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ABSTRACT
Social networks enable users to create different types of per-
sonal items. In dealing with serious information overload,
the major problems of social recommendation are sparsity
and cold start. In existing approaches, relational and het-
erogeneous domains can not be effectively utilized for social
recommendation, which brings a challenge to model users
and multiple types of items together on social networks. In
this paper, we consider how to represent social networks with
multiple relational domains and alleviate the major prob-
lems in an individual domain by transferring knowledge from
other domains. We propose a novel Hybrid Random Walk
(HRW), which can integrate multiple heterogeneous domain-
s including directed/undirected links, signed/unsigned links
and within-domain/cross-domain links into a star-structured
hybrid graph with user graph at the center. We perform
random walk until convergence and use the steady state dis-
tribution for recommendation. We conduct experiments on
a real social network dataset and show that our method can
significantly outperform existing social recommendation ap-
proaches.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering; J.4 [Computer Applications]: Social and Be-
havioral Sciences

General Terms
Algorithms, Experimentation

Keywords
Social Recommendation, Relational Domains, Star-Structured
Graph, Hybrid Random Walk, Transfer Learning
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1. INTRODUCTION
Social networks enable users to create different types of

personal items, including web posts (e.g., tweets on Twit-
ter, articles on Facebook), videos, user labels and interest
groups, which form multiple item domains. A huge vol-
ume of items from these domains diffuse via user graph and
result in serious information overload. Most existing rec-
ommender systems deployed for web post re-ranking suffer
from the data sparsity and cold start problems. One related
solution is to characterize latent features of each user inde-
pendently by regularizing vectors according to information
from auxiliary domains [12, 19]. On social networks, how-
ever, multiple types of items are not solely related to the
characteristic or interest of one user himself. For example,
users read web posts of other people; they edit user label-
s similar to their friends or colleagues; they watch videos
uploaded by one another. It is the user graph that these
items rely on to be diffused and adopted. Another approach
is to learn individuals’ preferences by connecting directly-
related item domains such as a track and tags on the track
[11], web pages and queries to them [27]. Yet this does not
apply to multiple indirectly-related item domains on social
networks, eg., web posts like tweets, images [28], videos that
one recommends, and user labels that label one’s identity
and interest. Rather, they are tightly connected with mass
users who form the user graph and different domains jointly
reflect users’ intrinsic preferences and tie strength.

Among multiple domains on social networks, social do-
main, which consists of users and social relation links (in-
cluding undirected friendship links in Facebook and direct-
ed follow links in Twitter), forms a weighted user graph.
It plays a central role and we can treat all item domains
as peripherals in a star-structured graph centered at social
domain. Consequently, all items in peripheral domains are
generated by users and propagated over social relations in
social domain, which serves as the cross-domain links. An
example of this structure is shown in Figure 1.

When conducting social recommendation, tie strength (of-
ten referred to as social influence [16, 3] or social trust [10])
on the central social domain is a very important factor.
From the view of Homophily [1], users are more likely to have
stronger ties if they share similar characteristics. Here cross-
domain links to different peripheral domains reflect users’
characteristics from different aspects. For example, a cross-
domain link from a user in social domain to a web post in



Figure 1: An example of hybrid high-order star-
structured graph. 4 different item domains surround
social domain.

web-post domain about Iphone shows the user’s short-term
interest in Iphone, while a cross-domain link to a user label
Iphone Fans shows the user’s long-term interest in Iphone.
Clearly the more auxiliary domain knowledge we have, the
more we know about the users and the more accurate we
can estimate the user tie strength. We can hence get bet-
ter recommendation performance, especially when the tar-
get domain is extremely sparse. A simple example is, when
a user and his friend have many common user labels, we
can update their tie strength stronger and expect that they
will adopt (share the articles, movie or source links, forward
or comment the tweet, etc.) similar web posts in web-post
domain, and vice versa.

Hence we clearly declare that such knowledge transfer pro-
cedures among multiple relational domains should focus on
updating user tie strength on social domain together. We
transfer knowledge from auxiliary domains to work on a s-
parse target domain through the principal medium of user
graph, but it still remains a difficult problem because both
within and cross domain correlations are complex. How to
collaboratively and deeply integrate multiple domains to dis-
cover the common knowledge and accordingly alleviate the
sparsity and cold start problems in each individual domain
is rather challenging, because:

(1) These domains are relational and have complex link
structures. Besides cross-domain links from social domain to
other peripheral domains, there are rich within-domain links
in each relational domain. For example, in social domain,
users are linked by social relations; in web-post domain and
user-label domain, web posts and user labels are linked by
semantic similarity; in interest-group domain, groups are
linked by common members, etc. How to effectively utilize
rich links poses a challenge to method capability.

(2) These domains are heterogeneous. Some within-domain
links are directed, e.g., the follow links in social domain from
Twitter-style microblogging platforms. Some of these links
are undirected, for example, the semantic similarity links
within the web-post domain. Some cross-domain links are
signed, such as the cross-domain links to web-post domain
where we know which posts are adopted and rejected by
users. Some are unsigned, e.g., the cross-domain links to
the user-label domain where we cannot observe and infer
the rejection behavior, because people edit their own user

labels instead of choosing from recommended user labels.
How to transfer knowledge across these different domains
despite their information heterogeneity poses a challenge to
method comprehensibility.

