.4.2 𝛾-ratio fair. A similar result also holds for 𝛾-ratio constraint.

Theorem 4.9. When 𝑐 = 0, if F is a 𝑐-strongly regular distribution,
then 𝑞∗

𝑙
(𝛾) is strictly decreasing and TS∗ratio (𝛾) is strictly increasing

w.r.t. 𝛾 .

4.5 𝜖-difference fair vs 𝛾-ratio fair
We compare the performance on the trade-off of between consumer
surplus and producer surplus in this subsection under either of the
constraints. The result is given by the following theorem.

Theorem 4.10. Suppose 𝐹 is strongly regular. Suppose 0 ≤ 𝜖 < 𝑈 ,
𝛾 ≥ 1, and CS∗diff (𝜖) = CS∗ratio (𝛾). Then TS∗diff (𝜖) ≥ TS∗ratio (𝛾) and
PS∗diff (𝜖) ≥ PS∗ratio (𝛾).

Remark. This theorem shows that the 𝜖-difference constraint out-
performs the 𝛾-ratio constraint on the trade-off between consumer
surplus and producer surplus, resulting in higher efficiency while
fairness is guaranteed.

Proof. Prove the theorem by contradiction. Suppose TS∗diff (𝜖) <
TS∗ratio (𝛾). According to Proposition 4.4, we have 𝑞∗

𝑙
(𝛾) < 𝑝∗

𝑙
(𝜖),

𝑞∗𝑢 (𝛾) = 𝑝∗𝑢 (𝜖). Hence, let 𝛾 ′ ≜ 𝑝∗𝑢 (𝜖)/𝑝∗𝑙 (𝜖) < 𝑞∗𝑢 (𝛾)/𝑞∗𝑙 (𝛾) = 𝛾 .
On the one hand, by the strict monotonicity of 𝑞∗

𝑙
and 𝑞∗𝑢 sug-

gested by Theorem 4.7 and Theorem 4.9, 𝑞∗
𝑙
(𝛾 ′) > 𝑞∗

𝑙
(𝛾) and

𝑞∗𝑢 (𝛾 ′) < 𝑞∗𝑢 (𝛾). According to Proposition 4.3, (𝑞∗
𝑙
(𝛾 ′), 𝑞∗𝑢 (𝛾 ′)) is the

solution to Equation 5 and is unique, we have PS(𝑞∗
𝑙
(𝛾 ′), 𝑞∗𝑢 (𝛾 ′)) >

PS(𝑝∗
𝑙
(𝜖), 𝑝∗𝑢 (𝜖)). On the other hand,

𝑞∗𝑢 (𝛾 ′)−𝑞∗𝑙 (𝛾
′) = (𝛾 ′−1)𝑞∗

𝑙
(𝛾 ′) < (𝛾 ′−1)𝑝∗

𝑙
(𝜖) = 𝑝∗𝑢 (𝜖)−𝑝∗𝑙 (𝜖) = 𝜖.

As a result,

PS(𝑞∗
𝑙
(𝛾 ′), 𝑞∗𝑢 (𝛾 ′)) ≤ PS∗diff (𝑞

∗
𝑢 (𝛾 ′) − 𝑞∗

𝑙
(𝛾 ′)) ≤ PS(𝑝∗

𝑙
(𝜖), 𝑝∗𝑢 (𝜖)),

which leads to a contradiction. To conclude, we have TS∗diff (𝜖) ≥
TS∗ratio (𝛾). In addition, because CS∗diff (𝜖) = CS∗ratio (𝛾), we have
PS∗diff (𝜖) ≥ PS∗ratio (𝛾). □

4.6 General cases when marginal cost is
positive

To simplify proofs, we suppose the marginal cost 𝑐 is zero in previ-
ous subsections. In this subsection, we show that the conclusions
also hold for general settings when 𝑐 is greater than zero.

The general idea is that we can transfer the raw distribution 𝐹 to
a new distribution 𝐹 supported on [0,𝑈 − 𝑐] (𝑈 − 𝑐 = ∞ if 𝑈 = ∞)
and the social welfare for positive marginal cost on distribution 𝐹

are equal to that for zero marginal cost on the new distribution 𝐹 .
The corresponding functions can be given as

𝑓 (𝑣) = 𝑓 (𝑣 + 𝑐)
𝑆 (𝑐) , 𝑆 (𝑣) = 𝑆 (𝑣 + 𝑐)

𝑆 (𝑐) , ℎ̃ (𝑣) = ℎ (𝑣 + 𝑐) . (6)
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Figure 2: Experiments on simulations. Subfigure (a) shows trade-off curves between consumer surplus and producer surplus
under the 𝜖-difference and 𝛾-ratio constraints, as well as the hazard rate functions of uniform, exponential, and power law
distributions. Subfigure (b) shows the pricing range under the constraints.

