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ABSTRACT
Discovering causal structure among a set of variables is a crucial

task in various scientific and industrial scenarios. Given finite i.i.d.

samples from a joint distribution, causal discovery is a challenging

combinatorial problem in nature. The recent development in func-

tional causal models, especially the NOTEARS provides a differen-

tiable optimization framework for causal discovery. They formulate

the structure learning problem as a task of maximum likelihood

estimation over observational data (i.e., variable reconstruction)

with specified structural constraints such as acyclicity and sparsity.

Despite its success in terms of scalability, we find that optimizing

the objectives of these differentiable methods is not always consis-

tent with the correctness of learned causal graph especially when

the variables carry heterogeneous noises (i.e., different noise types

and noise variances) in real data from wild environments. In this

paper, we provide the justification that their proneness to erroneous

structures is mainly caused by the over-reconstruction problem, i.e.,

the noises of variables are absorbed into the variable reconstruction

process, leading to the dependency among variable reconstruction

residuals, and thus raise structure identifiability problems according

to FCM theories. To remedy this, we propose a novel differentiable

method DARING by imposing explicit residual independence con-

straint in an adversarial way. Extensive experimental results on

both simulation and real data show that our proposed method is

insensitive to the heterogeneity of external noise, and thus can

significantly improve the causal discovery performances.
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1 INTRODUCTION
Causal discovery is a fundamental problem in machine learning,

aiming to understand the causal mechanism of data generation.

The learned causal graph, in form of a direited acyclic graph (DAG),

plays an important role in many areas such as biology [18], health-

care [31] and economics [16], with itself contained in the study of

algorithmic interpretability [15], stability [11], and fairness [10, 28].

Interventional experiments by randomized controlled trial is

a golden rule of causal discovery, but they are often costly and

even impossible in practice. A more realistic and attractive setting

is to learn from observational data, where conditional indepen-

dence criteria is the standard for assessment. Constraint-based

algorithms [26, 27, 32] directly conduct independence tests to de-

tect causal skeleton and determine the edge orientation on pruned

search space with elaborately designed strategy. Some score-based

algorithms [2, 9] adopt score functions that are consistent with the

conditional independence statistics to increase the fitness of the tar-

get graphwith finite data. However, these methods can only find the

Markov equivalence class [8] under wild faithfulness assumption.

By virtue of additional hypothesis on structural equation and

data distribution, functional causal models (FCMs) could identify

the true causal structure from equivalence class, typically includ-

ing linear Structural Equation Models (SEMs) [25], Additive Noise

Models (ANMs) [23] and Post-nonlinear Causal Models (PNLs) [33].

However, the exhaustive and heuristic search for DAG structures

in these methods lead to combinatorial explosion issue with the

increasing scale of nodes, as well as the local optima issue. Recently,

NOTEARS [34] formulate the DAG constraint as a continuous op-

timization term that can be solved by gradient descent methods,

successfully bringing causal discovery problem into existing effec-

tive learning frameworks. Along with this line, further studies start

to pay attention to the form of structural equation [13], conver-

gence [17] , optimization technique [36] and applications [12].

It should be noted that, by maximizing likelihood of observa-

tional data, FCMs (including NOTEARS) rely on strong assumptions

to find the true causal structure [21]. To name a few, the variable

noises should be identifiable with uniform variances, and there is

https://doi.org/10.1145/3447548.3467439
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no model misspecification problem. But in realistic and wild set-

tings, variables are generated with heterogeneous noises of mixed

types or mixed variances. Reconstructing variables with best ef-

forts will erroneously absorb noises into the reconstruction process,

leading to the dependencies among reconstruction residules which

violates the FCM theories. This over-reconstruction problem may

cause spurious and missing edges in the resulted structure. We

justify this argument with illustrative examples as shown in Table

1. We find that all of the three basic causal structures (chain, fork,

and collider) can easily be erroneously identified by NOTEARS

due to over-reconstruction problem. In other words, traditional

reconstruction-based objective functions are not sufficient to guar-

antee the correctness of discovered causal graphs.

In this paper, we propose a novel differentiable method Differen-

tiable Adversarial Residual INdependence for causal Graphs (DAR-

ING) by imposing explicit residual independence constraint. More

specifically, we design the residual independence constraint with a

theoretically derived measure on mutual-independence, combine

it with the reconstruction process, and formulate the problem as a

min-max joint optimization problem. We solve it in an adversarial

process, where the discriminator is constantly trained to seek out

the maximum correlation among reconstruction residuals; and the

generator is trained to learn the graph structure and structural

equations to minimize the correlation among reconstruction resid-

uals. The newly introduced residual independence constraint does

not weaken the virtue of traditional differentiable causal discovery

methods in scalability. We prove that the combinatorial problem

of mutual independence test for 𝑑 variables can be solved by a 𝑑

neural networks in a supervised learning task. To verify the superi-

ority of our proposed method, we conduct extensive experiments to

compare the performance of ours and baselines in multiple settings,

including mixed noise type, mixed noise variance, and real-world

dataset.

In summary, our contributions are highlighted as :

• We identify the over-reconstruction problem of traditional

FCM models, and provide the justification that heteroge-

neous noises can easily make them fail.

• we propose a novel differentiable method DARING by impos-

ing explicit residual independence constraint in a adversarial

way.