(3) These domains are sparse, although the sparsity of
them may be different. The sparsity problem is essentially
caused by the fact that we have a very large volume of user-
s, a limited level of attention and time for each user. It is
a major challenge to make the best use of limited informa-
tion available despite the fact that it comes from different
domains.

In order to address with the above problems, we propose
a novel Hybrid Random Walk (HRW) method for transfer-
ring knowledge on a star-structured graph and apply it for
social recommendation, which is a fundamental and practi-
cal problem that needs a reasonable solution. It estimates a
proper relevance score between any two nodes within one do-
main or across the social domain and an item domain. Such
scores can represent user tie strength between two users on
the social domain, item similarity between two items on the
item domain and cross-domain correlations that represent to
what degree a user adopts or rejects an item. Our method
integrates the knowledge from all the multiple relational do-
mains, which alleviates sparsity and cold-start problems for
social recommendation.

It is worthwhile to highlight our contribution as follows:
(1) We propose an effective method to transfer knowledge

across multiple relational domains on social networks, which
is capable of incorporating heterogeneous graphs with di-
rected/undirected links, within-domain/cross-domain links
and signed/unsigned links. This method can be widely and
naturally applied in graph-based scenarios, such as social
networks and biology networks.

(2) We use the proposed Hybrid Random Walk method on
a star-structured graph to recommend items on social net-
works, conduct intensive experiments on a large real social
network dataset, and demonstrate that it can greatly boost
the performance. This shows a promising way to solve the
sparsity problem of multiple relational domains.

(3) The experiments show the importance of user labels
for providing recommendation service to inactive or even
new users on social networks, who are the most fragile ones
that the system should pay more attention to.

The rest of this paper is organized as follows. In Section 2
we review related works and provide necessary background
for traditional recommender systems and random walk mod-
els. Then we introduce our Hybrid Random Walk method in
Section 3. In Section 4 we evaluate this method with com-
parative experiments on social network data and analyze the
performances. Finally, we conclude the paper in Section 5.

2. RELATED WORKS
As the problem we focus on is social recommendation, one

closely related area is Collaborative Filtering (CF), which is
the most popular approach for building recommender sys-
tems and has been successfully employed in many applica-
tions. CF techniques are divided into two categories: memory-
based [23, 4] and model-based [17, 9]. Memory-based algo-
rithms are heuristics to recommend by aggregating the pref-
erence of similar users. Model-based algorithms learn mod-
els to recommend based on patterns recognized in the rat-
ing behaviors of users such as clustering methods, bayesian
models and matrix factorization algorithms. However, CF



methods solely rely on the historical user-item interaction
behaviors. For a typical recommendation service, there are
not sufficient behaviors of users and items in most cases.
Thus CF is fragile to perform recommendation on sparse
domains.

To alleviate the data sparsity problem, researchers have
introduced methods which incorporate information from sev-
eral types of items [15]. Wang et al. [27] propose a rein-
forcement clustering method taking into account the simi-
larities between related domains. Transfer learning is pre-
sented as a common cross-domain collaborative method for
recommender systems which can transfer knowledge from
auxiliary data to remedy the sparse target matrix [2, 21,
22]. Multiple rating matrices are shared as useful knowledge
in related domains through relational learning methods to
alleviate the sparsity problem [24, 25]. Koren et al. [12]
introduce matrix factorization techniques allowing the in-
corporation of additional information with his Netflix Prize
approach. Another work named Matrix Co-factorization [5]
incorporates rich user and item information into recommen-
dation with implicit feedback. These approaches can not be
effectively applied on social network services, because social
recommendation is directly driven by the natural and com-
plex link structures of user graph, which is not considered
in traditional recommender systems.

To solve social recommendation problems, Ma et al. [18,
19] propose a method integrating social network structure
and the user-item rating matrix based on probabilistic factor
analysis. However, user relationship should be considered for
its power on the information transmission. Leskovec et al.
[14] present information cascades in the context of recom-
mendation. Trust-aware systems [20] take trust worthiness
of users as an important consideration of social relation-
s. The intractable problem is that tie strength on the user
graph is shaped by multiple domains of User Generated Con-
tent (UGC) instead of an individual one. Implemented with
a Random Walk with Restart (RWR) method, our method
incorporates relational and heterogeneous domains together
with the user graph at the center.

Several studies exist in the field of applying RWR on item
recommendation. Konstas et al. [11] use RWR in order to
provide a more natural and efficient way to represent social
networks. Random Walk with Restarts model can consider
both the explicit user-provided annotations and friendships
inherent in the user graph. TrustWalker [10] finds a good
trade-off combining the trust-based and the CF approach
for recommendation and outperforms both methods in pre-
cision. Earlier works on heterogeneous data co-clustering [6]
inspire us to develop a new social network representation
in which a central type of objects connects the other types
to represent inter-relationships. In this paper, we consider
the specific structure of multiple social relational domains,
model these domains into a star-structure graph, and incor-
porate more complex link structures both within and across
domains.

3. THE ALGORITHM
In this section we introduce details of our method on a

star-structured graph. First let’s start with hybrid second-
order graph.

3.1 Random Walk on Hybrid Second-Order
Star-Structured Graph

Figure 2: An example of the second-order star-
structured graph.