Then the revenue, consumer surplus, and total surplus with lower
price 𝑝𝑙 and upper price 𝑝𝑢 can be written as

PS(𝑝𝑙 , 𝑝𝑢 ) = (𝑝𝑢 − 𝑐)𝑆 (𝑝𝑢 ) +
∫ 𝑝𝑢

𝑝𝑙

(𝑣 − 𝑐) 𝑓 (𝑣)d𝑣

= 𝑆 (𝑐)
(
(𝑝𝑢 − 𝑐)𝑆 (𝑝𝑢 − 𝑐) +

∫ 𝑝𝑢−𝑐

𝑝𝑙−𝑐
𝑣𝑓 (𝑣)d𝑣

)
,

CS(𝑝𝑙 , 𝑝𝑢 ) =
∫ 𝑢

𝑝𝑢

(𝑣 − 𝑝𝑢 ) 𝑓 (𝑣)d𝑣

= 𝑆 (𝑐)
∫ 𝑢−𝑐

𝑝𝑢−𝑐
(𝑣 − (𝑝𝑢 − 𝑐)) 𝑓 (𝑣)d𝑣,

TS(𝑝𝑙 , 𝑝𝑢 ) =
∫ 𝑢

𝑝𝑙

(𝑣 − 𝑐) 𝑓 (𝑣)d𝑣 = 𝑆 (𝑐)
∫ 𝑢

𝑝𝑙−𝑐
𝑣𝑓 (𝑣)d𝑣.

(7)

They are proportional to producer surplus, consumer surplus and
total surplus with lower price (𝑝𝑙 − 𝑐) and upper price (𝑝𝑢 − 𝑐)
when the demand distribution is 𝐹 and marginal cost is zero. In
addition, the properties of 𝐹 are given by the following proposition.

Proposition 4.11. If 𝐹 is a monotone hazard rate distribution, so
does 𝐹 . If 𝐹 is a 𝑐-strongly regular distribution, 𝐹 will be a 0-strongly
regular distribution.

As a result, our major conclusions in previous subsections hold
for more general settings when marginal cost is positive.

5 EXPERIMENTS
We run experiments on both simulation and real-world datasets to
prove the correctness of our theoretical results.

5.1 Simulation
5.1.1 Data. We simulate common demand distributions including
MHR distributions, namely uniform and exponential distributions
[9, 10, 16], and a strongly regular distribution, namely power law
distribution [59]. The detailed properties of these distributions are
shown in Table 1. We choose 𝑎 = 1 for uniform distribution, 𝜆 = 1
for exponential distribution, and Δ = 1, 𝛼 = 2 for power law
distribution. The marginal cost is set to 0. Note that the choice of
parameters does not bring a difference as long as the distribution
is MHR or strongly regular.

5.1.2 Results and analysis. With closed-form probability density
functions of these distributions, we can optimize Equation 4 and

Equation 5 directly. We choose different 𝜖 and 𝛾 and calculate the
corresponding optimal lower / upper price, consumer surplus, pro-
ducer surplus and total surplus accordingly.

The results on trade-off curves between consumer surplus and
producer surplus are shown in Figure 2(a). The grey area in Fig-
ure 2(a) represents all possible pairs of consumer surplus and pro-
ducer surplus that: (1) consumer surplus is nonnegative, (2) pro-
ducer surplus is not less than revenue under uniform pricing, and
(3) total surplus does not exceed the surplus generated by efficient
trade [8], i.e., E[I[𝑉 ≥ 𝑐] (𝑉 − 𝑐)]. The endpoints of the trade-off
curve for both constraints fall on the upper left corner and the
bottom line of the grey area, which denote the perfect price dis-
crimination and the uniform pricing, respectively. We also show
the pricing range under both constraints in Figure 2(b) . From the
figure, we have the following observations and they all coincide
with the theoretical results listed in Section 4.

• The trade-off between consumer surplus and producer surplus.
As shown in Figure 2(a), for MHR distributions (uniform and ex-
ponential), both constraints can help balance the consumer sur-
plus and producer surplus for the whole range of regulatory inten-
sity. However, when the distribution is strongly regular but not
MHR, the monotonicity property holds for the 𝛾-ratio constraint
but fails for the 𝜖-difference constraint. Under this circumstance,
the 𝜖-difference fair constraint can guarantee the property when
the trade-off curve is above the X point shown in Figure 2(a), which
corresponds to the proposed 𝜖0 in Theorem 4.6. In addition, the
monotonicity property of the optimal upper price can be validated
in Figure 2(b) and further proves the trade-off between consumer
surplus and producer surplus, according to Proposition 4.4.