• Extensive experiments demonstrate that our proposedmethod

can significantly improve the robustness of causal discovery

in wild settings.

The rest of the paper is organized as follows. Section 2 reviews

the literature of related fields. Section 3 introduces our new FCM

architecture DARING in detail. Section 4 gives the settings and

results of the experiment to show the availability of our model.

Finally, we conclude this work at the end of the paper.

2 RELATEDWORKS
In this section, we review the works of some related fields with this

work, including causal structure learning and adversarial learning.

Generally speaking, there are two types of algorithms for causal

discovery (with I.I.D. data). Constraint-based algorithms learns

the equivalence class of causal graphs according to conditional

independence criteria under faithfulness assumption. If no unob-

served confounder exists, Peter-Clark (PC) [26] implements the

independence test for each pair of connected variables conditioned

on subsets of their neighbor nodes and decides the edge direction

by some designed rules which meet the necessary requirements

of causal graph. In the presence of unobserved confounders, Fast

Causal Inference algorithm (FCI) [27] also calls independence judge-

ment like PC, but targets at a extended causal graph with bidirected

edges indicating that there is at least one unmeasured confounder

between the ends. Recently, ReCIT [32] measures the conditional

independence of fork structure by independent regression residuals

on the two child nodes for linear SEM.

However, limited sample size easily results in failure of statistics

tests due to instability issue. The daunting cost of checking every

candidate sub-structure is intolerable. To overcome these drawback,

some score-based algorithms are purposed to alternatively employ

a score function to measure the correctness of conditional indepen-

dence of target graph with finite data. Taking a score function called

BDeu, Greedy Equivalence Search (GES) [2] starts from an empty

graph and adopt greedy strategy to add and cut edges successively

until the score could not be improved. BiweiH develops a new class

of generalized score functions by exploiting a particular regression

problem in Reproducing Kernel Hilbert Space (RKHS) [9] to capture

the dependence between random variables in a nonparametric way.

Compared to the above methods that only find the Markov equiv-

alence class, other class of score-based method, FCMs can identify

true causal graph from the same equivalence class with additional

hypothesis. For example, PNL [33] proves it’s definitely identifi-

able for two-variable setting except 5 special cases by testing if the

disturbance is independent of direct causes for each variable. How-

ever, traditional approaches search the DAG structure for multiple-

variable in a combinatorial manner, e.g. topological ordering of

causality diagram into lower triangular matrix (LiNGAM [25]),

which actually daunt the learning process of FCMs. By converting

acyclicity constraint into a continuous program, NOTEARS [34] can

directly apply a standard numerical solver for constrained optimiza-

tion, such as augmented Lagrangian method, to achieve a global

approximate solution. Further, DAG-GNN [30] propose a variant of

gradient optimized constraint formulation that is more suitable for

implementation and solve generalized linear SEM in autoencoder

architecture; NOTEARS-MLP [35] and Gran-DAG [13] extend the

framework of NOTEARS to deal with nonlinear functions using

neural network or orthogonal basis expansion on each variable

separately and adapt the acyclicity constraint at the level of neu-

ral network paths; RL-BIC [36] introduce Reinforcement Learning

(RL) to search for the DAG with the best scoring while generat-

ing graph adjacency matrices that are used to compute rewards;

GOLEM [17] apply a likelihood-based objective with soft sparsity

and DAG constraints instead of constrained optimization, making

linear SEM problem much easier to solve. For all these methods,

maximum likelihood estimation of observational data is the guaran-

tee of causal discovery, that is to say causal graph should conform

to data generation mechanism. But the heterogeneity of external

noise item in structural equation would lead to the inconsistence

of perfect reconstruction and the correctness of causal graph, even

without model misspecification. It goes worse for agnostic data

distribution in wild settings. To this end, we propose to improve



Table 1: Three cases that traditional differentiable FCMs would find wrong causal graphs while the residual independence
regularizer can help to identify the true graphs. We give examples on three basic causal structures (chain, fork, and collider
from top to bottom). The graphs in green lines denote the ground truth. The red ones are the wrong structures learned by
traditional differentiable FCMs (owing to theminimal reconstruction loss). However, true graphs haveminimal reconstruction
losses among graphs that satisfy the residual independence regularizer. Detailed data generating processes are as follows.
Chain example:𝐴 = 𝜖𝐴 (∼ N (0, 1)), 𝐵 = 𝐴+𝜖𝐵 (∼ N (0, 4)),𝐶 = 𝐵/5+𝜖𝐶 (∼ N (0, 1)). Fork example: 𝐵 = 𝜖𝐵 (∼ U(−2, 2)),𝐴 = 𝐵/2+𝜖𝐴 (∼
U(−1, 1)), 𝐶 = 𝐵/2 + 𝜖𝐶 (∼ U(−1, 1)). Collider example: 𝐴 = 𝜖𝐴 (∼ N (0, 1)), 𝐶 = 𝜖𝐶 (∼ N (0, 1)), 𝐵 = 𝐴/3 +𝐶/3 + 𝜖𝐵 (∼ N (0, 1/9)).

