Inferring Strange Behavior from Connectivity
Pattern in Social Networks

Meng Jiang!, Peng Cui', Alex Beutel?,
Christos Faloutsos?, and Shigiang Yang!

! Department of Computer Science and Technology, Tsinghua University
jmO6@mails.tsinghua.edu.cn, {cuip,yangshq}@tsinghua.edu.cn
2 Computer Science Department, Carnegie Mellon University
{abeutel,christos}@cs.cmu.edu

Abstract. Given a multimillion-node social network, how can we sum-
marize connectivity pattern from the data, and how can we find unex-
pected user behavior? In this paper we study a complete graph from a
large who-follows-whom network and spot lockstep behavior that large
groups of followers connect to the same groups of followees. Our first
contribution is that we study strange patterns on the adjacency matrix
and in the spectral subspaces with respect to several flavors of lockstep.
We discover that (a) the lockstep behavior on the graph shapes dense
“block” in its adjacency matrix and creates “ray” in spectral subspaces,
and (b) partially overlapping of the behavior shapes “staircase” in the
matrix and creates “pearl” in the subspaces. The second contribution is
that we provide a fast algorithm, using the discovery as a guide for practi-
tioners, to detect users who offer the lockstep behavior. We demonstrate
that our approach is effective on both synthetic and real data.

1 Introduction

Given a large social network, how can we catch strange user behaviors, and how
can we find intriguing and unexpected connectivity patterns? While the strange
behaviors have been documented across services ranging from telecommunication
fraud [1] to deceptive Ebay’s reviews [2] to ill-gotten Facebook’s page-likes [3],
we study here a complete graph of more than 117 million users and 3.33 billion
edges in a popular microblogging service Tencent Weibo (Jan. 2011). Several
recent studies have used social graph data to characterize connectivity patterns,
with a focus on understanding the community structure [4-6] and the cluster
property [7,8]. However, no analysis was presented to demonstrate what strange
connectivity pattern we can infer strange behavior from and how.

In this paper, we investigate lockstep behavior pattern on Weibo’s “who-
follows-whom” graph, that is, groups of followers acting together, consistently
following the same group of followees, often with little other activity. Therefore,
though the followees are not popular, they could have a large number of followers.
We study different types of lockstep behavior, characterize connectivity patterns
in the adjacency matrix of the graph, and examine the associated patterns in
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Fig. 1. Lockstep behavior shows interesting connectivity patterns and spectral pat-
terns: On synthetic graph, followers are around the origin in all spectral subspaces.
On WEIBO, non-overlapping lockstep behaviors of followers in group Fy shape a dense
“block” in adjacency matrix and create “rays” in spectral subspace. Overlapping lock-
step behaviors of followers in group Fi-F3 create a “staircase” and “pearls”.

spectral subspaces. Fig.1.(a,c,e) plot connections in the matrix, in which a black
point shows the follower on the X-axis connecting to the followee on the Y-axis.
Fig.1.(b,d,f) plot each follower node by its values in a pair of the left-singular
vectors of the adjacency matrix. These figures visualize the spectral subspaces,
and the dashed lines are X- and Y-axis. Specifically, we show that

— No lockstep behavior: According to the Chung-Lu model [9], we generate
a random power law graph where no lockstep behavior exists. The adja-
cency matrix in Fig.1.(a) has no large, dense components. We study every
2-dimensional spectral subspace of this synthetic graph and observe that
follower nodes are around the original point, as shown in Fig.1.(b).

— Non-overlapping lockstep behavior: On WEIBO, there is a group of followers
in Fj connecting to the same group of followees. Thus, the adjacency matrix
shows a large, dense “block” (83,208 followers, 81.3% dense) in Fig.1.(c).
Fig.1.(d) plots the spectral subspace formed by the 1°¢ and 37 left-singular
vectors. The followers in group Fy neatly align the Y-axis. We name this
pattern “ray” according to the shape of the points.
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— Partially overlapping lockstep behavior: A more surprising connectivity pat-
tern we discover in the adjacency matrix is a “staircase” (10,052 followers,
43.1% dense), as shown in Fig.1.(e). Groups of followers in F}-F3 behave in
lockstep, forming three more than 89% dense blocks. However, different from
the non-overlapping case, F;-F5 have the same large group of followees Ef,
and F;-F3 share a small group Fsy. The overlapping lockstep behaviors of the
followers create multiple micro-clusters of points that deviate from the origin
and lines in the 2" and 8" left-singular vector subspace. Fig.1.(f) shows the
spherical micro-clusters, roughly on a circle, so called “pearls” pattern.