• Drop on total surplus. As shown in Figure 2(a), as an anchor
point moves along the curves from the upper left corner to the
bottom line, the distance between the anchor point to the upper
right borderline of the grey triangle becomes larger. This implies
both constraints can lead to a decrease in total surplus given that
the distance can be viewed as the drop of total surplus from the
efficient trade. Furthermore, a stricter constraint results in a larger
loss on total surplus. In addition, the monotonicity property of the
optimal lower price is presented in Figure 2(b) and the property can
further prove the loss on total surplus, according to Proposition 4.4.
The drop on total surplus is reasonable because the perfect price
discrimination achieves the maximal market efficiency and any
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Figure 3: Experiments on real-worlds datasets. It shows trade-off curves between consumer surplus and producer surplus
under the 𝜖-difference and 𝛾-ratio constraints, as well as the hazard rate functions of these datasets.

regulatory policies attempting to avoid perfect price discrimination
will inevitably harm total surplus.

• 𝜖-difference fair vs 𝛾-ratio fair. As shown in Figure 2, the trade-
off curve of 𝜖-difference fair is on top of that achieved by 𝛾-ratio
fair as long as the demand distribution is strongly regular, which
validates our theoretical results in Theorem 4.10.

5.2 Real-world datasets
5.2.1 Datasets and preprocessing.

(1) Coke and cake. Wertenbroch and Skiera [55] adopted Becker,
DeGroot, and Marschak’s method [7] to estimate willingness-to-pay
for a can of Coca-Cola on a public beach and a piece of pound cake
on a commuter ferry in Kiel, Germany. The quantity demanded are
then regressed with a logistic model 𝑆 (𝑝) ∝ 1/

(
1 + e−(𝑎+𝑏𝑝)

)
. The

fitted parameters are 𝑎 = 3.94, 𝑏 = −3.44 for the demand of Coke
and 𝑎 = 4.58, 𝑏 = −3.72 for the demand of cake. These parameters
are good estimations of the raw willingness to pay according to [55].
We use the fitted logistic model as the demand function. As a result,
the demand distributions are logistic distributions and satisfy the
assumption of MHR.

(2) Elective vaccine. Slunge [50] studied willingness to pay for
vaccination against tick-borne encephalitis in Sweden. They asked
individuals with covariate 𝑥 about take-up at a random price of 100,
250, 500, 750, or 1000 SEK. We follow [31, 50] and learn a logistic
regression model of binary demand by appending the price variable
with the other covariates, i.e., 𝐷 (𝑥, 𝑝) = 𝜎 (𝛾𝑇 𝑥 + 𝛽𝑝) where 𝜎 (·) is
the logistic function. The overall demand function can be given as
𝑆 (𝑝) = E𝑥 [𝐷 (𝑥, 𝑝)].

(3) Auto loan. The dataset records 208,085 auto loan applications
received by a major online lender in the United States with loan-
specific features. Following [5, 38, 44], we adopt the feature selection
results and consider only four features: the loan amount approved,
FICO score, prime rate, and the competitor’s rate. The price 𝑝 of
of a loan is computed as the net present value of future payment
minus the loan amount, i.e., 𝑝 = Monthly Payment × ∑Term

𝜏=1 (1 +
Rate)−𝜏 −Loan Amount. Following [38], we set the rate as 0.12% to
estimate the monthly London interbank offered rate for the studied
time period. We further fit the demand function with a logistic
regression model.

5.2.2 Results and analysis. With closed-form demand functions of
these datasets, we can optimize Equation 4 and Equation 5 directly.

We choose different 𝜖 and𝛾 and calculate the corresponding optimal
lower / upper price, consumer surplus, producer surplus and total
surplus accordingly.

We first analyze the hazard rate function for the demand distri-
butions on these real-world datasets. As shown in the upper right
subfigures of Figure 3, all of the datasets approximately satisfy the
MHR condition. For coke and cake, the demand distributions are
logistic and they satisfy the MHR condition by nature. For elective
vaccine and auto loan, the hazard rate functions are not strictly
increasing and we can find fluctuations in the figures. However,
they can be considered increasing from the long-run trend.

The trade-off curve between consumer surplus and producer
surplus can be found in Figure 3. As shown in the figure, the fluc-
tuations on hazard rate functions do not affect the major results.
Similar to simulation experiments, both constraints can help bal-
ance consumer surplus and producer surplus at the expense of total
surplus. In addition, the curve of the 𝛾-ratio constraint is on top
of the 𝜖-difference constraint. These results match the theories we
propose in Section 4.