Predicted Graph (Chain)

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

Reconstruction Loss 6.00 6.97 6.17 6.17 6.96 6.33 6.16 6.80 6.33 7.00 5.65 7.00

Residuals Mutually Independent? ✓ ✓ ✓

Predicted Graph (Fork)

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

Reconstruction Loss 1.67 2.17 1.83 1.67 2.17 1.83 1.83 2.00 1.83 2.33 1.78 2.33

Residuals Mutually Independent? ✓

Predicted Graph (Collider)

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

B

A C

Reconstruction Loss 1.89 2.00 2.22 1.89 2.00 2.22 2.22 1.67 2.22 1.83 2.11 1.83

Residuals Mutually Independent? ✓

the robustness of FCMs of continuous optimization with the help

of mutually independent residuals of fitting generation functions.

Another line is the thought of adversarial learning [7]. Taking

Generative Adversarial Nets (GAN) as an example, the core concept

of GAN is to play a zero-sum game where a discriminator learns

to distinguish real distribution from synthetic data distribution,

and a generator attempt to generate data as realistic as possible

so that it cannot be identified by the discriminator. As a result,

both two players can achieve a much promising solution after

upgrading each other alternately. Proposed by Goodfellow et al.

[7], adversarial learning has been widely applied in various fields,

including Computer Vision [14], Natural Language Processing [29],

Graph Neural Networks [4] and so on. In this work, we leverage

adversarial thought to capture the mutual independence between

multi-dimensional variables.

3 ALGORITHM
3.1 Problem Definition
Structural Causal Model (SCM) defined on a set of random vari-

ables 𝑋 = {𝑋𝑖 }𝑑𝑖=1 consist of a causal directed acyclic graph 𝐺 =

(𝑉 (𝐺), 𝐸 (𝐺)) and the structural equations, defining the generative

process of𝑋 . The joint distribution 𝑃 (𝑋 ) encoded in SCM is Markov

with respect to𝐺 , that is 𝑃 (𝑋 ) = ∏𝑑
𝑖=1 𝑃

(
𝑋𝑖 |𝑋𝑝𝑎 (𝑖)

)
, where 𝑋𝑝𝑎 (𝑖)

denotes the parent set of 𝑋𝑖 in 𝐺 . In this paper, we assume the

structural equations satisfying Additive Noise Models[23] (as in

Equation 1), where 𝐹𝑖 is the mapping function that denotes the

generative process on 𝑋𝑖 and 𝜖𝑖 is the external noise of 𝑋𝑖 .

𝑋𝑖 = 𝐹𝑖

(
𝑋𝑝𝑎 (𝑖)

)
+ 𝜖𝑖 . (1)

Problem 1. Given i.i.d. samples X =

{
x(𝑘)

}𝑛
𝑘=1

from the joint

distribution 𝑃 (𝑋 ), our goal is to infer the unknown causal graph 𝐺
from X, assuming the data generative mechanism follows ANMs.

3.2 Preliminary
Here, we first recall the continuous optimization task of causal dia-

gram learning after NOTEARS. Although advanced variants have

been proposed to improve performance from different perspectives,

its general formulation could be written as a minimization problem

of an objective composed of data reconstruction, graph sparsity

and acyclicity constraint (Equation 2).

minL (0) = Lrec (𝐺,X, 𝜃 ) + 𝛼LDAG (𝐺) + 𝛽Lsparse (𝐺). (2)

Lrec (𝐺,X, 𝜃 ) refers to the ability of graph𝐺 and learnable model

𝑓 with parameter set 𝜃 = (𝜃1, ..., 𝜃𝑑 ) to recover the data generative

process of 𝑋 , where 𝜃𝑖 is the parameter of 𝑓 to approximate func-

tion 𝐹𝑖 for variable 𝑋𝑖 . For linear SEM, 𝜃 is a weighted matrix𝑊 . If

considering nonlinear correlation, we can take a predefined nonlin-

ear formulation or a neural network to fit agnostic 𝐹𝑖 . A multilayer

perception (MLP) [5] with parameter 𝜃𝑖 can be represented as,

MLP

(
𝑋, 𝜃𝑖 =

(
𝑊 (1) , . . . ,𝑊 (𝑙𝑖 )

))
= 𝛿

(
𝑊 (𝑙𝑖 )𝛿

(
· · · 𝛿

(
𝑊 (1)𝑋

)))
,

(3)

where 𝛿 : R → R is an activation function and 𝑙𝑖 is the number

of layers for this MLP. To measure the distance between 𝑋 and

𝑓 (𝑋 ), Lrec (𝐺,X, 𝜃 ) could be regression-based metrics such as Eu-

clidean distance (i.e. | |𝑋 − 𝑓 (𝑋 ) | |2
2
), or likelihood-based objectives

for specific model.



Lemma 3.1 (Zheng et al. [34]). A matrix 𝐺 ∈ R𝑑×𝑑 is a DAG if
and only if

tr

(
e
𝐺◦𝐺

)
− 𝑑 = 0. (4)

Lemma 3.1 uses the matrix exponential of Hadamard product of

𝐺 to count the paths of arbitrary length between all the two nodes

in graph. To ease the numerical difficulty of computing tr

(
e
𝐺◦𝐺

)
,

Yu et al. [30] gives an alternative constraint that is more convenient.