Figure 2 shows a real world example of the second-order
hybrid star-structured graph, where on the microblogging
system each user has his/her own user labels and can send
web posts. Those web posts have semantic relationships ac-
cording to their contents, and so do the user labels. Note
that the graph we are interested in is different from the
traditional star-structured graph [7]. The traditional graph
does not consider the entity relationships within each do-
main, while the hybrid graph considers both within-domain
and cross-domain entity relationships.

3.1.1 Notations and Symbols
Table 1 summarizes some notations that we use to derive

the algorithm, and we will also use the following symbols to
denote the five subgraphs contained in Figure 2.

Table 1: Notations of Our Scenario
ui The i-th user

U = {u1, u2, · · · , um} The set of users
pi The i-th web post

P = {p1, p2, · · · , pn} The set of web posts
ti The i-th user label

T = {t1, t2, · · · , tl} The set of user labels

• G(U) = {U , E (U)}, where E (U) represents the edge set
linking the nodes in U

• G(P) = {P , E (P)}, where E (P) represents the edge set
linking the nodes in P

• G(T ) = {T , E (T )}, where E (T ) represents the edge set
linking the nodes in T

• G(UP) = {U ⋃P , E (UP)}, where E (UP) represents the
edges linking between the nodes in U and P

• G(UT ) = {U ⋃T , E (UT )}, where E (UT ) represents the
edges linking between the nodes in U and T

User relationships in GU can be captured with differen-
t ways in different scenarios. For online social networks



such as Facebook, such relationships can be user friendship-
s, which are undirected. For microblogging services such as
Twitter, such relationships can be reflected by user follow-
ings, which are directed. The relevance from user ui to uj

is

w
(U)
ij =

{

1 if user ui is a friend of uj or follows uj

0 otherwise
(1)

For relationships among web posts in P , we construc-
t the TF-IDF representation vector for each post as bi =
[bi1, · · · , bik, · · · , biK ]⊤ in matrix B (K is the size of vo-
cabulary), then adopt the cosine similarity to measure the
semantic similarity between post bi and bj as:

w
(P)
ij =

∑

k
bikbjk

√

∑

k bik
2
√

∑

k bjk
2

(2)

For user labels, we use co-occurrence frequency to measure
their relationships. Assume that labels ti and tj appear in ci
and cj tweets as a word, and co-appear in cij tweets. Then
the semantic similarity between them is computed as

w
(T )
ij =

cij

ci + cj − cij
(3)

Till now we have constructed three similarity matrices

W(U) = {w(U)
ij }, W(P) = {w(P)

ij } and W(T ) = {w(T )
ij } to

encode edge weights for three within-domain subgraphs. We
denote their corresponding degree matrices as D(U), D(P)

and D(T ) respectively.
There are also two cross-domain subgraphs G(UP) and

G(UT ) whose edge weights need to be estimated. Since web
posts can be adopted or rejected but user labels are edited
by users themselves (regarded as adoption), both positive
and negative user-post links exist but only positive user-
label links exist. These links are presented as undirected

edges e
(UP)
ij and e

(UT )
ij , whose weights are calculated as

w
(UP)+

ij =

{

1 if user ui adopts post ρj
0 otherwise

w
(UP)−

ij =

{

1 if user ui rejects post ρj
0 otherwise

(4)

w
(UT )+

ij =

{

1 if user ui adopts label tj
0 otherwise

Finally we obtain three weight matricesW(UP)+ = {w(UP)+

ij },
W(UP)− = {w(UP)−

ij }, W(UT )+ = {w(UT )+

ij } and we denote

their corresponding degree matrices as D(UP)+ , D(UP)− ,

and D(UT )+ .

3.1.2 Algorithm Derivation
In this section we derive a random walk algorithm to pre-

dict the missing links on G(UP) and G(UT ), which include
both within-domain and cross-domain random walk. For
G(U), G(P) and G(T ), we consider the Random Walk with
Restart (RWR) [26] model to derive the steady-state distri-
butions, which indicate the intrinsic relevance among user-
s, posts and labels. For a standard RWR-based relevance
model, a random walker starts from the i-th vertex and iter-
atively jumps to other vertices with transition probabilities
pi = {pi1, · · · , pin}, with pii = 1 − α. After reaching the
steady-state, the probability of the random walker staying

at the j-th vertex corresponds to the relevance score of ver-
tex j to i. Specifically, the transition probability matrices
are computed as the row-normalized weight matrices (whose
diagonal line are all zeros):

P(U) = (D(U))−1W(U)

P(P) = (D(P))−1W(P) (5)

P(T ) = (D(T ))−1W(T )

The final steady-state probability matrices can be obtained
by iterating the following updates:

R(U)(t+ 1) = αP(U)R(U)(t) + (1− α)I

R(P)(t+ 1) = βP(P)R(P)(t) + (1− β)I (6)

R(T )(t+ 1) = γP(T )R(T )(t) + (1− γ)I

where R(U)(t), R(P)(t), R(T )(t) andR(U)(t+1), R(P)(t+1),

R(T )(t+ 1) are the state probability matrices at time t and
t + 1, 0 ≤ α, β, γ ≤ 1 are the prior probabilities that the
random walker will leave its current state. It can be easily
shown that the above iterations will finally converge to the
following steady state matrices when t → ∞ [29].