6 CONCLUSIONS
To conclude, in this paper, we propose two sound and effective
policy instruments on the range of personalized prices and study
their impact on consumer surplus, producer surplus, and social
welfare. For common demand distributions, both constraints can
help balance consumer surplus and producer surplus at the expense
of total surplus. In addition, the 𝜖-difference constraint has bet-
ter performance on the trade-off between consumer surplus and
producer surplus while the 𝛾-ratio constraint is more suitable for
designing policies. As a result, the two constraints could be adopted
in different applications in practice.
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A OMITTED PROOFS
A.1 Proof of Proposition 3.1

Proof. Suppose 𝐹 is a monotone hazard rate distribution, which
meansℎ(𝑣) is non-decreasing. As a result,𝑤 (𝑣) = 𝑣− 1

ℎ (𝑣) is strictly
increasing. In addition,

lim
𝑣→𝑈

𝑤 (𝑣)
{
≥ lim𝑣→∞ 𝑣 − 1

ℎ (0) = ∞, if 𝑈 = ∞,

= 𝑈 − 𝑆 (𝑈 )
𝑓 (𝑈 ) = 𝑈 > 𝑘 otherwise.

As a result, 𝐹 is 𝑘-strongly regular. □

A.2 Proof of Lemma 4.2
Proof. The results for 𝑟0 (𝑣) hold by definition of strong regu-

larity. Now consider 𝜖 > 0. We express 𝑟𝜖 with hazard functions.

𝑟𝜖 (𝑣) = 𝑣 − 𝜖 − 𝑆 (𝑣)
𝑆 (𝑣 − 𝜖) ·

𝑆 (𝑣 − 𝜖)
𝑓 (𝑣 − 𝜖) = 𝑣 − 𝜖 −

exp
(
−

∫ 𝑣

𝑣−𝜖 ℎ(𝑡)d𝑡
)

ℎ(𝑣 − 𝜖) .

Because 𝐹 is strongly regular,𝑤 (𝑣) = 𝑣−1/ℎ(𝑣) is strictly increasing,
which implies d𝑤

d𝑣 = 1 + ℎ′ (𝑣)
ℎ2 (𝑣) ≥ 0. Hence, ℎ′(𝑣) ≥ −ℎ2 (𝑣). Then

we calculate the derivative of 𝑟𝜖 ,
d𝑟𝜖
d𝑣

=1 −
exp

(
−

∫ 𝑣

𝑣−𝜖 ℎ (𝑡 )d𝑡
)

ℎ2 (𝑣 − 𝜖)

(
ℎ2 (𝑣 − 𝜖) − ℎ (𝑣)ℎ (𝑣 − 𝜖) − ℎ′ (𝑣 − 𝜖)

)
≥1 + exp

(
−

∫ 𝑣

𝑣−𝜖
ℎ (𝑡 )d𝑡

) (
ℎ (𝑣)

ℎ (𝑣 − 𝜖) − 2
)
.

Because 𝑤 (𝑣) is strictly increasing, then ∀𝑡 ∈ (𝑣 − 𝜖, 𝑣], 𝑤 (𝑡) >

𝑤 (𝑣 − 𝜖), which implies that 𝑡 − 1
ℎ (𝑡 ) > 𝑣 − 𝜖 − 1

ℎ (𝑣−𝜖) . Hence,

ℎ(𝑡) > 1
𝑡−𝑣+𝜖+1/ℎ (𝑣−𝜖) . As a result, ℎ (𝑣)

ℎ (𝑣−𝜖) > 1
1+ℎ (𝑣−𝜖)𝜖 and∫ 𝑣

𝑣−𝜖
ℎ (𝑡 )d𝑡 >

∫ 𝑣

𝑣−𝜖

1
𝑡 − 𝑣 + 𝜖 + 1

ℎ (𝑣−𝜖 )
d𝑡

= ln
(
𝑡 − 𝑣 + 𝜖 + 1

ℎ (𝑣 − 𝜖)

)����𝑣
𝑡=𝑣−𝜖

= ln (1 + ℎ (𝑣 − 𝜖)𝜖) .

As a result,

exp
(∫ 𝑣

𝑣−𝜖
ℎ (𝑡 )d𝑡

)
· d𝑟𝜖

d𝑣 ≥ exp
(∫ 𝑣

𝑣−𝜖
ℎ (𝑡 )d𝑡

)
+ ℎ (𝑣)
ℎ (𝑣 − 𝜖) − 2

>1 + ℎ (𝑣 − 𝜖)𝜖 + 1
1 + ℎ (𝑣 − 𝜖)𝜖 − 2 ≥ 0,

which implies 𝑟𝜖 (𝑣) is strictly increasing. Now consider the limits
of 𝑟𝜖 (𝑣) when 𝑣 → 𝑈 .

lim
𝑣→𝑈

𝑟𝜖 (𝑣) = lim
𝑣→𝑈

𝑣 − 𝜖 − 𝑆 (𝑣)
𝑓 (𝑣 − 𝜖){

> lim𝑣→∞ 𝑣 − 𝜖 − 𝑆 (𝑣−𝜖 )
𝑓 (𝑣−𝜖 ) = lim𝑣→∞ 𝑤 (𝑣) > 0, if 𝑈 = ∞,

= 𝑈 − 𝜖 > 0, otherwise.
□

A.3 Proof of Proposition 4.3
To prove the proposition, we need the following lemma.

