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ABSTRACT
Precisely evaluating the effect of new policies (e.g. ad-placement

models, recommendation functions, ranking functions) is one of the

most important problems for improving interactive systems. The

conventional policy evaluation methods rely on online A/B tests,

but they are usually extremely expensive and may have undesirable

impacts. Recently, Inverse Propensity Score (IPS) estimators are

proposed as alternatives to evaluate the effect of new policy with

offline log data that was collected from a different policy in the

past. They tend to remove the distribution shift induced by past

policy, but ignore the distribution shift that would be induced by

the new policy. Moreover, their performances rely on accurate

estimation of propensity score, which can not be guaranteed or

validated in practice. In this paper, we propose a non-parametric

method, named Focused Context Balancing (FCB) algorithm, to

learn sample weights for context balancing, so that the distribution

shift induced by the past policy and new policy can be eliminated

respectively. To validate the effectiveness of our FCB algorithm, we

conduct extensive experiments on both synthetic and real world

datasets. The experimental results clearly demonstrate that our FCB

algorithm outperforms existing estimators.
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1 INTRODUCTION
Policy evaluation is an extremely important problem in interactive

systems, such as recommender systems, ad-placement systems, and
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Figure 1: The distribution shift among the population, the
logged data with the past policy π0, and the future data with
the new policy π .

search engines. For example, the policy (recommendation function)

in a recommendation system decides the specific items (e.g. Ads)

exposed to each user, and the policy (ranking functions) in a search

engine system decides the top-k searching results for each query.

The effect of the policy can be observed through feedbacks, for

example, click rate in the above examples. The goal of policy evalu-

ation is to select the best one among all proposed polices. Conven-

tional approaches rely on online A/B tests [17], where researchers

run each proposed policy on a fraction of randomly sampled users.

Unfortunately, online A/B tests have two major drawbacks [1, 13].

One is long turnaround time, since each A/B test needs to be run on

a certain fraction of the overall traffic and should ideally cover any

cycles in user behavior. The other is that they can be detrimental to

the user experience if the policy to be evaluated performs poorly.

To overcome these drawbacks, counterfactual estimators are

proposed as alternatives to A/B tests by offline policy evaluation [6,

16, 19, 26] with only historical data produced by a past policy, which

consists of contexts (e.g user characteristics), actions (e.g the Ads

that are placed) and feedbacks (e.g click or not). The motivation of

counterfactual estimators is to address the counterfactual reasoning

problem of how a new policy would perform, if it has been applied

instead of the past policy that has generated the observed data.

In offline policy evaluation problem, the policy assigns actions

to units based on their contexts, leading to the context distribu-

tion in each action group become different with the one on the

population as shown in Figure 1. We denote that distribution dif-

ference as distribution shift. The main challenge of offline policy

https://doi.org/10.1145/3292500.3330852
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evaluation is the distribution discrepancy in each action group (i.e.,

Pr (X|Yπ0 = k) , Pr (X|Yπ = k)) induced by the distribution shifts

from different polices, including (1) Distribution shift induced
by the past policy π0. The past policy π0 induces the distribution
of context X in each action group (i.e., Y = i) becomes different

with the one on the population, that is Pr (X|Yπ0 = i) , Pr (X).
Moreover, the distribution of context X might become different be-

tween different action groups, say Pr (X|Yπ0 = i) , Pr (X|Yπ0 = j)
for i , j. (2) Distribution shift induced by the new policy π .
When adopting a new policy π on the population, there will also be

distribution shift among the action groups that are assigned by π ,
and those distributions also might be different with the one on the

population. Hence, to achieve precise policy evaluation, one needs

to remove that distribution discrepancy induced by the distribution

shifts from both the past and the new polices.

Recent work on counterfactual estimators evaluate the new pol-

icy by either estimating the feedback function [8] or removing

distribution shift in data by sample reweighting with the inverse

of propensity score [18, 25]. The feedback function estimation [8]

heavily relies on the correct model specification and may be af-

fected by the distribution shift in the historical data. Propensity

score reweighting methods [18, 25] can be applied to remove the

distribution shift induced by the past policy, but they need accurate

estimation on propensity score, which can not be guaranteed or

validated in many real applications. More importantly, propensity

score reweighting methods only focus on removing the distribution

shift induced by the past policy, while ignoring the distribution

shift induced by the new policy (as shown in Figure 1), leading to

imprecise and high variance estimation on the new policy.

In this paper, we propose a novel algorithm, named Focused

Context Balancing (FCB), to address the challenge above. More

specifically, we introduce covariate balancing [3, 10, 15, 29], a well

proven non-parametric method for bias removal in causal inference

field, into offline policy evaluation. By learning sample weights to

balance the moments of contexts in any two groups, the weighted

sample distributions in these groups will become more identical.

To address the distribution shift problem in policy evaluation, we

first incorporate knowledge of the new policy to infer the context

distribution in each action group under the new policy, i.e. the

shifted distribution induced by the new policy. Then, given an

action, we conduct covariate balancing on the two action groups

formed under the past and new policy respectively, to remove

their distribution discrepancy. Thereafter, with the sample weights

learned from covariate balancing, we can easily evaluate the effect

of the new policy based on the historical data. We validate our

FCB algorithm with extensive experiments on both synthetic and

real world datasets. The experimental results demonstrate that our

algorithm can evaluate the new policy more precisely and robustly

than existing methods.

The main contributions of this paper are as following:

• We introduce covariate balancing into offline policy evalua-

tion to avoid model mis-specification and inaccurate estima-

tion issues in traditional IPS based estimators.

• We propose a novel FCB estimator, which optimizes sample

weights for context balancing to directly remove distribu-

tion shift from the past policy and new policy respectively,

making the action group distributions under past and new

policies become more identical for each action.

• The advantages of FCB estimator are demonstrated in both

synthetic and real world datasets.