R(U) = (1− α)(I− αP(U))
−1

R(P) = (1− β)(I− βP(P))
−1

(7)

R(T ) = (1− γ)(I− γP(T ))
−1

For cross-domain random walk, we compute the transition
probability matrices as

P(UP)+ = (D(UP)+)
−1

W(UP)+

P(UP)− = (D(UP)−)
−1

W(UP)− (8)

P(UT )+ = (D(UT )+)
−1

W(UT )+

where elements p
(UP)+

ij and p
(UP)−

ij represent the transition

probability that user ui will/will not like post pj , p
(UT )+

ij

represents the transition probability that user ui will own
label tj .

In social problems, we simultaneously learn relevance s-

cores between each pair of users as R(U) = {r(U)
ij }, which

finally reflect the tie strength on realistic user graph. Ele-

ment r
(U)
ij represents the probability that a random walker

jumps from user ui to uj . Now we consider the above transi-

tion paths and estimate the transition probabilities p
(UP)+

ij ,

p
(UP)−

ij , p
(UT )+

ij and r
(U)
ij of one step random walk over G(UP),

G(UT ) and G(U) as:

p
(UP)+

ij = δ
∑

uk∈U

r
(U)
ik p

(UP)+

kj + (1− δ)
∑

pk∈P

p
(UP)+

ik r
(P)
kj (9)

p
(UP)−

ij = δ
∑

uk∈U

r
(U)
ik p

(UP)−

kj + (1− δ)
∑

pk∈P

p
(UP)−

ik r
(P)
kj (10)

p
(UT )+

ij = η
∑

uk∈U

r
(U)
ik p

(UT )+

kj + (1− η)
∑

tk∈T

p
(UT )+

ik r
(T )
kj (11)

r
(U)
ij = τ

(P)(µ
∑

pk∈P

p
(UP)+

ik p
(UP)+

jk + (1− µ)
∑

pk∈P

p
(UP)−

ik p
(UP)−

jk )

+τ
(T )

∑

tk∈T

p
(UT )+

ik p
(UT )+

jk + τ
(U)

∑

uk∈U

r
(U)
ik r

(U)
kj (12)



where 0 ≤ δ, η, µ, τ (P), τ (T ), τ (U) ≤ 1 are the parameters
for trading off the importance of different transition routes.
Note that for the update of cross-domain transition proba-
bility matrices (Eq.(9) to Eq.(11)), we consider two types of
routes shown in Figure 3. We also assume that the update
of cross-domain transition probability matrices will affect
the within-domain transition probability matrix of the user
subgraph. The updating rule Eq.(12) considers three routes
shown in Figure We can further give the matrix form of the

Figure 3: Transition routes we consider when up-
dating cross-domain transition probability matrix.

Figure 4: Transition routes we consider when up-
dating within-domain transition probability matrix
on the user subgraph.

above equation, showing the update of transition probability
from time t to t+ 1.

P(UP)+(t+ 1) = δR(U)(t)P(UP)+(t) + (1− δ)P(UP)+(t)R(P)

P(UP)−(t+ 1) = δR(U)(t)P(UP)−(t) + (1− δ)P(UP)−(t)R(P)

P(UT )+(t+ 1) = ηR(U)(t)P(UT )+(t) + (1− η)P(UT )+(t)R(T )

R(U)(t+ 1) =

τ
(P)(µP(UP)+(t)P(UP)+(t)

T

+ (1− µ)P(UP)−(t)P(UP)−(t)
T

)

+τ
(T )P(UT )+(t)P(UT )+(t)

T

+ τ
(U)R(U)(t)R(U)(t)

T
(13)

With graphs G(U), G(UP) and G(UT ), the corresponding

transition matrices R(U), P(UP)+, P(UP)−, P(UT )+ are com-
puted for the next random walk step. Algorithm 1 summa-
rizes the whole procedure of the second-order star-structured
graph-based iteratively random walk method for predicting
post and label adoptions. The space complexity of this al-
gorithm is O(m2 + n2 + l2 + 2m(n + l)). And the time
complexity is O((m2 + 4m(n + l) + 2(n2 + l2))mT ), where
T is the number of iterations.

3.2 Random Walk on Hybrid High-Order Star-
Structured Graph

Algorithm 1 Iterative Adoption Prediction through Ran-
dom Walk over a Second-Order Star-Structured Graph

Require: 0 ≤ α, β, γ, δ, η, µ, τ (P), τ (T ), τ (U) ≤ 1
1: Construct graphs G(U), G(P), G(T ), G(UP), G(UT )

2: Compute transition probabilities P(U), P(P) and P(T )

using Eq.(5)

3: Derive steady-state distributions R(U), R(P) and R(T )

using Eq.(6)

4: Initialize the transition probability matrices P(UP)+(0),

P(UP)−(0) and P(UT )+(0) using Eq.(8).
5: for t=1:T do
6: Compute the user state distributions R(U)(t) and

transition probability matrices P(UP)+(t), P(UP)−(t)

and P(UT )+(t) using Eq.(13)
7: end for
8: Output: The final transition probability matrices R(U),

P(UP)+, P(UP)−, and P(UT )+.

In Section 3.1, we assume that there are two types of item
domains, web posts and user labels, associated with each us-
er. However, online social network is such an unprecedented
comprehensive platform where there are a number of differ-
ent types of UGC, e.g., posts, labels, musics and movies. In
this case, the second-order graph is not enough to describe
all the contents. Figure 1 shows a typical example of the
hybrid high-order star-structured graph when there are four
different types of UGC. We need a method to predict us-
er behaviors on various item domains. Actually the random
walk strategy we have introduced in the previous section can
be easily extended to high-order cases. For notational con-
venience, we first introduce some notations in Table 2. We
further use the following symbols to represent the different
subgraphs contained in the high-order hybrid graph.