Lemma A.1. If 𝐹 is a 𝑐-strongly regular distribution, then ∀𝛾 ≥ 1,
𝑧𝛾 (𝑣) ≜ 𝑣−𝛾𝑆 (𝛾𝑣)

𝑓 (𝑣) is strictly increasing. In addition, lim𝛾𝑣→𝑈 𝑧𝛾 (𝑣) >
0.

Proof. The results for 𝑧1 (𝑣) hold by definition, now consider
𝛾 > 1. We express 𝑧𝛾 with hazard functions.

𝑧𝛾 (𝑣) = 𝑣 − 𝛾 · 𝑆 (𝛾𝑣)
𝑆 (𝑣) · 𝑆 (𝑣)

𝑓 (𝑣) = 𝑣 − 𝛾

exp
(
−

∫ 𝛾𝑣

𝑣
ℎ(𝑡)d𝑡

)
ℎ(𝑣) .

The derivative of 𝑧𝛾 is given by

d𝑧𝛾
d𝑣 = 1 − 𝛾 ·

exp
(
−

∫ 𝛾𝑣

𝑣
ℎ (𝑡 )d𝑡

)
ℎ2 (𝑣)

(
ℎ2 (𝑣) − 𝛾ℎ (𝑣)ℎ (𝛾𝑣) − ℎ′ (𝑣)

)
≥ 1 + 𝛾 · exp

(
−

∫ 𝛾𝑣

𝑣

ℎ (𝑡 )d𝑡
) (

𝛾ℎ (𝛾𝑣)
ℎ (𝑣) − 2

)
.

Similar with the proof of Lemma 4.2, the last inequality is due to the
monotonicity of𝑤 (𝑣). We also have ∀𝑡 ∈ (𝑣,𝛾𝑣], ℎ(𝑡) > 1

𝑡−𝑣+1/ℎ (𝑣) .

As a result, ℎ (𝛾𝑣)
ℎ (𝑣) > 1

1+(𝛾−1)𝑣ℎ (𝑣) and∫ 𝛾𝑣

𝑣

ℎ (𝑡 )d𝑡 >

∫ 𝛾𝑣

𝑣

1
𝑡 − 𝑣 + 1

ℎ (𝑣)
d𝑡

= ln
(
𝑡 − 𝑣 + 1

ℎ (𝑣)

)����𝛾𝑣
𝑡=𝑣

= ln (1 + (𝛾 − 1)𝑣ℎ (𝑣)) .

As a result,
1
𝛾

exp
(∫ 𝛾𝑣

𝑣

ℎ (𝑡 )d𝑡
)
·

d𝑧𝛾
d𝑣 ≥ 1

𝛾
exp

(∫ 𝛾𝑣

𝑣

ℎ (𝑡 )d𝑡
)
+ 𝛾ℎ (𝛾𝑣)

ℎ (𝑣) − 2

>
1 + (𝛾 − 1)𝑣ℎ (𝑣)

𝛾
+ 𝛾

1 + (𝛾 − 1)𝑣ℎ (𝑣) − 2 ≥ 0,

which implies 𝑧𝛾 (𝑣) is strictly increasing. Now consider the limits
of 𝑧𝛾 (𝑣) when 𝛾 → 𝑈 . If𝑈 is finite, then lim𝛾𝑣→𝑈 𝑧𝛾 (𝑣) = 𝑈 /𝛾 > 0.
When𝑈 = ∞, because lim𝑣→∞𝑤 (𝑣) > 0, we have lim𝑣→∞ 𝑣ℎ(𝑣) >
1. Then when 𝑣 → ∞,

𝛾𝑆 (𝛾𝑣)
𝑆 (𝑣) = 𝛾 exp

(
−

∫ 𝛾𝑣

𝑣

ℎ (𝑡 )d𝑡
)
<

𝛾

1 + (𝛾 − 1)𝑣ℎ (𝑣)

<
𝛾

1 + (𝛾 − 1) · 1 = 1.

Hence, when 𝑣 → ∞,

𝑧𝛾 (𝑣) = 𝑣 − 𝛾𝑆 (𝛾𝑣)
𝑆 (𝑣) · 1

ℎ(𝑣) > 𝑣 − 1
ℎ(𝑣) = 𝑤 (𝑣) > 0.

□

Proof of Proposition 4.3. It is obvious that 𝑞∗𝑢 (𝛾) = 𝛾𝑞∗
𝑙
(𝛾).

Hence,
𝑞∗
𝑙
(𝛾) = arg max

𝑞𝑙
PS(𝑞𝑙 , 𝛾𝑞𝑙 ).