The rest of this paper is organized as follows. Section 2 reviews

the related work. Section 3 introduces offline policy evaluation

problem. Section 4 proposes the focused context balancing algo-

rithm for offline policy evaluation. Section 5 gives the experimental

results. Finally, Section 6 concludes the paper.

2 RELATEDWORK
Existing counterfactual estimators for offline policy evaluation can

be mainly categorized into two classes, direct method (DM) [8] and

inverse propensity score (IPS) estimator [11, 12, 18, 21, 25].

DM regresses historical data on an estimated feedback function

given context and action, then uses the estimated feedback in place

of the actual feedback to evaluate the effect of new policy. Even

though many machine learning algorithms can be employed for

feedback function learning, DM often suffers from large bias since it

ignores the distribution shift problem in historical data and requires

correct model specification on the feedback function.

For IPS estimator, it is proposed to correct the distribution shift

induced by the past policy by sample reweighting with the inverse

of propensity score [4, 5]. Propensity score (PS) was proposed by

Rosenbaum and Rubin [22] in causal inference, where it means

the conditional probability of receiving treatment (i.e. the action)

given the confounders (i.e. the context). In many policy evaluation

applications, propensity score (i.e. the probability of a specified

action) is unknown. It can be estimated with many machine learn-

ing algorithms, such as logistic regression [22, 24], lasso [7, 9],

bagged CART and neural network [28], producing different vari-

ants of IPS estimators. However, the performance of IPS estimators

rely on accurate estimation on propensity score, which can not

be guaranteed or validated in many real applications. Further, IPS

estimators ignore the distribution shift problem induced by the new

policy. Because of the reliance on accurate propensity score and

the negligence of distribution shift from the new policy, the policy

evaluation based on IPS can be imprecise with high variance [27].

To reduce the high variance of IPS based estimators, some im-

proved IPS methods have been proposed to incorporate control

variate, such as Doubly Robust(DR) estimator [8, 20], and Self-

Normalized IPS [14, 23, 27]. However, these methods still exist the

above issues, including reliance on accurate propensity score and

negligence of distribution shift from the new policy.

The direct bias removal method in our algorithm is inspired by

the literatures in causal inference [3, 10, 15, 29], where researchers

proposed to directly correct the distribution shift via confounder

balancing, bypassing propensity score estimation. Hainmueller [10]

proposed entropy balancing to adjust the sample weights as little

as possible to match the target sample moments. Athey et al. [3]

proposed approximate residual balancing by combining confounder

balancing and lasso regression. Zubizarreta [29] learnt the balanc-

ing weights via minimizing its variance and directly adjust for

confounder balancing. Kuang [15] differentiated the confounders

and balanced the confounders unequally when learning the bal-

ancing weights. In this paper, we adopt the covariates balancing



technique to correct the distribution shifts from both the past and

new policies for offline policy evaluation.

3 PROBLEM STATEMENT
In this section, we give the basic concepts and notations of offline

policy evaluation, and revisit some existing approaches.

3.1 Concepts and Notations
In this paper, we focus on estimating the effect of new policy with

the offline logged data from a past policy in interactive learning

systems. Based on the context information, which typically encodes

users’ characteristics, denoted as X ∈ X, the interactive learning
system assigns an action Y ∈ Y according to its policy π . It will
receive the feedback of the action in the form of a cardinal utility

value δ : X ×Y 7→ R. Taking ad-placement systems for example,

the context X consists of user’s characteristics and the web page

content, the policy π refers to the ad-placement algorithm, and

the action Y represents the ads that displayed to users. Finally, the

system will receive a feedback δ (X,Y ), depending on whether the

user clicks on the ad or not.

In this paper, the context X are assumed to be randomly drawn

from a fixed but unknown distribution X ∼ Pr (X). We consider the

policy π which we aim to evaluate is stochastic policy that defines

a probability distribution over the action spaceY. Then the actions

are assigned based on Y ∼ π (Y|X). Our goal is to evaluate the

utility of a new policy π based on the logged data from a past policy

π0. The utility of a policy U (π ) is defined as the expected utility of

its feedback over both the context distribution as well as the action

distribution. Formally,

U (π ) = EX∼Pr (X),Y∼π (Y |X) [δ (X,Y )] . (1)

The logged data from a past policy π0 consists of the contexts, the
actions assigned by the past policy, and the feedback. The process

of collecting that logged data is:

• A context X is sampled according to the distribution Pr (X).
• The policy chooses an action Y ∼ π0(Y|X).
• Given context X and action Y , a feedback δ is revealed.

In many scenarios, we can hardly know the exact mechanism

of the past policy. In this paper, therefore, we focus on a more

general setting of offline policy evaluationwhere neither the context

distribution Pr (X) nor the past policy π0 is known.

3.2 Basic Approaches
There are two kinds of basic approaches for offline policy evaluation,

including direct methods (DM) and Inverse Propensity Score (IPS)

estimators.

DM methods directly estimate the feedback function δ̂ (X,Y ) by
utilizing the logged data from the past policy. Then, they estimate

the utility function of the new policy by

ÛDM (π ) =
1

n

n∑
i=1

∑
Yj ∈Y

δ̂ (Xi ,Yj )π (Yj |Xi ), (2)

where the feedback function δ̂ can be estimated through any re-

gression methods. The DM methods are unbiased if and only if the

estimated feedback function is an accurate approximation of the

expected feedback. In practical, however, we can hardly know the

underlying feedback function, leading to inaccurate estimation on

feedback function. Moreover, due to the affection of the past policy,

the logged data used to learn the feedback function might have

different distribution on context X among action groups, and might

be different with the one on the population as we shown in Figure

1. Actually, DM methods suffer from large bias [8].

The other kind of methods are IPS estimators. Instead of esti-

mating the feedback function, IPS estimators attempt to discover

the underlying mechanism of the past policy by estimating the

probability of each action given context (i.e. ps = π̂0(Y |X)). The mo-

tivation of these methods is that the distribution shift in logged data

induced by the past policy can be removed by sample reweighting

with the inverse of propensity score.