LDAG (𝐺) = tr

[
(𝐼 + 𝜑 (𝐺 ◦𝐺)𝑑

]
− 𝑑, 𝜑 > 0. (5)

Lsparse (𝐺) denotes the number of edge in graph (i.e., |𝐺 |0), and
always optimized by |𝐺 |1 in practice. LDAG (𝐺) and Lsparse (𝐺)
actually consider the structure characteristic of causal graph.

3.3 Motivation
However, it is not always consistent with the correctness of causal

discovery if minimizing L (0)
only, especially in wild settings. The

predefined reconstruction objectives, e.g., regression-based metrics,

easily lead to misspecification problems due to the agnostic external

noise types. Even if there is no such problem on both structural

equations and noise types, i.e., for general linear Gaussian models,

traditional methods will still fail in the situation of heterogeneous

noise variance. Generally speaking, we can always decompose a

complicated causal graph into three kinds of basic structure: chain,

fork and, collider. In Table 1, we have shown that the truth graph

would be mistakenly learned to another false structure for any basic

structure, owing to the heterogeneity of external noise. Taking the

chain as an example, the graph in green lines denotes the ground

truth 𝐺true, but the red one is the false structure 𝐺
false

learned by

traditional objective function L (0)
. Because all the DAGs in Ta-

ble 1 has two edges, they have the same value of Lsparse = 2 and

LDAG = 0. But Lrec (𝐺true) ≤ Lrec (𝐺false
) under given genera-

tive mechanism, causing the anti-causal issue in this example. The

similar situation also happens to fork and collider. Intuitively, the

reason is that it prefers to use all related variables to regress the

variable with external noise of larger variance to reduce the overall

reconstruction loss, under the same constraint of acyclicity and

sparsity. Over-reconstruction problem can easily confuse FCMs to

mistakenly consider totally false structure (collider example). Tradi-

tional differentiable FCMmethods are sensitive to the heterogeneity

of noises, which is almost everywhere in realistic scenes.

Compared to FCMs, constraint-based methods are more robust

for agnostic data distribution because they directly conduct inde-

pendence test in data. However, testing independence between

variables conditioned on parent node set is combinatorial and can-

not be adapted into continuous optimization frameworks.

Actually, the mutual independence between external noises of

variables is the foundation to ensure the identifiability of causal

structure [6]. For additive noise models, the reconstruction residual

𝑅𝑖 = 𝑋𝑖 − 𝑓𝑖

(
𝑋𝑝𝑎 (𝑖)

)
is the noise term of 𝑋𝑖 . However, we notice

that the residuals in learned false structure of Table 1 are not strictly

independent. That indicates the violated independence condition in

Equation 1 leads to the failure of differential FCMs. But driving the

independent residuals as well, we can hence reduce the solution

space and identify the true graph. Therefore, we propose to measure

the mutual independence of residuals and introduce it into the

traditional objective function 2 to capture the correctness of learned

graphs better.

3.4 Proposed Model
In this section, we will introduce the details of our model, which

defines a mutual independence statistic and employ it as a regular-

ization of differentiable FCMs to ensure the independent residuals

in an adversarial way. For clarity, we first present the technology of

mutual independence measure for multi-dimensional variables with

neural networks. Afterward, we describe the approach of applying

it to discovering causal diagrams.

3.4.1 Mutual Independence.

Lemma 3.2 (Daudin [3]). 𝑋 and 𝑌 are independent if and only if
for all functions ℎ ∈ 𝐿2

𝑋
, 𝑔 ∈ 𝐿2

𝑌
,

Cov[ℎ(𝑋 ), 𝑔(𝑌 )] = 0, (6)

where
𝐿2𝑋 =

{
ℎ(𝑋 ) | E

[
ℎ(𝑋 )2

]
< ∞

}
,

𝐿2𝑌 =
{
𝑔(𝑌 ) | E

[
𝑔(𝑌 )2

]
< ∞

}
,

(7)

are square summable functions on 𝑋 and 𝑌 .

Lemma 3.2 tells us the variables 𝑋 and 𝑌 are completely inde-

pendent, if they are always linearly independent after mapping by

all the square summable functions. Further, we can extend it to the

mutual independence of multi-dimensional variables.

Theorem 3.3. Let 𝑅 = {𝑅𝑖 }𝑑𝑖=1 be a set of random variables and
𝑅−𝑖 = {𝑅1, ..., 𝑅𝑖−1, 𝑅𝑖+1, ..., 𝑅𝑑 }. All variables of 𝑅 are mutually in-
dependent if and only if ∀ℎ𝑖 ∈ 𝐿2

𝑅−𝑖
, ∀𝑔𝑖 ∈ 𝐿2

𝑅𝑖
, 𝑖 ∈ {1, . . . , 𝑑},

Cov[ℎ𝑖 (𝑅−𝑖 ), 𝑔𝑖 (𝑅𝑖 )] | = 0. (8)

Similar with Equation 7, 𝐿2
𝑅−𝑖

and 𝐿2
𝑅𝑖

are the spaces of square sum-
mable functions on 𝑅−𝑖 and 𝑅𝑖 respectively.

We provide a proof of Theorem 3.3 in Appendix.