Table 2: Notations of Our Method
ui The i-th user

U = {u1, u2, · · · , um} The set of users
dij The j-th item in i-th domain

Di = {di1, di2, · · · , di|Di|} The set of items in i-th domain
D = {D1, D2, · · · , DN} The set of item domains

• G(U) = {U , E (U)}, where E (U) represents the edge set
linking the nodes in U

• G(Di) = {Di, E (Di)}, where E (Di) represents the edge
set linking the nodes in Di, i = 1, · · · , N

• G(UDi) = {U ⋃Di, E (UDi)}, where E (UDi) represents
the edges linking the nodes in U and Di, i = 1, · · · , N

With the individual domain knowledge on G(U) and {G(Di)}Ni=1,

we construct their corresponding edge weight matrices W(U)

and {W(Di)}Ni=1. Thus the within-domain transition prob-
ability matrices can be obtained by (i = 1, · · · , N)

P(U) = (D(U))−1W(U) (14)

P(Di) = (D(Di))−1W(Di) (15)



where D(U) and {D(Di)}Ni=1 are the degree matrices induced

by W(U) and {W(Di)}Ni=1. The final steady-state probabil-
ity matrices can be iteratively calculated by

R(U)(t+ 1) = αP(U)R(U)(t) + (1− α)I (16)

R(Di)(t+ 1) = βiP
(Di)R(Di)(t) + (1− βi)I (17)

where i = 1, 2, · · · , N, 0 ≤ α, β1, · · · , βN ≤ 1.
For cross-domain subgraphs {G(UDi)}Ni=1, we also calcu-

late the edge weight matrices {W(UDi)}Ni=1 based on the us-
er interactions with other item domains {Di}Ni=1. Thus the
cross-domain transition probability matrices can be comput-
ed as (with i = 1, · · · , N)

P(UDi)
+

= (D(UDi)
+
)
−1

W(UDi)
+

(18)

P(UDi)
−

= (D(UDi)
−
)
−1

W(UDi)
−

(19)

When updating the cross-domain transition probability ma-
trices, we also consider the transition routes shown in Figure
3 and Figure 4, so that they can be updated using the fol-
lowing rules (i = 1, 2, · · · , N).

P
(UDi)

+
(t + 1) = δiR

(U)(t)P(UDi)
+
(t) + (1− δi)P

(UDi)
+
(t)R(Di)

P
(UDi)

−
(t + 1) = δiR

(U)(t)P(UDi)
−
(t) + (1− δi)P

(UDi)
−
(t)R(Di)

R
(U)(t + 1) =

∑

Di∈D

τiµiP
(UDi)

+
(t)P(UDi)

+
(t)

T

+
∑

Di∈D

τi(1− µi)P
(UDi)

−
(t)P(UDi)

−
(t)

T

+τ (U)
R

(U)(t)R(U)(t)
T

(20)

where 0 ≤ δi, µi, τi ≤ 1 (i = 1, 2, · · · , N) are the tradeoff
parameters. For a domain Di without negative user-item
links, the updating process of user tie strength R(U) sets
µi = 1.

Algorithm 2 summarizes the whole procedure of random
walk on high-order hybrid star-structured graph for pre-
dicting user adoptions on different item domains. The s-
pace complexity of Algorithm 2 is O(m2 + 2m

∑ |Di| +
∑

|Di|2). And the time complexity is O((m2 +4m
∑

|Di|+
2
∑ |Di|2)mT ), where T is the number of iterations. In prac-

tice, we only need to check users that are in a small commu-
nity or circle and it takes only a few iterations to converge.

4. EXPERIMENTS
In this section, we introduce experimental results of apply-

ing our hybrid random walk method to a real world dataset,
which is a second-order star-structured graph with web posts
and user labels as two item domains. We evaluate the social
recommendation performance on user-post adoption and re-
jection links.

4.1 Dataset
The dataset we use is crawled during January 2011 from

Tencent Weibo website (t.qq.com), which is a Twitter-style
microblogging service in China. We crawled data from users
who own at least one user label, 17.2% of total. While the
website allows users to edit at most 9 labels, the average
number of labels per user we have is 6.2. We did not filter
any social relationships. The average number of friends per
user is 20.6.

Algorithm 2 Iterative Adoption Prediction through Ran-
dom Walk over a High-Order Hybrid Star-Structured Graph

Require: 0 ≤ α, {βi}Ni=1, {δi}Ni=1, {µi}Ni=1, {τi}Ni=1 ≤ 1

1: Construct G(U), {G(Di)}Ni=1, {G(UDi)}Ni=1

2: Compute transition probabilities P(U) and {P(Di)}Ni=1

using Eq.(14) and Eq.(15)

3: Derive steady-state distributions R(U) and {R(Di)}Ni=1

using Eq.(16) and Eq.(17)
4: Initialize the transition probability matrices

{P(UDi)
+

(0)}Ni=1 and {P(UDi)
−

(0)}Ni=1 using Eq.(18)
and Eq.(19).