Motivated by this investigation, we further propose a novel approach, which
include effective and efficient techniques that can learn the connectivity patterns
and infer following behaviors in lockstep. The contributions are as follows:

— Insights: We offer new insights into the fingerprints on the singular vectors
left by different types of synthetic lockstep behaviors. This gives us a set
of rules that data scientists and practitioners can use to discover strange
connectivity patterns and strange user behaviors.

— Algorithm: We propose an efficient algorithm that exploits the insights above,
and automatically find the followers that behave in lockstep. We demonstrate
the effectiveness on both synthetic data and a real social graph.

The rest of the paper is organized as follows: Section 2 discusses related
work. Section 3 provides insights from strange connectivity patterns and Section
4 introduces our algorithm inferring lockstep behaviors. We give experimental
results in Section 5 and conclude in Section 6.

2 Related work

A great deal of work has been devoted to mining connectivity patterns. For
finding social communities, Leskovec et al. [4] capture the intuition of a cluster as
set of users with better internal connectivity than external connectivity. Clauset
et al. [10] and Wakita et al. [11] infer community structure from network topology
by optimizing the modularity. It is desirable that user of a community have
a dense internal links and small number of links connected to users of other
communities. For graph clustering and partitioning, Ng et al. [12] present a
spectral clustering algorithm using eigenvectors of matrices derived from the
data. Huang et al. [13] devise a spectral bi-partitioning algorithm using the
second eigenvector of the normalized Laplacian matrix.

The properties of spectral subspaces have recently received much attention.
Prakash et al. [14] show that the singular vectors of mobile call graphs, when
plotted against each other, have separate lines along specific axes, which is asso-
ciated with the presence of tightly-knit communities. The authors propose SPO-
KEN to chip the communities embeded in the graphs. Ying et al. [15] suggest
that the lines formed by nodes in well-structured communities are not necessar-
ily axes aligned. Wu et al. [16] give theoretical studies to explain the existence
of orthogonal lines in the spectral subspaces.
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However, none of the above approaches provided a guide for practitioners
to understand real settings, namely, non-overlapping and partially overlapping
lockstep behaviors, with an explanation for the strange spectral patterns we
observe (“staircase” and “pearl”), and strange connectivity patterns.

3 Guide for lockstep behavior inference

In this section, we first introduce how to plot spectral subspaces. We then study
different types of lockstep behavior, show the connectivity patterns. and give a
list of rules on which type of behavior the spectral patterns represent.

3.1 Spectral-subspace plot

The concept of “spectral-subspace plot” is fundamental. The intuition behind
it is that it is a visualization tool to help us see strange patterns. Let A be the
N x N adjacency matrix of our social graph. Each user can be envisioned as an
N-dimensional point; a spectral-subspace plot is a projection of those points in
N dimensions, into a suitable 2-dimensional subspace. Specifically, the subspace
is spanned by two singular vectors.

More formally, the k-truncated singular value decomposition (SVD) is a fac-
torization of the form A = UXVT, where X is a k x k diagonal matrix with
the first k singular values, and U and V are orthonormal matrices of dimensions
N x k.U and V contain as their columns the left- and right- singular vectors, re-
spectively. Let u,, ; be the (n,i) entry of matrix U, and similarly, v, ; is the entry
of matrix V. The score u,_; is the coordinate of n-th follower on the i-th left-
singular vector. Thus, we define (,5)-left-spectral-subspace plot as the scatter
plot of the points (uy;, Uy ;), for n =1,..., N. This plot is exactly the projec-
tion of all N followers on the i-th and j-th left-singular vectors. We have the
symmetric definition for the N users as followees: (i,j)-right-spectral-subspace
plot is the scatter plot of the points (v, , vy ), for n =1,..., N. Clearly, it is
easy to visualize such 2-dimensional plots; if used carefully, the plots can reveal
a lot of information about the adjacency matrix, as we will show shortly.

As we had shown in Fig.1.(a-b), normally, given a random power law graph,
we would expect to find a cloud of points around the origin in all the spectral
subspaces. However, we find strange shapes (“ray” and “pearl”) in some left-
spectral-subspace plots of WEIBO data. The question we want to answer here is:
What kind of user behavior could cause “rays” and “pearls” in spectral subspaces?