The derivative of PS(𝑞𝑙 , 𝛾𝑞𝑙 ) is

𝐻𝑙 (𝑞𝑙 , 𝛾) ≜
d PS
d𝑞𝑙

= 𝛾𝑆 (𝛾𝑞𝑙 ) − 𝑞𝑙 𝑓 (𝑞𝑙 ) = 𝑓 (𝑞𝑙 )
(
𝛾𝑆 (𝛾𝑞𝑙 )
𝑓 (𝑞𝑙 )

− 𝑞𝑙

)
.

According to Lemma A.1,
(
𝛾𝑆 (𝛾𝑞𝑙 )
𝑓 (𝑞𝑙 ) − 𝑞𝑙

)
is strictly decreasing. In

addition,

lim
𝑞𝑙→0

(
𝛾𝑆 (𝛾𝑞𝑙 )
𝑓 (𝑞𝑙 )

− 𝑞𝑙

)
=
𝛾𝑆 (0)
𝑓 (0) > 0,

lim
𝛾𝑞𝑙→𝑈

(
𝛾𝑆 (𝛾𝑞𝑙 )
𝑓 (𝑞𝑙 )

− 𝑞𝑙

)
= − lim

𝛾𝑞𝑙→𝑈
𝑧𝛾 (𝑞𝑙 ) < 0,
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which implies the solution to d PS
d𝑞𝑙 = 0 exists and is unique. As a

result, for all 𝛾 ≥ 1, the solution
(
𝑞∗
𝑙
(𝛾), 𝑞∗𝑢 (𝛾)

)
exists and unique.

In addition, 𝐻𝑙 (𝑞∗𝑙 , 𝛾) = 0 is the implicit function that determines
the relationship between 𝑞∗

𝑙
and 𝛾 and 𝐻𝑙 (𝑞∗𝑙 , 𝛾) is continuously

differentiable. Notice that according to Lemma A.1,
d𝑧𝛾
d𝑣 =

𝑓 2 (𝑣) + 𝛾2 𝑓 (𝑣) 𝑓 (𝛾𝑣) + 𝛾𝑆 (𝛾𝑣) 𝑓 ′(𝑣)
𝑓 2 (𝑣)

> 0,

Hence,
𝜕𝐻𝑙

𝜕𝑞𝑙

(
𝑞∗
𝑙
, 𝛾

)
= − 𝛾2 𝑓 (𝛾𝑞∗

𝑙
) − 𝑓 (𝑞∗

𝑙
) − 𝑞∗

𝑙
𝑓 ′ (𝑞∗

𝑙
)

= −
(
𝛾2 𝑓 (𝛾𝑞∗

𝑙
) + 𝑓 (𝑞∗

𝑙
) +

𝛾𝑆 (𝛾𝑞∗
𝑙
)

𝑓 (𝑞∗
𝑙
) 𝑓 ′ (𝑞∗

𝑙
)
)

= − 𝑓 (𝑞∗
𝑙
) ·

d𝑧𝛾
d𝑣

����
𝑣=𝑞∗

𝑙

< 0.

According to the implicit function theorem [35, Theorem 1.3.1],
𝑞∗
𝑙
(𝜖) is differentiable, which implies that𝑞∗𝑢 (𝜖) is also differentiable.

□

A.4 Proof of Proposition 4.4
Proof. On the one hand, when 𝑐 < 𝑝𝑙 < 𝑈 ,

𝜕 TS(𝑝𝑙 , 𝑝𝑢 )
𝜕𝑝𝑙

= −(𝑝𝑙 − 𝑐) 𝑓 (𝑝𝑙 ) < 0.

Hence total surplus is strictly decreasing w.r.t. 𝑝𝑙 . On the other
hand, when 0 < 𝑝𝑢 < 𝑈 ,
𝜕 CS(𝑝𝑙 , 𝑝𝑢 )

𝜕𝑝𝑢
= −(𝑝𝑢 − 𝑝𝑢 ) 𝑓 (𝑝𝑢 ) +

∫ 𝑈

𝑝𝑢

−𝑓 (𝑣)d𝑣 = −𝑆 (𝑝𝑢 ) < 0,

which implies consumer surplus is strictly decreasing w.r.t. 𝑝𝑢 . □

A.5 Proof of Theorem 4.7 and Theorem 4.9
Proof. We first prove the non-increasing property of 𝑞∗

𝑙
. Ac-

cording to Proposition 4.3, 𝐻𝑙 (𝑞𝑙 , 𝛾) = 0 is the implicit function
that determines the relationship between 𝑞∗

𝑙
and 𝛾 . Notice that

when 𝛾 = 1, the optimal solution 𝑞∗
𝑙
(1) and 𝑞∗𝑢 (1) should satisfy

𝑞∗
𝑙
(1) = 𝑞∗𝑢 (1) and 𝑆 (𝑞∗𝑢 (1)) = 𝑞∗𝑢 (1) 𝑓 (𝑞∗𝑢 (1)). According to [35,

Theorem 1.3.1], the derivative of 𝑞∗
𝑙
(𝛾) is given by

d𝑞∗
𝑙

d𝛾 = −
𝜕𝐻𝑙
d𝛾

(
𝑞∗
𝑙
, 𝛾

)
𝜕𝐻𝑙
d𝑞𝑙

(
𝑞∗
𝑙
, 𝛾

) =
𝑆 (𝛾𝑞∗

𝑙
) − 𝛾𝑞∗

𝑙
𝑓 (𝛾𝑞∗

𝑙
)