Theorem 3.3 helps to reduce the combinatorial problem ofmutual

independence test for {𝑅𝑖 }𝑑𝑖=1 to 𝑑 sub-problems. Afterward, we

can define a statistic M(𝑅) to measure the mutual independence of

a variable set 𝑅 as,

M(𝑅) =
𝑑∑
𝑖=1

sup

ℎ𝑖 ∈𝐿2𝑅−𝑖 , 𝑔𝑖 ∈𝐿
2

𝑅𝑖






 Cov[ℎ𝑖 (𝑅−𝑖 ), 𝑔𝑖 (𝑅𝑖 )]√
Var[ℎ𝑖 (𝑅−𝑖 ))] ·

√
Var[𝑔𝑖 (𝑅𝑖 )]






 .
(9)

where ℎ𝑖 , 𝑔𝑖 are not constant mappings.

The value of M(𝑅) ∈ [0, 𝑑] denotes the correlation strength

of variable set 𝑅. We consider to use multilayer perception (MLP)

with parameters 𝜙𝑖 to approximate ℎ𝑖 ∈ 𝐿2
𝑅−𝑖

, 𝑔𝑖 ∈ 𝐿2
𝑅𝑖

and learn

them to reach the supremum of M(𝑅). However, with limited data

size, if both ℎ𝑖 , 𝑔𝑖 are modeled by different MLPs respectively, the

information from observational data of 𝑅 will be quite weak due

to huge function space. As a result, we predefine 𝑔𝑖 (𝑅𝑖 ) = 𝑅𝑖 for

single variable 𝑅𝑖 . Then we can design an objective function, which

maximizes LM (𝑅, 𝜙) by optimizing all the ℎ𝑖 in 𝑑 supervised task,

i.e.,
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Figure 1: The framework of our proposed DARING: the learnable graph structure cooperates with a parameterized model (e.g.
neural network) to recover the generativemechanism of observational data; another neural network, adversarial with learned
graph, is used to conduct mutual independence test of all the reconstruction residuals and ensure independent residuals.
Further additional constraints, including DAG and Sparsity, enforce the learned graph having causal structure characteristic.
The overall framework is continuously optimized.

max

𝜙
LM (𝑅, 𝜙) =

𝑑∑
𝑖=1






 Cov[MLP(𝑅−𝑖 , 𝜙𝑖 ), 𝑅𝑖 ]√
Var[MLP(𝑅−𝑖 , 𝜙𝑖 )] ·

√
Var[𝑅𝑖 ]






2
2

. (10)

For each variable 𝑅𝑖 , 𝜙𝑖 is learned as the mapping function of

𝑅−𝑖 with maximal correlation with 𝑅𝑖 . To better adaptM(𝑅) to con-
tinuous optimization framework, we replace 1-norm (in Equation

9) with 2-norm (in Equation 10).

3.4.2 Causal Discovery with Adversarial Learning. As explained in

Section Motivation, we have shown that traditional FCMs easily

fail in finding the true causal graph due to pursuit of perfect recon-

struction. However, the independent residuals can help to shrink

down the solution space of traditional differentiable FCMs.

(1) Independence of residuals 𝑅𝑖 = 𝑋𝑖 − 𝑓𝑖 (𝑋𝑝𝑎 (𝑖) ) is the neces-
sary condition (Equation 1) for correctly identifying the true

causal graph under ANMs’ assumption;

(2) The false structure learned as best solution by traditional

methods would get residuals with strong correlations.

(3) The truth graph, missed by traditional methods, would be

identified with independence measure (examples in Table 1).

The point (1), (2) and (3) indicates a independence regularization

can always benefit the causal discovery performance. Therefore, we

acknowledge a graph describing causal mechanism if it can satisfy

the following conditions.

(1) Based on its diagram, a learnable model 𝑓 (𝜃 ) can recover

the generative process of observational data.

(2) All the residuals (𝑋 − 𝑓 (𝑋, 𝜃 )) are mutually independent.

(3) It is a sparse DAG structure.

Continuous optimization helps to promote using effective learning

technologies to ensure condition (1) and (3) abundantly. Further-

more, we hope to satisfy condition (2) with the advantage of M(𝑅)
defined before. But it’s not straightforward to combine M(𝑅) with

Algorithm 1 Causal Discovery with DARING

Input: X =

{
x(𝑘)

}𝑛
𝑘=1

i.i.d. sampled from 𝑃 (𝑋 ) and threshold Δ
Output: Causal graph 𝐺
Initial 𝑮 , parameters of causality fitting model 𝜃 (𝜃1, ..., 𝜃𝑑 ) and
parameters of independence test model 𝜙 (𝜙1, ..., 𝜙𝑑 )
Pretrain 𝐺 and 𝜃 to minimize L (0)

for 𝜏0 steps

while not arriving maximal iteration or triggering termination

conditions do
for 𝑡 = 1 to 𝜏1 do

Fix 𝐺 , 𝜃 and calculate LM (𝑅, 𝜙) in Equation 10

Update 𝜙 to maximize LM (𝑅, 𝜙)
end for
for 𝑡 = 1 to 𝜏2 do

Fix 𝜙 and calculate total L in Equation 11

Update 𝐺 , 𝜃 to minimize L
end for

end while
Prune the edges less than Δ of 𝐺

return: 𝐺

traditional methods, because (𝑋 − 𝑓 (𝑋, 𝜃 )) keeps changing along
with the updating of 𝐺 and 𝜃 .