The estimated utility of the new policy π by IPS estimators can

be written as:

ÛI PS (π ) =
1

n

n∑
i=1

δi
π (Yi |Xi )

π̂0(Yi |Xi )
. (3)

The performance of IPS estimators depends on the accuracy of

estimated propensity score π̂0(Y |X). Those estimators are unbiased

[6] for estimatingU (π ), if the estimated propensity score is exactly

the true action assignment mechanism of the past policy, that is

ps = π̂0(Y |X) = π0(Y |X). However, in many real applications, we

have no prior knowledge of the past policy, hence cannot guaran-

tee the accuracy of estimated propensity score. Moreover, the IPS

estimators ignore the distribution shift that would be induced by

the new policy as we described in Figure 1, resulting in imprecise

evaluation of the new policy.

4 OUR ESTIMATORS
In this section, we introduce the details of our proposed estimators,

including Context Balancing (CB) estimator and Focused Context

Balancing (FCB) estimator, for offline policy evaluation.

4.1 Context Balancing Estimator
To overcome the drawbacks of propensity score based methods,

we propose a context balancing method to directly balance the

context distributions among action groups with the past policy.

From the knowledge of moments, we know that the distribution of

each variable can be uniquely determined by the collection of all

its moments. Hence, we propose to correct the distribution shift by

directly moment balancing via sample weights learning.

We can separate the sample weightsW into several parts and

each part corresponds to the samples in one action group, that is

W = {WY=k : k ∈ Y}. Our algorithm learns the sample weights

WY=k with following objective function:

WY=k = arg min

WY=k



 1
n

n∑
i=1

Mi −
∑

j :Yj=k

Wj ·Mj,


2
2
, (4)

where n is the total sample size over all action groups, and j : Yj = k
refers to the samples that are assigned to action group Y = k . Here,
termM represent the collection of all the moments of contextX, say
M = {X,X2,X,iX, j ,X3,X,iX, jX,k , · · · }. Hence, term

1

n
∑n
i=1Mi

refers to the context distribution on the population Pr (X), and



∑
j :Yj=kWj · Mj represents the corrected context distribution in

action group Y = k with sample reweighting.

With the learned sample weightsWY=k for each action group

Y = k from our algorithm in Eq. (4), we can obtain the whole sample

weightsW = {WY=k : k ∈ Y}. Then, the utility of the new policy

π can be estimated by our Context Balancing algorithm as:

ÛCB (π ) =
n∑
i=1

π (Yi |Xi )Wiδi . (5)

The following theoretical results show that our context estimator

ÛCB (π ) can unbiasedly estimate the utility of the new policy.

First, we have following corollaries on the sample weightsW
that learned from Eq. (4).

Corollary 1. If the dimension of contexts p is finite, the distribu-
tion of contexts can be determined by finite order moments, and the
sample size n →∞, then ∃W ⪰ 0 such that

lim

n→∞



 1
n

n∑
i=1

Mi −
∑

j :Yj=k

Wj ·Mj,


2
2
= 0, (6)

for each action group Y = k with probability 1.

Corollary 2. An ideal sample weightsW learned from our algo-
rithm can exactly ensure the context distribution of each action group
is balanced, and equal to the distribution on the population. Formally,
E
[∑

i :Yi=k,Xi=XWi
]
= Pr (X),∀k ∈ Y.

Next, we will theoretically prove that our proposed Context

Balancing (CB) estimator is unbiased for offline policy evaluation

based on Corollary 2.

Proposition 1. Our Context Balancing estimator ÛCB (π ) is un-
biased for evaluating the utility of the new policy π .

Proof.

E[ÛCB (π )] = E
[∑n

i=1Wiπ (Y = Yi |Xi )δ (Xi ,Yi )
]

= E

[∑
X∈X

∑
k π (Y = k |X)δ (X,k)

∑
i :Xi=X
Yi=k

Wi

]
=

∑
X∈X Pr (X)

∑
k π (Y = k |X )δ (X ,k)

= U (π ).

□

However, the proposed CB estimator also ignores the distribution

shift that will be induced by the new policy. Hence, it would also

suffer from high variance on the evaluation of the new policy.

4.2 Focused Context Balancing Estimator
From the distribution shift diagram as shown in Figure 1, we know

that the new policy would also induce distribution shift among the

action groups which are determined by the new policy. Existing

estimators for offline policy evaluation did not recognize that dis-

tribution shift, hence wrongly balanced the context distribution

of each action group to the same target distribution (i.e., context

distribution on the population Pr (X)), leading to the high variance

of offline policy evaluation.

To address the distribution shift induced by both past policy and

new policy, we propose a new estimator, named Focused Context

Balancing (FCB) algorithm, based on our previous proposed Context

Balancing estimator. Comparing with Context Balancing estimator,

our Focused Context Balancing estimator proposes a weighted

balancing method by incorporating the prior knowledge of the new

policy (i.e., π (Y |X)) to differentiate each action group. Hence, our

FCB estimator can help the balancing process focus more on the

samples that the new policy put larger probability on.

Actually, our proposed FCB estimator is motivated by following

proposition.

Proposition 2. To correct the distribution shift induced by both
past and new policy, one should balance the context distribution in
each action group to their own target distribution. And the target
distribution of each action group is decided by the new policy.

With Taylor’s expansion on the context X, we can represent

the feedback function as δ (X,Y = k) = αY=k · M, where M =
{X,X2,X,iX, j ,X3,X,iX, jX,k , · · · } is the collection of all the mo-

ments of context X, and αY=k is a constant vector for each action

group Y = k . Then, we can rewrite our weighted estimator in Eq.