𝛾2 𝑓 (𝛾𝑞∗
𝑙
) + 𝑓 (𝑞∗

𝑙
) + 𝑞∗

𝑙
𝑓 ′ (𝑞∗

𝑙
)

=
𝑆 (𝑞∗𝑢 ) − 𝑞∗𝑢 𝑓 (𝑞∗𝑢 )

𝛾2 𝑓 (𝛾𝑞∗
𝑙
) + 𝑓 (𝑞∗

𝑙
) + 𝑞∗

𝑙
𝑓 ′ (𝑞∗

𝑙
) .

According to the proof of Proposition 4.3, the denominator of the
equation above is greater than 0. Now consider the numerator.

Suppose there exists 𝛾0 > 1 such that 𝑞∗𝑢 (𝛾0) < 𝑞∗𝑢 (1). Because of
the differentiability of𝑞∗𝑢 (𝛾) according to Proposition 4.3, there exist
a range [𝛾1, 𝛾2] ⊆ [1, 𝛾0] such that 𝑞∗𝑢 (𝛾) is non-increasing when
𝛾 ∈ [𝛾1, 𝛾2] and 𝑞∗𝑢 (𝛾1) < 𝑞∗𝑢 (1). Hence, ∀𝛾 ∈ [𝛾1, 𝛾2], 𝑞∗𝑢 (𝛾) <

𝑞∗𝑢 (1). Because 𝑤 (𝑣) = 𝑣 − 𝑆 (𝑣)/𝑓 (𝑣) is strictly increasing,

𝑞∗𝑢 (𝛾) −
𝑆 (𝑞∗𝑢 (𝛾))
𝑓 (𝑞∗𝑢 (𝛾))

< 𝑞∗𝑢 (1) −
𝑆 (𝑞∗𝑢 (1))
𝑓 (𝑞∗𝑢 (1))

= 0,

which means 𝑆 (𝑞∗𝑢 (𝛾)) − 𝑞∗𝑢 (𝛾) 𝑓 (𝑞∗𝑢 (𝛾)) > 0 and d𝑞∗
𝑙

𝛾 > 0. Hence
𝑞∗
𝑙
(𝛾) is strictly increasing when 𝛾 ∈ [𝛾1, 𝛾2]. Because 𝑞∗𝑢 (𝛾) is non-

increasing when 𝛾 ∈ [𝛾1, 𝛾2], 𝛾 = 𝑞∗𝑢 (𝛾)/𝑞∗𝑙 (𝛾) is non-increasing

when 𝛾 ∈ [𝛾1, 𝛾2], which results in a contradiction. Hence ∀𝛾 ≥ 1,
𝑞∗𝑢 (𝛾) ≥ 𝑞∗𝑢 (1). As a result, 𝑆 (𝑞∗𝑢 ) − 𝑞∗𝑢 𝑓 (𝑞∗𝑢 ) ≤ 0, which implies
𝑞∗
𝑙
(𝛾) is non-increasing w.r.t. 𝛾 .
Next we prove the non-decreasing property of 𝑞∗𝑢 . Similarly, the

optimal 𝑞∗𝑢 is given by
𝑞∗𝑢 (𝛾) = arg max

𝑞𝑢
PS(𝑞𝑢/𝛾, 𝑞𝑢 ).

The derivative of PS(𝑞𝑢/𝛾, 𝑞𝑢 ) is

𝐻𝑢 (𝑞𝑙 , 𝛾) ≜
d PS
d𝑞𝑢

= 𝑆 (𝑞𝑢 ) −
𝑞𝑢 𝑓 (𝑞𝑢/𝛾)

𝛾2 .

According to Proposition 4.3, 𝐻𝑢 (𝑞∗𝑢 , 𝛾) = 0 is the implicit function
that determines the relationship between 𝑞∗𝑢 and 𝛾 . According to
[35, Theorem 1.3.1], the derivative of 𝑞∗𝑢 (𝛾) if given by

d𝑞∗𝑢
d𝛾 = −

𝜕𝐻𝑢
d𝛾

(
𝑞∗𝑢 , 𝛾

)
𝜕𝐻𝑢
d𝑞𝑢 (𝑞∗𝑢 , 𝛾 )

=

(
𝑞∗𝑢
𝛾

)2
𝑓 ′

(
𝑞∗𝑢
𝛾

)
+ 2𝑞∗𝑢

𝛾
𝑓

(
𝑞∗𝑢
𝛾

)
𝛾2 𝑓 (𝑞∗𝑢 ) + 𝑓

(
𝑞∗𝑢
𝛾

)
+ 𝑞∗𝑢

𝛾
𝑓 ′

(
𝑞∗𝑢
𝛾

)
=

(
𝑞∗
𝑙

)2
𝑓 ′ (𝑞∗

𝑙
) + 2𝑞∗

𝑙
𝑓 (𝑞∗

𝑙
)

𝛾2 𝑓 (𝛾𝑞∗
𝑙
) + 𝑓 (𝑞∗

𝑙
) + 𝑞∗

𝑙
𝑓 ′ (𝑞∗

𝑙
) .