5: for t = 1 : T do
6: Compute the user state distributions R(U)(t) and

transition probability matrices {P(UDi)
+

(t)}Ni=1 and

{P(UDi)
−

(t)}Ni=1 using Eq.(20)
7: end for
8: Output: The final transition probability matrices R(U),

{P(UDi)
+}Ni=1 and {P(UDi)

−}Ni=1

Table 3 summarizes the basic information contained in the
dataset, where we have 53,438 users, 141,879 web posts and
111 user labels. Both web-post and user-label domains are
sparse but in different levels, i.e., the positive density, which
represents the percentage of positive observed links between
every user and item, of web-post domain is 0.02% and the
negative density is 0.04%, while the density of user-label
domain is 5.57%, which is nearly 100 times higher.

Table 3: Dataset Information

Domain Object
Cross-Domain Link

Accept (+) Refuse (–)

user 53,438 – –

web post 141,879
1,474,389 3,399,980
0.02% 0.04%

user label 111
330,157

–
5.57%

4.2 Experimental Settings
We present our experimental settings in detail in this sec-

tion, including how we collect negative examples, i.e., user-
item rejection links, and parameter settings.

In social network analysis, negative examples reveal facts
on information adoption and help improve the recommen-
dation performance [13]. However, we cannot observe user-
item rejection behaviors from crawled data. Here we esti-
mate the negative links in the following steps: (1) We collect
the items that each user receives from his/her friends or fol-
lowers. The social networking system organizes these items
in chronological order. (2) We observe user adoptions to set
up a time window (the time period before adopting items)
within which users are considered online and having read all
items that were sent during the period. (3) We identify re-
jected items (negative examples) as those received by a user
within a 5-minute time window but never got adopted. Lat-
er, we will show the benefits of using the estimated negative
samples.

With regard to parameter settings, we tune δ and η as
the relative weights of user tie strength over item similarity



on user-post and user-label link prediction, µ as the relative
weight of positive samples over negative samples on user-
post link prediction, τ (P) and τ (T ) as the relative weights of
cross-domain links from web-post domain over user-label do-
main on influencing user tie strength. All parameters range
from 0 to 1 and we tune them by gradient search to explain
more on our method. We set the step length as 0.001 and in
each iteration find the directions of these 5 parameters (δ,

η, µ, τ (P) and τ (T )) to reduce the error metrics.

4.3 Evaluation Metrics
We adopt three types of evaluation measures: reconstruc-

tion error, prediction accuracy and ranking-based metrics.

• Mean Absolute Error (MAE), which is calculated as

MAE =
1

N

∑

ui,pj

(|p(UP)+

ij − p̂
(UP)+

ij |+ |p(UP)−

ij − p̂
(UP)−

ij |)

(21)

where p
(UP)+

ij and p
(UP)−

ij are the ground truth adop-
tion and rejection of user ui on item pj in the testing

set, p̂
(UP)+

ij and p̂
(UP)−

ij denote the prediction result,
and N denotes the size of the testing set.

• F1 measure, which is another measure to evaluate the
prediction performance. It is the harmonic mean of
precision and recall, which are defined as follows:

precision =
|{(ui, pj)|p̂(UP)+

ij > p̂
(UP)−

ij , p
(UP)+

ij = 1}|
|{(ui, pj)|p̂(UP)+

ij > p̂
(UP)−

ij }|

recall =
|{(ui, pj)|p̂(UP)+

ij > p̂
(UP)−

ij , p
(UP)+

ij = 1}|
|{(ui, pj)|p(UP)+

ij = 1}|
(22)

F1 =
2× precision× recall

precision+ recall

• Kendall’s ranking coefficient τ̂ [3]. We rank the test-

ing pairs r(k) according to |p̂(UP)+

ij − p̂
(UP)−

ij |. Then
we compute Kendall’s ranking coefficient τ̂ as follows,
which computes how many pairs in the testing set are
ordered correctly by our method.

τ̂ = 1−
2
∑

k1<k2
1 · (r(k1) > r(k2))

N(N − 1)
(23)

where 1 corresponding to perfect ranking and 0 repre-
senting the reverse ranking.

4.4 Baseline Methods

Table 4: Comparison of Our Method (HRW) and
Different Configurations.

Algorithm R(U) W(U) W(P) W(T )

HRW
√ √ √ √

BRW-RU -P √ √ √ ×
(TrustWalker)

BRW-RU

√ √ × ×
BRW-WU -P × √ √ ×
BRW-WU × √ × ×
(ItemRank)
BRW-P × × √ ×

We first prove the rationality and necessity of the matrices
in our Hybrid Random Walk method, and then we compare
it with several state-of-the-art algorithms. Table 4 shows
the comparison of our method and its different configura-
tions. These algorithms learn within-domain links in social
domain, web post domain and user-label domain from W(U),
W(P) and W(T ), and learn user tie strength of user graph
by updating R(U), i.e., weights on social links. The methods
predict user-post links with Bipartite Random Walk (BRW),
if they take no use of rich knowledge from user-label domain.
Besides the RWR models, we take the newest matrix fac-
torization algorithm which incorporates rich user and item
information, and a standard collaborative filtering method
as baselines.

• BRW-RU -P, TrustWalker [10], which combines item-
based recommendation and the weighted user graph
as the trust network, with post similarity utilized and
user tie strength updated.

• BRW-RU , which predicts user-post links, with user tie
strength updated on a bipartite graph.

• BRW-WU -P, which predicts user-post links, with social
relation and post similarity.

• BRW-WU , ItemRank [8], which uses social relational
graph to compute a biased value of PageRank as the
probabilistic result of user-post link prediction.