(5) as:

Û (π ) =
∑n
i=1Wiπ (Y = Yi |Xi, )δ (Xi, ,Yi )

=
∑
k ∈Y αY=k

∑
i :Yi=kWiπ (Y = k |Xi, )Mi,

=
∑
k ∈Y αY=k

[∑
i :Yi=kWiπ (Y = k |Xi, )Mi, −

1

n
∑n
i=1 π (Y = k |Xi, )Mi,

]
+
∑
k ∈Y αY=k

1

n
∑n
i=1 π (Y = k |Xi, )Mi,

=
∑
k ∈Y αY=kBk +

1

n
∑n
i=1

∑
k ∈Y δ (Xi, ,Y = k)π (Y = k |Xi, )

=
∑
k ∈Y αY=kBk +U (π ).

whereU (π ) is the true utility of new policy,

∑
k ∈Y αY=kBk repre-

sents the bias between our weighted estimator Û (π ) and the true

utilityU (π ), and Bk =
∑
i :Yi=kWiπ (Y = k |Xi, )Mi, −

1

n
∑n
i=1 π (Y =

k |Xi, )Mi, refers to the bias from the action group Y = k . Bk indi-

cates that when correcting distribution shift by weighting meth-

ods, the target distribution of the action group Y = k should be

1

n
∑n
i=1 π (Y = k |Xi, )Mi, , where π is the new policy. And for differ-

ent action groups (i.e Y = k and Y = k ′), their target distributions
are different, since π (Y = k |X) , π (Y = k ′ |X). Furthermore, we

can observe that different moment variables contribute unequally

to the bias due to the coefficient vector αY=k . Hence, we could get

a better result if we treat each moment variable unequally when

balancing moments. We leave this extension to future work.

From the above theoretical analyses, we know the bias of weighted

estimator, like CB estimator in Eq. (5), is induced by both past and

new policy, which bring the distribution discrepancy on context X
or its moments M. Therefore, to fully reduce the bias and precisely

evaluate the effect of the new policy, we propose a new weighted

estimator, named Focused Context Balancing (FCB) algorithm, to

optimize the sample weightsWY=k for each action group Y = k by

incorporating knowledge of the new policy π (Y = k |X) as follow:

min

WY=k



 ∑
i :Yi=k

Wiπ (Y = k |Xi, )Mi, −

n∑
i=1

1

n
π (Y = k |Xi, )Mi,



2
2
,

s .t .
∑

i :Yi=k

W 2

i ≤ λ
∑

i :Yi=k

Wi = 1 and W ≥ 0. (7)



Algorithm 1 Focused Context Balancing Algorithm (FCB)

Input: Tradeoff parameters λ > 0, historical data S =

{(Xi ,Yi ,δi )}1≤i≤n , and the new policy π .

Output: The estimated utility of policy ÛFCB (π ).
1: for all action k do
2: Initialize Sample weights in the group action k

3: Calculate the current value of J (WY=k )
(0)

with Equation (9)

4: Initialize the iteration variable t ← 0

5: repeat
6: t ← t + 1
7: UpdateW (t ) by optimizing J (WY=k )

(t−1)

8: Calculate J (WY=k )
(t )

with Equation (9)

9: until J (WY=k )
(t )

converges or max iteration is reached

10: end for
11: Calculate the effect of new policy ÛFCB (π ) with Equation (8).

12: return ÛFCB (π ).

where the formula

∑
i :Yi=kWi = 1 normalizes the weights of

samples that were chosen action k by the past policy.W ≥ 0 con-

straints each sampleweight to be non-negative. Norm

∑
i :Yi=jW

2

i ≤

λ reduces the variance of sample weights to achieves stability.

In our FCB algorithm, the balancing process will focus more on

the samples that the new policy put large probability on in each

action group, helping for better correcting the distribution shift

induced by both past and new policy.

With the sample weightsW = {WY=k : k ∈ Y} optimized by

our FCB algorithm, we can estimate the effect as following:

ÛFCB (π ) =
n∑
i=1

π (Yi |Xi )Wiδi . (8)

4.3 Optimization
For the action group k , the problem of Eq. (7) can be solved by

optimizing the following objective functions J (WY=k ):

J (WY=k ) =





WY=kπ
k
Y=kMY=k −

n∑
i=1

1

n π (Y = k |Xi, )Mi,





2
2

+ λ ∥WY=k ∥
2

2
, (9)

s .t . WY=k1 = 1 and WY=k ≥ 0.

whereWY=k ∈ R
1×nk is the vector of sample weights, πkY=k ∈

Rnk×nk is the diagonal matrix of π (Y = k |XY=k ), and MY=k ∈

Rnk×l is the matrix containing the moments, nk is the number of

samples chosen action k in historical data S , l is the dimension of

moments. Since balancing all the moments is unrealistic, we focus

on balancing the first-order moments of the contexts to make a

trade-off between efficiency and feasibility.

Here, we use an iterative method to minimize the objective func-

tion J (WY=k ).

The initial sample weights are set to beW = 1/nk for samples of

action group Y = k . During each iteration, we update the weights

using gradient descent. To ensure the non-negativity ofW , we let

W = ω⊙ω, whereω ∈ R1×n . Symbol ⊙ refers to Hadamard product.

The problem can be rewritten as follow:

J (ωY=k ) =





(ωY=k ⊙ ωY=k )πkY=kMY=k −
n∑
i=1

1

n π (Y = k |Xi, )Mi,





2
2

+λ ∥ωY=k ⊙ ωY=k ∥
2

2
,

s .t . (ωY=k ⊙ ωY=k )1 = 1.

The partial gradient of J (ωY=k ) with respect to ωY=k is:

∂ J (ωY=k )
∂ωY=k

= 4((ωY=k ⊙ ωY=k )π
k
Y=kMY=k −

n∑
i=1

1

n π (Y = k |Xi, )Mi, )

(πkY=kMY=k )
T ⊙ ωY=k + 4λωY=k ⊙ ωY=k ⊙ ωY=k .

We update ωY=k at the t th iteration with step size a as:

ω
(t )
Y=k = ω

(t−1)
Y=k − a

∂J (ω
(t−1)
Y=k )

∂ω
(t−1)
Y=k

.

With the constraint (ωY=k ⊙ ωY=k )1 = 1, we normalize ω
(t )
Y=k

at each iteration:

ω
(t )
Y=k =

ω
(t )
Y=k√

(ω
(t )
Y=k ⊙ ω

(t )
Y=k )1

.