According to the proof of Proposition 4.3, the denominator of the
equation above is greater than 0. Now consider the numerator.
Because 𝑤 (𝑣) = 𝑣 − 𝑆 (𝑣)/𝑓 (𝑣) is strictly increasing,

𝑤 ′(𝑣) = 2𝑓 2 (𝑣) + 𝑆 (𝑣) 𝑓 ′(𝑣)
𝑓 2 (𝑣)

≥ 0.

Hence 𝑓 ′(𝑞∗
𝑙
) ≥ −2𝑓 2 (𝑞∗

𝑙
)/𝑆 (𝑞∗

𝑙
), and(

𝑞∗
𝑙

)2
𝑓 ′ (𝑞∗

𝑙
) + 2𝑞∗

𝑙
𝑓 (𝑞∗

𝑙
) ≥

2𝑞∗
𝑙
𝑓 2 (𝑞∗

𝑙
)

𝑆 (𝑞∗
𝑙
)

(
𝑆 (𝑞∗

𝑙
)

𝑓 (𝑞∗
𝑙
) − 𝑞∗

𝑙

)
.

Because 𝑞∗
𝑙
(𝛾) is non-increasing, 𝑞∗

𝑙
(𝛾) ≤ 𝑞∗

𝑙
(1). For the monotonic-

ity of 𝑤 (𝑣) = 𝑣 − 𝑆 (𝑣)/𝑓 (𝑣),
𝑆 (𝑞∗

𝑙
(𝛾))

𝑓 (𝑞∗
𝑙
(𝛾)) − 𝑞∗

𝑙
(𝛾) = −𝑤 (𝑞∗

𝑙
(𝛾)) ≥ −𝑤 (𝑞∗

𝑙
(1)) = 0.

As a result, d𝑞∗𝑢
d𝛾 ≥ 0 and 𝑞∗𝑢 is non-decreasing.

Then We could prove the strict monotonicity of 𝑞∗
𝑙

and 𝑞∗𝑢 . Sup-
pose there exists 𝛾0 > 1 such that 𝑞∗𝑢 (𝛾0) = 𝑞∗𝑢 (1). Because the
non-decreasing property, ∀𝛾 ∈ [1, 𝛾0], 𝑞∗𝑢 (𝛾) = 𝑞∗𝑢 (1). Then ∀𝛾 ∈
[1, 𝛾0], d𝑞∗

𝑙
/d𝛾 = 0, which means 𝑞∗

𝑙
(𝛾) = 𝑞∗

𝑙
(1). Therefore, 𝛾0 =

𝑞∗𝑢 (𝛾0)/𝑞∗𝑙 (𝛾0) = 𝑞∗𝑢 (1)/𝑞∗𝑙 (1) = 1, which results in a contradiction.
As a result, ∀𝛾 > 1, 𝑞∗𝑢 (𝛾) > 𝑞∗𝑢 (1). Therefore, ∀𝛾 > 1, d𝑞∗

𝑙
/d𝛾 < 0,

and 𝑞∗
𝑙
(𝛾) is strictly decreasing. Similarly, ∀𝛾 > 1, 𝑞∗

𝑙
(𝛾) < 𝑞∗

𝑙
(1),

which implies d𝑞∗𝑢/d𝛾 > 0 and 𝑞∗𝑢 (𝛾) is strictly increasing.
Finally, according to Proposition 4.4, CS∗ratio (𝛾) is strictly de-

creasing and TS∗ratio (𝛾) is strictly increasing w.r.t. 𝛾 . □

A.6 Proof of Proposition 4.11
Proof. The conclusion is obvious for monotone hazard rate

distributions. Now if 𝐹 is 𝑐-strongly regular, �̃� (𝑣) = 𝑣 − 𝑆 (𝑣+𝑐)
𝑓 (𝑣+𝑐) is

obvious strictly increasing. In addition,

lim
𝑣→𝑈

�̃� (𝑣) = lim
𝑣→𝑈

(
𝑣 + 𝑐 − 𝑆 (𝑣 + 𝑐)

𝑓 (𝑣 + 𝑐)

)
− 𝑐 > 𝑐 − 𝑐 = 0.

Hence 𝐹 is strongly regular. □
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