The short answer is different types of lockstep behavior. We explain below
in more detail what type of lockstep behavior generates such the odd patterns.

3.2 “Ray” for non-overlapping lockstep behavior

In order to enumerate all the types of lockstep behavior, we introduce concepts
of “camouflage” and “fame”. If a group of followers F' had monetary incentives
to follow the same group of followees E in lockstep, they could follow additional
followees who are not in F/, which is called “camouflage” that helps look normal.
Similarly, the group of followees E could have additional followers who are not
in F', which we succinctly call “fame”.
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Fig. 2. Rule 1-3 (“rays”): non-overlapping blocks in adjacency matrix.

With these concepts, we can now study users’ lockstep behavior with syn-
thetic datasets. We first generate a 1M x 1M random power law graph and then
inject two groups of followers that separately operate in lockstep. In detail, we
create 50 new followers in group F} to consistently follow 50 followees in group
FE;. Similarly, we create another new follower group F» to follow a followee group
FE5. Thus, if we plot black dots for non-zero entries in the adjacency matrix in the
left side of Fig.2, we spot two 50 x 50 non-overlapping, dense blocks. Properties
of the non-overlapping lockstep behavior are discussed as follows:
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— Density: High, if a new follower connects to 90% of the related followee
group; low, if the ratio is as small as 50%.

— Camouflage: With camouflage, if the follower connects to 0.1% of other fol-
lowees; no camouflage, if he follows only the new followees and no one else.

— Fame: With fame, if a new followee is also followed by 0.1% of other followers;
no fame, if the followee is followed by no one else.

The spectral subspaces formed by left- and right-singular vectors are plotted
in the middle and right of Fig.2, respectively. We spot footprints left in these
plots by the different types of non-overlapping lockstep behavior and summarize
the following rules:

— Rule 1 (short “rays”): If the lockstep behavior of followers is compact on the
graph, the adjacency matrix contains one or more non-overlapping blocks of
high density like 90%. The spectral-subspace plots show short rays: a set of
points that densely fall along a line that goes through the origin.

— Rule 2 (long “rays”): If a group of followers and a group of followees are
consistently but loosely connected, the adjacency matrix contains blocks of
low density like 50%. The plots show long rays: the rays stretch into lines
aligned with the axes and elongate towards the origin.

— Rule 8 (tilting “rays”): If the follower group has “camouflage” or the followee
group has “fame”, the adjacency matrix shows sparse external connections
outside the blocks. Different from Rule 1-2, a more messy set of rays come
out of the origin at different angles, called tilting rays.

In summary, we find that non-overlapping lockstep behavior creates rays on
the spectral-subspace plots: as the density decreases, the rays elongate; as the
followers add camouflage or the followees add fame, the rays tilt.

3.3 “Pearl” for partially overlapping lockstep behavior

If a group of followers consistently follows their related group of followees, and
partially connect to other groups of followees, we say they have partially over-
lapping lockstep behavior.

Here we inject the random power law graph with three follower groups Fj,
fori=1,...,3, and five followee groups F;, for : = 1,...,5. Each follower group
has 1,000 fans and each followee group has 10 idols. Followers in F} connect to
followees in E1-Fj3; followers in Fy connect to followees in Fo-Fy; and followers
in F3 connect to followees in F3-Fs; Fig.3.(a) plots the adjacency matrix and
(b) plots the left- and right-spectral subspaces. We summarize a new rule here.

— Rule 4 (“pearls”): Overlapping lockstep behavior creates “staircase” in the
matrix, that is, multiple dense blocks that are overlapping due to followers
from each block also connecting to some followees in some other blocks. The
spectral-subspace plots show “pearls” as a set of points that form spherical-
like high density regions within roughly a same radius from the origin, rem-
iniscent of pearls in a necklace.
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Fig. 3. Rule 4 (“pearls”): a “staircase” of three partially overlapping blocks.

In our case, Fig.3.(b) shows “pearls” of three clusters, each having 1,000
followers in groups from Fj to F3. Fig.3.(c) shows five clusters, each having 10
followees in E; to Ej5. If the follower groups share some followees, or followee
groups have the same followers, their clusters are close on these plots.