We update ωY=k until the objective function J (ωY=k ) converges
or the max iteration is reached. After optimizing objective function

J (ωY=k ) for each action group, we can estimate the utility of policy

π with sample weightsW . The whole algorithm is summarized in

Algorithm 1. The hype-parameter in our algorithm is tuned by grid

searching.

4.4 Complexity Analysis
The time cost during optimization is mainly spent on calculating

the loss J (WY=k ) and updating the sample weightsWY=k . For ac-

tion group k , the time complexity of calculating loss J (WY=k ) is

O(nk l). The time complexity of updating sample weightsWY=k is

dominated by calculating the partial gradient of function J (ωY=k )
with respect to ωY=k , which is also O(nk l).

Hence, the time complexity of each iteration for action group k
is O(nk l) and the total complexity is

∑
k O(nk l) = O(nl).

5 EXPERIMENT
In this section, we evaluate the effectiveness of our proposed esti-

mator on both synthetic and real-world datasets.

5.1 Baseline Estimators
We implement the following baseline estimators for comparison.

Parameter settings for baselines are as default.

• Direct Method ÛDM (π ): It regresses historical data on an

estimated feedback function given context and action to

evaluate the effect of the new policy. The feedback function

is estimated by elastic net.

• Rough IPS ÛR-I PS (π ): It roughly assumes π0(Yi |Xi ) to be the
proportion of samples with actionYi in historical data, which
ignore the association between contexts and actions.

• IPS with estimated Propensity Score ÛE-I PS (π )[22]: It regresses
on historical data to estimate π0(Yi |Xi ) in IPS estimator. In

this paper, we choose logistic regression for this estimator.
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Figure 2: RMSE on policy evaluation when varying sample size and dimension of contexts under setting δ = δl inear , π0 = πinv .
In the figure (a), Rough IPS and DMmake too huge error that the curves are out of the Y-axis range.

• IPS with true Propensity Score ÛT -I PS (π ) [18, 25]: It assumes

that the past policy is known to us and uses real value of

π0(Yi |Xi ) to calculate IPS estimator.

• Self-Normalized IPS Û SN
E-I PS (π ) [21, 27]: It uses control variate

to make the sample weights become more smooth by avoid-

ing propensity overfitting, hence could reduce the variance

of the estimator.

• Doubly Robust Estimator ÛDR (π ) [8]: It evaluates the effect
of the new policy with the combination of IPS and regression

methods.

• Context Balancing Estimator ÛCB (π ): It is a weaken version

of our FCB estimator. It ignores the distribution shift induced

by new policy when learning the sample weights.

5.2 Experiments on Synthetic Data
In this section, we introduce how to generate the synthetic datasets

and demonstrate the effectiveness of our FCB estimator with exten-

sive experiments.

5.2.1 Datasets. To test the robustness of our estimator, we gen-

erate the synthetic data with different settings. We first generate the

context variables X = (x1,x2, ....,xp ) with considering of varying

the population sample size n = {5, 000, 10, 000} and the dimen-

sion of context variables p = {50, 100}. The context variables are
generated with independent Bernoulli distribution as:

x1,x2, ...,xp
iid
∼ Bernoulli(0.5).

For each sample, we generate action Yi by a controlled policy π0
and observe the feedback δi . In this way, the historical data S =
{(Xi ,Yi ,δi )}i=1, · · · ,n is accumulated.

As did in previous work [15], we also consider the action Y to

be binary in our experiments, and we generate it from different

functions as following:

πinv (Y = 1|X) = 1/(1 + 3
∑
i xi/p) +N (0, 0.1),

πuni (Y = 1|X) = 0.5 +N (0, 0.1),

πl in (Y = 1|X) =
∑
i xi/p +N (0, 0.1).

These above policies are logging policies to generate the histori-

cal data. Here we generate the policy to be evaluated with sigmoid

function (πsiд ).

πsiд(Y = 1|X) = 1/

(
1 + e−

∑p
i=1(xi−0.5)

)
.

We generate the feedback δ from a linear function and a nonlin-

ear function.

δl inear = Y +
∑p
i=1

{
I (i mod 2 = 0) · ( i

2
+ Y )xi

}
+N(0, 3),

δnonlin = Y +
∑p
i=1

{
I (i mod 2 = 0) · ( i

2
+ Y )xi

}
+N(0, 3)

+
∑p−1
i=1

{
I (i mod 10 = 0) · ( i

10
+ Y )xixi+1

}
,

where I (·) is the indicator function and functionmod(a,b) returns
the modulus after division of a by b.

Under different settings on action Y and feedback δ , the ground
truth (i.e. true utility of new policy) can be known as:

U (π ) = 1

n
∑n
i=1

∑
1

j=0 δ (Xi , j)π (Y = j |Xi ). (10)

We evaluate the utility of the new policy with our estimator, and

comparing it with baseline estimators.

5.2.2 Results. To evaluate the performance of all estimators, we

carry out the experiments 50 times independently under each ex-

perimental setting. Based on the estimated utilities and the ground

truth, we calculate Bias, standard deviations (SD), mean absolute

errors (MAE) and root mean square error (RMSE).
The results are reported in Table 1. From the results, we have

the following observations and analyses:

• Rough IPS ÛR-I PS (π ) fails when the past policy π0 is πinv or

πl in , where the contexts are associated with actions, but it

ignores those associations.

• ÛE-I PS (π ) achieves a more robust result than ÛT -I PS (π ), and

Û SN
E-I PS (π ) improves the robustness on ÛE-I PS (π ). This is be-

cause extremely large or small value of propensity score

would increase the variance of the estimator, while the esti-

mated propensity score in ÛE-I PS (π ) would be more smooth

than the true propensity score, and Û SN
E-I PS (π ) uses control

variates to further reduce the estimated variance.