• BRW-P, which learns from post similarities to predict
user-post links with a random walk model by item-
based recommendation.

• MCF, Matrix Co-factorization [5], which incorporates
rich user and item information into recommendation
by an approximation equation:

J(U, V,X, Y ) = ||W ⊙ (P(UP)+ − UV )||2F
+λ1(||P(UT )+ − UX||2F + ||B − Y V ||2F ) (24)

+λ2(||U ||2F + ||V ||2F + ||X||2F + ||Y ||2F )
where W is the weight matrix, λ1 and λ2 are regu-
larization parameters. U and X represent user’s pref-
erences over latent factors, while V and Y represents
item’s word distributions over latent factors. All these
4 low-rank matrices can be solved by weighted Alter-
native Least Square.

• CF, Item-based Collaborative Filtering [23], which is
based on the idea that users like posts recommended
by others who have similar adoption behaviors, with
users’ social relations.

4.5 Experimental Results
In this section, we demonstrate the prediction performance

of the proposed method. We randomly select 80% of user-
post links for training and the remaining for testing, while
user-label links are completely utilized. This random selec-
tion is carried out 20 times independently. Table 5 and 6
compare the performances of our method with its differen-
t configurations and with the above baselines, respectively,
on the average results and standard deviations of evalua-
tions including the MAE, precision, recall, F1 measure and
Kendall’s ranking-based method. Our method achieves the



Table 5: Experimental Results of the Different Configurations of Our Method

Algorithm MAE Precision Recall F1 Kendall’s τ̂

HRW 0.227±1.5e-3 0.711±1.3e-3 0.921±1.4e-3 0.802±1.1e-3 0.792±2.5e-3

BRW-RU -P (TrustWalker) 0.276±1.1e-3 0.657±7.6e-4 0.935±9.8e-4 0.772±7.6e-4 0.774±1.6e-3
BRW-RU 0.282±5.3e-3 0.655±4.0e-3 0.921±1.2e-2 0.765±7.7e-3 0.725±2.8e-3

BRW-WU -P 0.292±1.1e-3 0.666±7.0e-4 0.900±5.2e-4 0.765±6.6e-4 0.725±8.5e-4
BRW-WU (ItemRank) 0.318±1.4e-3 0.671±1.5e-3 0.713±2.4e-3 0.691±1.2e-3 0.661±2.2e-3

BRW-P 0.438±2.6e-4 0.571±3.4e-4 0.499±4.2e-4 0.532±3.2e-4 0.606±2.3e-4

Table 6: Experimental Results of Our Method and Baselines

Algorithm MAE Precision Recall F1 Kendall’s τ̂

HRW 0.227±1.5e-3 0.711±1.3e-3 0.921±1.4e-3 0.802±1.1e-3 0.792±2.5e-3

BRW-RU -P (TrustWalker) [10] 0.276±1.1e-3 0.657±7.6e-4 0.935±9.8e-4 0.772±7.6e-4 0.774±1.6e-3
BRW-WU (ItemRank) [8] 0.318±1.4e-3 0.671±1.5e-3 0.713±2.4e-3 0.691±1.2e-3 0.661±2.2e-3

MCF [5] 0.352±2.3e-4 0.592±1.8e-3 0.951±6.0e-4 0.730±1.3e-3 0.582±4.3e-4
CF [23] 0.506±3.4e-4 0.552±1.5e-3 0.589±7.2e-4 0.570±1.0e-3 0.540±5.2e-4

best performance in experimental trials and it is insensitive
to initialization.

From Table 5, we can observe that:

• BRW-WU (ItemRank) reduces MAE by 27.4% over
BRW-P, an item-based recommendation implement-
ed by the random walk algorithm. BRW-WU exploits
user dependent preferences from friendships and per-
forms better than the collaborative approach on large
social datasets. BRW-RU reduces MAE by 11.3% over
BRW-WU , which updates user tie strength on the user
graph with user-post links. BRW-RU -P reduces MAE
by 13.2% over BRW-WU , which learns both within-
domain links (post similarities) and cross-domain links
(user-post links) to update user tie strength. The rea-
son is that the motivations of user behavior on social
networks are: (1) Users like to adopt web posts which
highly correlate with those adopted before. (2) Users
like to adopt posts recommended by their friends or
followers with high tie strength. BRW-RU -P combines
these two aspects to solve the social recommendation
problem.

• HRW reduces MAE by 17.8% over BRW-RU -P (Trust-
Walker). This is consistent with the assumption that
in social networks, user tie strength on user graph is
shaped by multiple relational domains such as web-
post and user-label domains. Our method effectively
utilizes auxiliary information to formulate the weight-
ed user graph, and performs the best in solving the
sparsity problem of user-post link prediction.

From Table 6, we can observe that:

• HRW outperforms the matrix co-factorization approach
MCF with side information of posts and users (word
distributions of posts and user-label links) incorpo-
rated, reducing MAE by 35.5%. Though MCF takes
rich information about numerous resources and user-
s, when accommodated to social recommendation, it
needs careful consideration. User behaviors on so-
cial networks stem from the interrelationships among
users, tight or loose, that have been naturally shaped.
However, MCF does not involve the user tie strength.