With the insights into patterns on spectral-subspace plots (Rule 1-4), it is
now easy for a practitioner to predict connectivity patterns in the adjacency
matrix and infer different types of lockstep behavior.

4 Lockstep behavior inference algorithm
Our lockstep behavior inference algorithm has two steps:

— Seed selection: Following Rule 1-4 in Sect.3, select nodes as seeds of followers
that behave in lockstep, simiply called “lockstep” followers.

— “Lockstep” propagation: Propagate “lockstep” score between followers and
followees, and thus catch the lockstep behaviors.

4.1 Seed selection
The algorithm can start with any kind of seeds, even randomly selected ones.

However, careful selection of seeds obviously accelerates the response time. Fig.4
shows how we conduct the seed selection.

First, generate a range of spectral-subspace plots. We compute the top k&
left-singular vectors w1, ..., ug, and plot all the follower points in the subspace
formed by each pair of the singular vectors. For example, Fig.4.(a) shows “rays”
and “pearls” in (1,3)- and (2,8)-left-spectral-subspace plot, respectively.

Second, use the points as input to Hough transform and plot them in polar
coordinates (r,0), where r is the perpendicular distance and 6 is the rotation
angle. As shown in Fig.4.(b), for “rays”, it shows two straight lines at § = 0°
and 6 = 90°; for “pearls”, it shows a set of micro-clusters at some big r values.

Third, divide r and 6 axes into bins and plot node frequencies in each bin.
Therefore, for “rays”, the 6-bin plot shows two apparent spikes at 0° and 90°;
for “pearls”, the r-bin plot shows a single spike apart from r = 0. With median
filtering, we can detect the spikes and then catch the related nodes as seeds.

Notice that if there is no lockstep behavior, no dense block in the adjacency
matrix, the spectral-subspace plots show a cloud of points around the origin, as
shown in Fig.1.(a-b). The node frequency of angle 8 should be almost a constant,
and the node frequency of distance r should decrease smoothly with the value
increasing. The r- and 6-bin plots are omitted for saving space.
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4.2 “Lockstep” propagation

We now interpret how we start with the seeds and refine a group of followers and
followees with lockstep behavior. The “lockstep” value of a followee is defined as
the percentage of the seeds or “lockstep” followers who are its followers. Similarly,
the “lockstep” value of a follower is defined as the percentage of the “lockstep”
followees who are its followees. We need a threshold to decide which users are
new “lockstep” followers/followees and here we use 0.8 as default.

The algorithm recursively propagates this value from followers to followees,
and vice versa, like what Belief Propagation method does. In more detail, we
explain the steps as follows.

— From follower to followee: Fig.5.(a) shows an example of a directed graph
with followers at the top and followees at the bottom. We start with 5 “lock-
step” followers as seeds for propagation. For each followee, we count how
many its followers are in the seed set. We select the group of “lockstep”
followees who have too many “lockstep” followers.

— From followee to follower: Next for each follower, we count how many its fol-
lowees are “lockstep”. Fig.5.(b) shows how we select new “lockstep” followers
and exonerate those innocent with zero or one “lockstep” followee.

— Repeat until convergence: Report the groups of “lockstep” followers and fol-
lowees if they are not empty.

Note that our algorithm is linear to the scale of the social graph and thus scalable
to be applied in real applications.
5 Experimental results

In this section we present our empirical evaluation, first on a large, real-world
graph, and then on synthetic graphs where the ground truth is known.
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Fig. 5. Find lockstep behavior of users by propagating “lockstep” value: select followers
(followees) who have too many “lockstep” followees (followers).

5.1 Real-world graph

We operate our algorithm on the 100-million-node social graph WEIBO. Table 1
report the statistics of strange connectivity patterns that we find on the network.

— “Blocks” and “staircase”: With the proposed rules and algorithm, we catch
a dense block with the “ray” pattern and a staircase of three overlapping
blocks with the “pear]” pattern on spectral-subspace plots. Fig.1.(c,e) have
show the adjacency matrix and their sets of followers Fyy and F;-F3.

— High density, small “camouflage” and small “fame”: The density of every
block is greater than 80%, while the density of the “staircase” is only 43%.
It proves that the staircase consists of partially overlapping blocks. The
camouflage, that is the connectivity between “lockstep” followers and other
followees, is as small as 0.2% dense. The fame is smaller than 2%.