Table 1: Results on synthetic datasets. The Bias is the absolute error between the ground truth and the mean estimated utility
of policy π . The SD, MAE and RMSE refer to standard deviations, mean absolute errors and root mean square errors of the
estimated policy utility in 50 times independent experiments. The smaller Bias, SD, MAE and RMSE, the better.

Setting 1:δ = δl inear
n/p n = 5000,p = 50 n = 5000,p = 100 n = 10000,p = 50 n = 10000,p = 100

π0 Estimator Bias(SD) MAE RMSE Bias(SD) MAE RMSE Bias(SD) MAE RMSE Bias(SD) MAE RMSE

πinv

ÛR-I PS (π ) 7.306(1.632) 7.305 7.486 21.03(6.842) 21.03 22.11 7.083(1.399) 7.083 7.220 20.31(6.726) 20.31 21.40

ÛDM (π ) 2.168(0.505) 2.168 2.226 3.612(1.274) 3.612 3.832 1.953(0.302) 1.953 1.975 3.439(1.104) 3.439 3.620

ÛE-I PS (π ) 0.120(0.923) 0.787 0.927 0.577(3.865) 2.983 3.905 0.102(0.742) 0.641 0.746 0.012(3.015) 2.346 3.012

ÛT -I PS (π ) 0.111(1.837) 1.496 1.839 0.058(7.736) 5.911 7.741 0.197(1.769) 1.486 1.780 0.360(7.382) 5.885 7.395

Û SN
E-I PS (π ) 0.074(0.654) 0.540 0.659 0.013(1.696) 1.252 1.691 0.032(0.438) 0.350 0.438 0.430(1.299) 1.176 1.415

ÛDR (π ) 0.056(0.576) 0.476 0.581 0.031(1.531) 1.079 1.512 0.021(0.398) 0.312 0.393 0.364(1.118) 0.974 1.197

ÛCB (π ) 0.058(0.938) 0.755 0.942 0.093(3.363) 2.739 3.348 0.164(0.596) 0.499 0.620 0.256(2.681) 2.153 2.709

ÛFCB (π ) 0.008(0.492) 0.404 0.494 0.128(1.250) 0.904 1.295 0.014(0.345) 0.285 0.357 0.213(0.935) 0.775 0.972

πuni

ÛR-I PS (π ) 0.566(1.705) 1.439 1.796 2.033(7.426) 5.671 7.697 0.113(1.374) 1.120 1.378 0.977(5.715) 4.545 5.791

ÛDM (π ) 0.571(0.522) 0.669 0.769 0.956(1.334) 1.484 1.680 0.558(0.372) 0.581 0.669 0.990(0.952) 1.207 1.407

ÛE-I PS (π ) 0.267(0.879) 0.708 0.919 0.897(4.112) 3.461 4.217 0.113(0.604) 0.481 0.614 0.804(2.114) 1.805 2.263

ÛT -I PS (π ) 0.487(1.652) 1.405 1.724 2.046(7.581) 5.777 7.854 0.120(1.422) 1.176 1.427 0.906(5.753) 4.577 5.827

Û SN
E-I PS (π ) 0.137(0.730) 0.582 0.745 0.053(1.945) 1.448 1.920 0.013(0.433) 0.359 0.438 0.144(1.090) 0.763 1.054

ÛDR (π ) 0.136(0.688) 0.550 0.700 0.006(1.759) 1.311 1.721 0.011(0.398) 0.325 0.402 0.114(0.919) 0.696 0.956
ÛCB (π ) 0.255(0.878) 0.703 0.918 0.729(4.206) 3.517 4.264 0.121(0.603) 0.472 0.607 0.794(2.062) 1.760 2.206

ÛFCB (π ) 0.148(0.633) 0.528 0.652 0.112(1.425) 1.115 1.460 0.005(0.385) 0.316 0.384 0.058(0.984) 0.677 0.962

πl in

ÛR-I PS (π ) 15.44(1.778) 15.44 15.54 45.55(9.645) 45.55 46.56 15.78(1.026) 15.78 15.81 46.60(4.683) 46.60 46.83

ÛDM (π ) 0.564(0.541) 0.662 0.784 0.625(1.713) 1.436 1.784 0.622(0.372) 0.631 0.719 1.089(1.030) 1.262 1.507

ÛE-I PS (π ) 0.580(0.916) 0.860 1.086 2.508(4.127) 3.713 4.836 0.240(0.593) 0.466 0.646 1.824(2.586) 2.413 3.169

ÛT -I PS (π ) 0.253(1.427) 1.192 1.449 1.116(5.573) 4.428 5.673 0.099(0.823) 0.682 0.833 0.017(4.387) 3.473 4.385

Û SN
E-I PS (π ) 0.010(0.634) 0.518 0.633 0.450(1.879) 1.568 1.931 0.010(0.444) 0.338 0.437 0.030(1.346) 1.120 1.362

ÛDR (π ) 0.001(0.583) 0.485 0.591 0.398(1.732) 1.478 1.779 0.004(0.417) 0.327 0.416 0.055(1.199) 1.008 1.243

ÛCB (π ) 0.190(1.000) 0.818 1.016 0.685(3.657) 3.088 3.725 0.098(0.585) 0.475 0.594 0.458(2.698) 2.175 2.721

ÛFCB (π ) 0.005(0.575) 0.450 0.565 0.269(1.571) 1.330 1.634 0.009(0.390) 0.326 0.392 0.102(1.132) 0.890 1.107
Setting 2:δ = δnonlin

n/p n = 5000,p = 50 n = 5000,p = 100 n = 10000,p = 50 n = 10000,p = 100

π0 Estimator Bias(SD) MAE RMSE Bias(SD) MAE RMSE Bias(SD) MAE RMSE Bias(SD) MAE RMSE

πinv

ÛR-I PS (π ) 7.631(2.060) 7.631 7.905 19.92(8.035) 19.92 21.49 7.710(1.709) 7.709 7.897 21.33(6.139) 21.33 22.20

ÛDM (π ) 2.819(0.620) 2.819 2.886 4.506(1.392) 4.507 4.725 2.671(0.342) 2.671 2.694 5.038(1.132) 5.038 5.169