To deal with this issue, we formulate the independent residual

condition/constraint as a min-max problem and introduce adver-

sarial learning to solve it. In continuous framework, alternatively

updating two models for finite steps against each other, it’s said that

both models can reach the global optimal solution in ideal settings.

Hence, we adopt adversarial learning to design an architecture as

in Figure 1 to jointly optimize causal graph 𝐺 , fitting model 𝑓 (𝜃 )
and mutual independence measure model ℎ(𝜙).

We first define a new objective function L as in Equation 11 to

ensure independent residuals while reconstructing data in adver-

sarial process, under DAG and sparsity constraint. The training



details of our DARING are as follows: if 𝑅 (𝑡 ) = 𝑋 − 𝑓

(
𝑋, 𝜃 (𝑡 )

)
is the residuals after 𝑡 epoch; at (𝑡 + 1) epoch, we fix 𝐺 (𝑡 )

and

𝜃 (𝑡 ) and update 𝜙 (𝑡+1)
for 𝜏1 steps to maximize LM

(
𝑅 (𝑡 ) , 𝜙

)
that

measures the mutual correlation of residuals; then fixing 𝜙 (𝑡+1)
,

we update 𝐺 (𝑡+1)
and 𝜃 (𝑡+1) for 𝜏2 steps to minimize L in turn.

Although LM

(
𝑅 (𝑡 ) , 𝜙

)
possibly increases in its training steps, its

value would keep decline on the whole in learning process owing

to independent residuals on the correct graph.

min

𝐺,𝜃
max

𝜙
L(X,𝐺, 𝜃 ) =Lrec (𝐺,X, 𝜃 ) + 𝛼LDAG (𝐺)

+ 𝛽Lsparse (𝐺) + 𝛾LM (𝑋 − 𝑓 (𝑋, 𝜃 ), 𝜙).
(11)

For better convergence, we can pretrain 𝐺 and 𝜃 according to

L (0)
for a few epochs at first. Then optimizing 𝐺 , 𝜃 and 𝜙 until

arriving maximal iteration or triggering termination conditions,

e.g., DAG requirement has beenmet, training process ends at a Nash

equilibrium solution ideally. Finally, a causal graph is outputted

after post-processing on 𝐺 , e.g., the edge is cut off if its weight

value less than a threshold Δ.

4 EXPERIMENTS
In this section, we carry out extensive experiments to verify the

effectiveness of our proposed method DARING on learning causal

structures. Our experimental settings cover linear and nonlinear

cases, structure identifiable and non-identifiable cases. All the ex-

periments conducted in this paper are implemented in Python and

Pytorch [20] framework.

4.0.1 Baselines. The proposed method for residual independence

regularization is not confined to a specific form of differentiable

FCM model. Without lose of generality, we take NOTEARS as back-

bone, and compare with the models based on the same backbone.

We choose NOTEARS and GOLEM as baselines for linear models,

NOTEARS-MLP for nonlinear models, and add independence reg-

ularization term into them respectively as the implementations

of our method. NOTEARS takes a matrix𝑊 as causal graph and

the weight on it𝑊𝑖, 𝑗 denotes the causal effect of variable 𝑋𝑖 to

𝑋 𝑗 . 𝑊 is learnt by regression-based objective using augmented

Lagrangian method. GOLEM uses likelihood-based objective, to-

gether with a soft constraint term −log|det(𝐼 −𝑊 ) |, to learn𝑊

for better optimization. NOTEARS-MLP approximates generative

mechanism of𝑋 𝑗 byMLPwith parameters 𝜃 𝑗 =

(
𝐴
(1)
𝑗

, ..., 𝐴
(𝑙)
𝑗

)
and

takes𝑊 (𝜃 )𝑖, 𝑗 =




(𝐴(1)

𝑗

)
[:,𝑘 ]






2

as causal graph. We adopt the same

post-processing strategy for all the methods, cutting off the edges

with values less than 0.3.

4.0.2 Metrics. We evaluate the estimated DAG structure using the

following common metrics:

• Precision: proportion of correctly detected edges to the total

detected edges;

• Recall: proportion of correctly detected edges to the total

edges in true graph;

• Structural Hamming Distance (SHD): the number of missing,

falsely detected or reversed edges;

• Structural Interventional Distance (SID) [22]: the number

of pair (𝑋𝑖 , 𝑋 𝑗 ) such that the interventional distribution

𝑝 (𝑋 𝑗 |do(𝑋𝑖 = 𝑥)) would be miscalculated if we choose the

parent adjustment set in estimated graph.