• BRW-WU implements the collaborative filtering tech-
nique via a random walk model. MAE of BRW-WU is

37.2% lower than that of the traditional item-based CF
method. It reveals the advantage of random walk mod-
els which predict missing user-post links and then re-
versely influence other within-domain and cross-domain
link weights. It is adequate to design a random walk
model on this social problem.

4.6 Insights
In this section we discuss the insights we have gained from

experimental results. Specifically, we want to discuss three
questions.

(1) Are item similarity and tie strength important in pre-
dicting user-post links?

On web-post domain, δ is the weight of tie strength over
web post similarity in calculating links. If δ increases, users
are more likely to accept the recommended posts for their
social relationships than preferences. η is the corresponding
weight on user-label domain. Figure 5(a) shows the perfor-
mances varying δ and η from 0 to 1. For δ, δ = 0 means
prediction without considering item similarity, while δ = 1
means prediction without considering social tie strength.
From the figure we can clearly observe a valley when δ is
around 0.4, which means that incorporating both tie strength
and post similarity can significantly improve the performance.
Similar trends can be observed from the changing MAE
curves when we vary η.

(2) Are user-post and user-label links important in influ-
encing user tie strength?

τ (P) and τ (T ) correspond to the weights of knowledge
learned from user-post and user-label links on calculating
the tie strength, with τ (P) + τ (T ) = 1. Figure 5(b) shows

the MAE varying τ (P) from 0 to 1. When τ (P) = 1, i.e.,
we discard the knowledge transferred from user-label links
on tie strength, the resultant MAE is around 0.28. When
τ (P) = 0, i.e, τ (T ) = 1, MAE is around 0.26, which can be
explained that user-label domain is more helpful in predict-
ing tie strength since it is easier for congenial users to share
the same user labels than the same posts. The minimum
MAE (τ (P) = 0.6) suggests that knowledge from user-label
links provides potential clues on user-post link prediction
through user tie strength and recommender systems should
incorporate these two kinds of links.

(3) Are negative samples of web-post domain helpful?
µ is the relative weight of positive samples from web-post



Figure 5: (a) MAE v.s. δ and η. Performances on tuning weights of tie strength and item similarity on

cross-domain link prediction. (b) MAE v.s. τ (P). Performances on tuning weights of knowledge from web
post and user-label domains transferred to user tie strength. (c) MAE v.s. µ. Performances on tuning
weights of positive and negative user-post samples on user tie strength.

domain influencing user tie strength, while 1 − µ is that of
negative samples. Figure 5(c) shows the changing curve of
MAE when varying µ from 0 to 1. When µ = 1 (only train
positive samples) and µ = 0 (only train negative samples),
the MAE is higher than taking both samples for training
(µ = 0.6). This means that considering both positive and
negative samples in the recommendation procedure would
be very helpful for the final algorithm performance. MAE
is lower with only negative samples than with only positive
ones.

The above discussion proves that our method is reasonable
and effective, which considers comprehensive factors on user
behavior and user tie strength while taking both positive
and negative samples seriously.

4.7 Performance on Cold Start Problem
In this section, we show the performance of HRW when

we control the density of training entries of testing users
(the percentage of training user-post links per testing user,
testing item), and compare its performance with the version
without using knowledge transferred from user-label domain
(BRW-RU -P) as the baseline, and the results are shown in
Figure 6. If no training entry is hidden, where the density of
training entries of testing users is 0.06%, our model reduces
MAE by 11.3% over the baseline (0.227 over 0.256). If we
hide all training entries, i.e., the density of training entries of
testing users is zero, which means the testing users are new
in the application without previous behaviors in the histor-
ical dataset, our model reduces MAE by 34.4% (0.288 over
0.387). From Figure 6, we observe that the performance
gain increases as the cold start problem becomes more seri-
ous. Moreover, our transfer learning model needs only 29.5%
of the training entries (0.018% dense) to reach the same lev-
el performance of BRW-RU -P with the whole training set
(0.061% dense), which saves 70.5% of training information.
With user label of a new user, our method needs only 3-day
historical data to reach the same recommendation perfor-
mance of 10-day data without labels. Therefore, if we mo-
tivate new users to add several user labels, the transferred
knowledge from user-label domain would greatly improve
user experience on personal recommendation services.

5. CONCLUSION
In this paper, we address the problems of sparsity and

Figure 6: Performance of our transfer learn-
ing method (HRW) and one without transferring
method (BRW-RU -P) on the cold start problem.

cold start in social recommendation. Here we rethink the
problem from the transfer learning perspective and alleviate
the sparsity problem in the target domain by transferring
knowledge from other auxiliary social relational domains.
By considering the special structures of multiple relation-
al domains in social networks, we propose a novel Hybrid
Random Walk method on a star-structured graph, which
is a general method to incorporate complex and heteroge-
neous link structures, including directed/undirected links,
sign/unsigned links and within-domain/cross-domain links.

We have conducted extensive experiments on a large real-
world social network dataset and showed that the proposed
method can greatly boost the social recommendation per-
formance. In particular, we have gained improvement in
web post recommendation by transferring knowledge from
user-label domain for user tie strength updating process,
compared with the recommendation methods which sole-
ly use the information in web-post domain. Also, we have
demonstrated that, by using only 29.5% of the available in-
formation in the target domain, our method can achieve
equal performance with the methods that use all the avail-
able information in target domain without transfer learning.
The proposed method and insightful experiments indicate a



promising and general way to solve the sparsity problem in
different real-world recommendation scenarios.
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