ÛE-I PS (π ) 0.205(1.152) 0.873 1.173 0.230(4.027) 3.491 4.016 0.112(0.679) 0.561 0.695 0.055(3.016) 2.519 2.993

ÛT -I PS (π ) 0.348(2.347) 1.921 2.374 2.743(8.166) 7.036 8.619 0.086(2.003) 1.635 2.004 0.532(6.791) 5.536 6.816

Û SN
E-I PS (π ) 0.136(0.843) 0.704 0.844 0.237(2.000) 1.557 1.998 0.201(0.442) 0.394 0.492 0.233(1.510) 1.203 1.516

ÛDR (π ) 0.121(0.753) 0.644 0.767 0.143(1.845) 1.437 1.821 0.164(0.410) 0.355 0.438 0.198(1.392) 1.102 1.377

ÛCB (π ) 0.123(1.074) 0.872 1.085 0.075(4.065) 3.476 4.067 0.009(0.728) 0.520 0.729 0.067(2.704) 2.227 2.717

ÛFCB (π ) 0.087(0.631) 0.545 0.644 0.047(1.714) 1.404 1.704 0.083(0.372) 0.298 0.376 0.154(1.212) 0.990 1.213

πuni

ÛR-I PS (π ) 0.176(1.921) 1.599 1.930 0.584(8.051) 6.622 8.069 0.014(1.483) 1.121 1.486 0.145(5.599) 4.470 5.602

ÛDM (π ) 0.807(0.534) 0.807 0.970 1.100(2.084) 1.806 2.344 0.916(0.286) 0.916 0.962 0.889(1.262) 1.229 1.532

ÛE-I PS (π ) 0.001(0.970) 0.701 0.966 0.615(4.172) 3.546 4.238 0.029(0.736) 0.592 0.741 0.169(3.097) 2.379 3.108

ÛT -I PS (π ) 0.261(1.936) 1.585 1.952 0.670(8.093) 6.677 8.112 0.080(1.473) 1.143 1.478 0.247(5.545) 4.372 5.554

Û SN
E-I PS (π ) 0.009(0.740) 0.576 0.729 0.573(2.437) 2.061 2.500 0.003(0.598) 0.462 0.587 0.033(1.414) 1.127 1.401

ÛDR (π ) 0.023(0.658) 0.540 0.659 0.529(2.165) 1.859 2.232 0.008(0.547) 0.436 0.550 0.002(1.250) 1.006 1.277

ÛCB (π ) 0.032(0.950) 0.687 0.951 0.762(4.217) 3.542 4.290 0.030(0.747) 0.597 0.746 0.154(3.142) 2.382 3.126

ÛFCB (π ) 0.028(0.552) 0.465 0.550 0.475(1.811) 1.543 1.911 0.055(0.508) 0.412 0.513 0.128(1.132) 0.923 1.171

πl in

ÛR-I PS (π ) 16.33(2.043) 16.33 16.45 48.59(7.529) 48.60 49.17 16.77(1.536) 16.77 16.84 49.30(6.444) 49.30 49.73

ÛDM (π ) 0.727(0.412) 0.747 0.841 1.188(1.811) 1.715 2.173 0.830(0.424) 0.840 0.932 0.975(1.075) 1.056 1.409

ÛE-I PS (π ) 0.284(0.962) 0.790 1.005 3.721(3.992) 4.482 5.447 0.071(0.639) 0.511 0.643 1.421(2.926) 2.507 3.245

ÛT -I PS (π ) 0.370(1.729) 1.400 1.769 0.501(6.801) 5.522 6.818 0.035(1.376) 1.109 1.374 0.260(5.769) 4.472 5.782

Û SN
E-I PS (π ) 0.240(0.791) 0.612 0.826 0.423(1.668) 1.369 1.723 0.038(0.440) 0.327 0.435 0.033(1.489) 1.125 1.470

ÛDR (π ) 0.229(0.736) 0.562 0.770 0.346(1.510) 1.255 1.584 0.045(0.410) 0.311 0.410 0.021(1.447) 1.017 1.367

ÛCB (π ) 0.120(0.848) 0.678 0.852 0.272(4.412) 3.379 4.418 0.013(0.680) 0.551 0.687 0.496(2.331) 1.991 2.367

ÛFCB (π ) 0.199(0.660) 0.515 0.688 0.157(1.581) 1.232 1.569 0.040(0.383) 0.303 0.387 0.039(1.311) 0.973 1.295
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Figure 3: The effect of hyper-parameters λ on RMSE.

• DM ÛDM (π ) makes huge bias because of the model misspec-

ification. By combining DM and IPS, ÛDR (π ) achieves better

performance than both DM and IPS methods, even better

than Û SN
E-I PS (π ).

• TheCB estimator obtains a better performance than ÛE-I PS (π )

in most of settings. This is because the incorrect estimated

propensity score in ÛE-I PS (π ) cannot completely correct the

distribution shift induced by the past policy, while CB esti-

mator directly correct that shift by context balancing.

• By incorporating the prior knowledge of the new policy and

simultaneously correcting the distribution shift from both

past and new policies, our proposed FCB estimator achieves

a more precise and robust result than CB estimator and other

baseline estimators under different settings.

We also demonstrate the robustness of our FCB estimator in

Figure 2 by varying sample size n and dimension of contexts p
under the setting δ = δl inear , π0 = πinv . From Figure 2, we can

observe that when increasing n or decreasing p, our FCB estimator

always outperforms the baselines.

5.2.3 Parameter Analysis. In our FCB algorithm, we have hype-

parameter λ. As mentioned before, we tuned the parameter with

grid searching varying from {0.001,0.01,0.1,1,10,100,1000}. We dis-

played the RMSE of the estimated results with respect to λ under

the setting δ = δl inear , π0 = πinv , n = 5000, p = 50 in Figure 3.