4.1 Synthetic Data of Linear Models
4.1.1 Simulation. We examine the structure learning performance

of NOTEARS, GOLEM and proposed method (NOTEARS + DAR-

ING, GOLEM + DARING) in three kinds of wild settings for linear

data: mixed noise type, identifiable mixed noise variance and non-

identifiable mixed noise variance. For each setting, we varied the

number of nodes (10, 20, 40) and sampled 10 datasets of 1000 exam-

ples as follows: first, a ground truth DAG 𝐺 is randomly sampled

following Erdos-Renyi (ER) or Scale-Free (SF) scheme with different

edge density (degree = 2 or 4); then the data is generated according

to linear SEM𝑋 = 𝐵𝑋 +𝜖 , where each value of matrix 𝐵 is uniformly

sampled in (−2,−0.5)⋃(0.5, 2) and the external noise 𝜖 comes from

a specific scheme. The detailed configurations in each settings are

as follows,

• Mixed noise type setting.We randomly select one kind of

noise from 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 distribution N(0, 𝜎2), 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 distri-

bution𝑈 (−𝜍, 𝜍), 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 distribution E(𝜆) and𝐺𝑢𝑚𝑏𝑒𝑙

distribution G(0, 𝜅) for each node and keep 𝜎2 = 𝜍 = 𝜆 =

𝜅 = 1. We adopt SF graph with edge density to be 4 in this

setting.

• Identifiable mixed noise variance setting.We randomly

select 𝜍 = 1, 2, 3, 4 for each node and sample noise from

𝑈 (−𝜍, 𝜍). SF graph with edge density to be 2 is adopted.

• Non-Identifiable mixed noise variance setting.We ran-

domly select 𝜎 = 1, 2, 3, 4 for each node and sample noise

fromN(0, 𝜎2). This setting is a well-known non-Identifiable

case because all the external noise is sampled from𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

distribution. ER graph with edge density to be 2 is adopted.

From the results in Figure 2, we can see that, across all the linear

settings:

(1) Compared to NOTEARS, GOLEM has a higher precision

value but less recall value, meaning that GOLEM prefers to

learn a more sparse structure.

(2) For overall metric SHD and SID, GOLEM always outperforms

NOTEARS, especially for𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 noise perfectly satisfying

its assumption.

(3) No matter implemented based on vanilla NOTEARS or ad-

vanced GOLEM, our method consistently help the backbone

to improve their performances under all metrics, implying

our method can comprehensively mitigate the failure cases

including missing, falsely detected or reversed edges.

(4) Our advantages become more prominent as the scale of the

graph increases.

4.2 Synthetic Data of Nonlinear Models
4.2.1 Simulation. We examine the performance of NOTEARS-MLP

and proposed method (NOTEARS-MLP + DARING) with the same

backbone in four kinds of wild settings for nonlinear data: mixed

noise type, identifiable mixed noise variance, identifiable large noise
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Figure 2: Empirical results on linear synthetic data. We show the performance of different methods on fourmetrics (precision,
recall, SHD, and SID from left to right) in three wild settings with varied graph scales. For precision and recall, the higher, the
better; for SHD and SID, the lower, the better. Our method (DARING) improves the backbones (NOTEARS or GOLEM) on all
the metrics and achieves the best performance in almost every cases.

variance and non-identifiable small noise variance. For each setting,

we varied the data size (400, 1000, 2000) and sampled 10 datasets

of graph with 20 nodes as follows: first, a ground truth DAG 𝐺 is

randomly sampled following ER or SF scheme with different edge

density (degree = 2, 3, or 4); then the data is generated according

to ANM 𝑋 = 𝑓 (𝑋 ) + 𝜖 , where 𝑓 is a two layers MLP with each

value of parameter uniformly sampled in (−2,−0.5)⋃(0.5, 2) and
the external noise 𝜖 comes from a specific scheme. The detailed

configurations in each settings are as follows,

• Mixed Noise Type Setting.We randomly select one kind

of noise from N(0, 𝜎2),𝑈 (−𝜍, 𝜍), E(𝜆) and G(0, 𝜅) for each
node and keep 𝜎2 = 𝜍 = 𝜆 = 𝜅 = 1. We adopt ER graph with

edge density to be 3 in this setting.

• Identifiable Mixed Noise Variance Setting. We ran-

domly select 𝜍 = 1, 2, 3, 4 for each node and sample noise

from𝑈 (−𝜍, 𝜍). ER graph with edge density to be 2 is adopted.

• Identifiable LargeNoise Variance Setting.We randomly

sample noise from G(0, 4) for each node. SF graph with edge

density to be 3 is adopted.

• Non-identifiable Small Noise Variance Setting. We

randomly sample noise fromN(0, 1) for each node. ER graph

with edge density to be 4 is adopted.

The empirical results are reported in Figure 3. Causal discovery

from nonlinear data produced byMLP is actually a quite challenging

task, owing to the complicated structural equations. It becomes

harder if facing with inadequate sample size or wild settings in our

problem. As a result, the curves of all methods sharply drop for

SHD and SID, and rise for precision and recall, with the increase of

sample size. Mixed noise type or𝐺𝑢𝑚𝑏𝑒𝑙 noise with 400 samples are

the most difficult. Even in these challenging cases, DARING can still

bring substantial improvements in all metrics. The improvement

margins are much larger for cases with small data size (e.g. 400 or

1000). Moreover, we find DARING can also work well in traditional

mild setting, e.g. all𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 noise with small variance. A plausible
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Figure 3: Empirical results on nonlinear synthetic data. We show the performance of NOTEARS-MLP and DARING on four
metrics (precision, recall, SHD, and SID) in four wild settings with varied data sample sizes. For precision and recall, the higher,
the better; for SHD and SID, the lower, the better. Our method (+DARING) outperforms NOTEARS-MLP in four settings.

Table 2: Empirical results on Sachs dataset.