The RMSE does not change drastically and remains a low level. This

means that our FCB estimator is a robust method. We can see that

when λ is too large, the RMSE arises obviously since large λ would

weaken the context balancing learning.

5.3 Experiments on Real World Data
It is challenging to evaluate the offline policy evaluation methods

due to the lack of real benchmark datasets with ground truth of on-

line policy performance. Fortunately, classifier evaluation problem

can be regarded as a policy evaluation problem as demonstrated

in [8]. Therefore, we also apply our proposed estimator on sev-

eral public classification benchmark datasets to demonstrate the

effectiveness of our estimator.

5.3.1 Dataset. In multiclass classification problem, features X ∈
X and labelsY t ∈ {1, 2, ...,K} are assigned to each sample. A classi-

fier can be defined as a function that receives featuresX and returns

a probability distribution over the label space. The performance of

the classifier can be simply evaluated by the classification accuracy.

Accuracy =
1

n

n∑
i=1

π (Y ti |Xi ).

This is equivalent to policy evaluation problem where we define

context X as features, action Y as the predicted label and the feed-

back function δ (X,Y ) = I (Y = Y t ). Hence, the goal is to predict the
classification accuracy of a new classifier (i.e. new policy) π using

historical data generated by a logging classifier (i.e. past policy) π0
[2].

As did in previous work [8], we choose four classification bench-

mark datasets amongwhich the sample sizes vary from 200 to 20000,

and the class numbers vary from 2 to 6. Then for each dataset, we

randomly split it into two parts, one for training new policy, the

other for running the past policy to generate the historical data

and running the new policy to provide the ground truth of the

classification accuracy. In our experiments, we set the new policy

π as a logistic regression, and the past policy π0 as:

π0(Y = j |X) =
S(xr ,x

j
r )∑K

q=1 S(xr ,x
q
r )
,

where S(x1,x2) = min(x1,x2)/max(x1,x2), xr is the r th variable

in X and x
j
r is the mean value of xr belonging to class j. The r th

variable is chosen so that x
j
r differs significantly between classes.

5.3.2 Result. Similar to simulations, we repeat the experiments

50 times independently and calculate Bias, SD, MAE and RMSE for

each estimator. The results are reported in Table 2. From the results,

we have the following observations and analyses:

• Rough IPS ÛR-I PS (π ) fails with huge error on all datasets,

since it ignores the association between contexts and actions.

• ÛE-I PS (π ) achieves a smaller variance on results than ÛT -I PS (π )

in most datasets, and Û SN
E-I PS (π ) is even better than ÛE-I PS (π ).

This is because the estimated PS could be more smooth than

the true PS, and Û SN
E-I PS (π ) uses control variate to make sam-

ple weights more smooth.

• DM ÛDM (π ) performs differently in the different datasets,

since the feedback function form may be different in these

datasets. By combining DM and IPS methods, DR method

ÛDR (π ) reached a better performance than DM and IPS meth-

ods, and similar with Û SN
E-I PS (π )

• OurCB estimator achieves similar performancewith ÛE-I PS (π ).

Since the context balancing on first-order moment in our

CB estimator achieves a comparable contribution with the

estimated inverse of propensity score for correcting the dis-

tribution shift from the past policy.

• Our FCB algorithm performs the best on all datasets com-

pared with baseline estimators. This is because that in our

FCB algorithm, we incorporate knowledge of the new policy

for correcting the distribution shift induced by both the past

and new policies.

6 CONCLUSION
In this paper, we investigate the problem on how to better estimate

the effect of a new policy based on historical data logged from a



Table 2: Results(i.e. Bias, SD, MAE and RMSE, the unit is percent) on classifier evaluation experiments in different datasets

Estimator

Dataset:glass Dataset:wilt Dataset:pageblock Dataset:particle

Bias(SD) MAE RMSE Bias(SD) MAE RMSE Bias(SD) MAE RMSE Bias(SD) MAE RMSE

ÛR-I PS (π ) 0.711(7.805) 5.961 7.837 0.750(1.090) 1.112 1.323 42.19(2.711) 42.19 42.28 4.093(0.432) 4.093 4.116

ÛDM (π ) 8.810(4.164) 8.810 9.744 0.096(0.380) 0.309 0.391 2.224(0.444) 2.224 2.267 0.741(0.228) 0.741 0.776

ÛE-I PS (π ) 1.648(5.707) 4.739 5.940 0.128(0.323) 0.267 0.347 4.723(3.991) 5.788 6.184 0.230(0.281) 0.287 0.362

ÛT -I PS (π ) 1.488(6.162) 4.866 6.339 0.175(1.205) 0.983 1.217 0.324(2.327) 1.794 2.348 0.012(0.553) 0.447 0.554

Û SN
E-I PS (π ) 0.315(5.455) 4.447 5.465 0.121(0.322) 0.265 0.343 1.539(2.326) 2.247 2.788 0.091(0.277) 0.222 0.293

ÛCB (π ) 0.094(6.364) 5.028 6.365 0.165(0.337) 0.318 0.372 4.660(2.810) 5.014 5.442 0.277(0.325) 0.347 0.429

ÛDR (π ) 1.035(5.334) 4.420 5.434 0.129(0.323) 0.269 0.347 1.734(1.978) 2.152 2.630 0.124(0.276) 0.228 0.303

ÛFCB (π ) 0.562(5.242) 4.098 5.273 0.024(0.329) 0.250 0.328 0.747(0.617) 0.791 0.968 0.080(0.261) 0.215 0.272

past policy. The main challenge of offline policy evaluation is the

distribution shift problem from both the past and the new policies.

However, the previous work only correct the distribution shift

from the pact policy while ignoring the one from the new policy.

By utilizing the prior knowledge of the new policy, we propose

a Focused Context Balancing (FCB) algorithm, which learns the

balancing weights to directly correct the distribution shift from

both the past and the new policies. Extensive experimental results

on both synthetic datasets and real world datasets demonstrate

that our FCB algorithm achieves more precise and robust results

on offline policy evaluation than other baselines.
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