Method Total Edges Correct Edges SHD SHD-C

RL-BIC 10 7 11 9

GraN-DAG 10 5 13 9

NOTEARS-MLP 11 6 11 6

DAG-GNN 15 6 16 12

GOLEM 11 6 14 12

NOTEARS 20 6 19 13

ICA-LiNGAM 8 4 14 11

CAM 10 6 12 9

DARING 15 7 11 4

reason is that DARING can alleviate the overfitting problem of MLP

model to some extent by enforing independent residuals.

4.3 Real Data
To evaluate the preformance of DARING in real applicaitons, we

consider a dataset that is to discover a protein signaling network on

expression levels of different proteins and phospholipids in human

cells
1
[24]. This dataset from biology community is a common

benchmark of graphical models, containing both observational and

interventional data. The true causal graph given by Sachs et al. [24]

has 11 nodes and 17 edges. Here, we only consider the observational

data with 𝑛 = 853 samples, that is the same with Lachapelle et al.

[13].

In this benchmark dataset, we compare with the recent contin-

uous optimized FCM methods, containing NOTEARS, NOTEARS-

MLP, DAG-GNN, GraN-DAG, RL-BIC and GOLEM, traditional FCM

methods ICA-LiNGAM [25], and a combinational method CAM [1].

Because the true causal graph is so sparse that an empty graph can

reach as low as 17 in SHD, we report the #total predicted edges,

#correct edges, SHD and SHD-C (the SHD between corresponding

CPDAG
2
[19]) in Table 2.

The poor performance of methods based on generalized linear

SEM, including DAG-GNN, GOLEM, NOTEARS and ICA-LiNGAM,

could be explained by their inability of modeling nonlinear mech-

anism in real data. Through decoupling the causal order search

1
https://www.bnlearn.com/book-crc/code/sachs.data.txt.gz

2
A Markov equivalence class can be characterized by a graphical object named a

completed partially directed acyclic graph (CPDAG).



among variables from feature or edge selection, CAM shows com-

petitive result. The nonlinear functional methods use the fitting

capability of MLP to achieve the same level of score. RL-BIC es-

timates more correct edges with lower SHD, but NOTEARS-MLP

leads in better detecting skeleton structure. Comparatively, DAR-

ING achieves the best performances in all the metrics. At the same

time, we achieve state-of-the-art performance in detecting skeleton

structures, indicating by SHD-C.

5 CONCLUSION
In this paper, we target the problem of causal discovery using FCM

based continuous optimization methods. We discuss the inconsis-

tence issue of traditional objective function and the correctness of

learnt graph in depth. To dispose of this disadvantage, we design a

novel architecture calledDARING. With access to the good conver-

gence of adversarial learning in continuous framework, DARING

enforces mutually independent residuals while fitting structural

equations from passive data, which satisfies the external noise as-

sumption in ANM formulation. Extensive experimental results of

both simulation and real data prove that our method has more

robustness and performs better in wild settings.
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Appendix
Proof of Theorem 3.3

Theorem. Let 𝑅 = {𝑅𝑖 }𝑑𝑖=1 be a set of random variables and 𝑅−𝑖 =
{𝑅1, ..., 𝑅𝑖−1, 𝑅𝑖+1, ..., 𝑅𝑑 }. All variables of𝑅 are mutually independent
if and only if ∀ℎ𝑖 ∈ 𝐿2

𝑅−𝑖
, ∀𝑔𝑖 ∈ 𝐿2

𝑅𝑖
, 𝑖 ∈ {1, . . . , 𝑑},

Cov[ℎ𝑖 (𝑅−𝑖 ), 𝑔𝑖 (𝑅𝑖 )] | = 0. (12)

Similar with Equation 7, 𝐿2
𝑅−𝑖

and 𝐿2
𝑅𝑖

are the spaces of square sum-
mable functions on 𝑅−𝑖 and 𝑅𝑖 respectively.

Proof. On the basis of Lemma 3.1, ∀𝑖 , given the condition

Cov[ℎ𝑖 (𝑅−𝑖 ) · 𝑔𝑖 (𝑅𝑖 )] = 0, ∀ℎ𝑖 ∈ 𝐿2𝑅−𝑖
, 𝑔𝑖 ∈ 𝐿2𝑅𝑖

,

we have 𝑅𝑖 ⊥ 𝑅−𝑖 , i.e.,

𝑃 (𝑅) = 𝑃 (𝑅𝑖 ) · 𝑃 (𝑅−𝑖 ).
Integrate the above function over 𝑅1, ..., 𝑅𝑖−1, we have

𝑃 (𝑅𝑖 , ..., 𝑅𝑑 ) = 𝑃 (𝑅𝑖 ) · 𝑃 (𝑅𝑖+1, . . . , 𝑅𝑑 ) .
Hence,

𝑃 (𝑅) = 𝑃 (𝑅1)𝑃 (𝑅2, 𝑅3, . . . , 𝑅𝑑 )
𝑃 (𝑅) = 𝑃 (𝑅1)𝑃 (𝑅2)𝑃 (𝑅3, . . . , 𝑅𝑑 )

= · · ·

=

𝑑∏
𝑖=1

𝑃 (𝑅𝑖 ) .

As a result, 𝑅 are mutually independent. □
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