The above numbers validate the existence of non-overlapping and partially over-
lapping lockstep behavior and also the effectiveness of our method. Further, we
give additional evidence of the similar personalities of the “lockstep” followers.

“ “ray” Fo H “pearl” Iy [“pearl” Fg[ “pearl” F3 [“pearl” Total

Num. seeds 100 1,239 107 990 —
Size of block||83,208 x 30||3, 188 x 135|7,210 x 79|2,457 x 148|10,052 x 270
Density 81.3% 91.3% 92.6% 89.1% 43.1%
Camouflage 0.14% 0.06% 0.10% 0.05% 0.07%
Fame 0.05% 1.93% 1.94% 1.72% 1.73%
Out-degree || 231£109 3107 31247 30445 3107
In-degree 2.0£1.4 9+6 1046 17+13 1249

Table 1. Statistics of connectivity patterns formed by groups of users with lockstep
behavior: The density of the “block” and blocks in “staircase” is greater than 80%,
while the WEIBO followers have little “camouflage” and followees have little “fame”.

— Strange profiles: The login-names of 10,787 accounts from the “lockstep”
users are like “a##H#H##" (# is a digital number, for example, “a27217”).
Their self-declared dates of birth are in lockstep the Jan. 1%¢. They were
probably created by a script, as opposed to natural users.
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— Small in-degree values of followers: The average in-degree value of followers
in the single “block” is as small as 2.0, while that of followers in the “stair-
case” is smaller than 20. The “lockstep” followers actively connect to their
followees but they have little reputation themselves.

— Similar out-degree values of followers: The out-degree values of “lockstep”
followers in the “staircase” are similarly around 300. In Fig.6, we plot the
out-degree distribution of the graph in log-log scale and spot two spikes,
which means abnormally high frequency of nodes who have around 300 fol-
lowees. After we remove the “lockstep” followers, we find out that the spikes
disappear and the distribution becomes smoother.

For the last point, we want to say, most graphs exhibit smooth degree distri-
butions, often obeying a heavy-tailed distribution (power law, lognormal, etc).
Deviations from smoothness are strange: Border et al. [17] said that in the case
of the web graph, the spikes were due to link farms. Thus, if the removal of some
“lockstep” users makes the degree plots smoother, then we have one more reason
to believe that indeed those users were strange.
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Fig. 6. The out-degree distribution (in log-log scale) becomes smoother after the re-
moval of “lockstep” followers. The followers have similar out-degree values, i.e., similar
numbers of followees from the same group.

5.2 Synthetic data

Here we want to validate the effectiveness of Rule 3 (tilting “rays”) and 4
(“pearls”). We inject a group of followers and followees operating in lockstep
on a l-million-node random power law graph. The goal is to predict who are
the injected nodes. We adopt Accuracy to qualify the performance, which is the
ratio of correct predictions.

First, we add camouflage to the followers, i.e., we increase the density of
connections between the followers and other followees on the graph from 0 to
0.01. We compare the performance of different versions of our algorithm: one
considers Rule 3 when it selects seeds from spectral-subspace plots, and the other
does not. Rule 3 says when the followers have camouflage, the rays tilt. Fig.7.(a)
shows that both accuracy values decrease with the camouflage increasing, and
the algorithm that considers Rule 3 performs much better.
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Fig. 7. Effectiveness of Rule 3-4. If the accuracy is higher, the performance is better.

Second, we inject partially overlapping lockstep behavior. In other words, we
put a “staircase” in the adjacency matrix. We change the size of the staircase,
i.e., the number of followers. One of the algorithms compared here considers
Rule 4 and the other does not. Rule 4 says when there is a staircase, some
spectral-subspace plots have “pearls”. Fig.7.(b) shows that our algorithm that
fully considers all the rules is sensitive to the number of “lockstep” followers.
When it is bigger than 7, which is big enough for the behaviors to show footprints
in the eigenspaces, we can catch over 95% of the followers, while the version that
does not consider Rule 4 fails to predict them.

6 Conclusion

In this paper, we have proposed a novel method to infer users’ lockstep behaviors
from connectivity patterns on large “who-follows-whom” social graphs. We offer
new understanding into the plots of spectral subspaces. The suspicious “ray”
and “pearl” patterns are created by different types of lockstep behaviors. Using
the insights, we design a fast algorithm to detect such behavior patterns. We
demonstrate the effectiveness of our method on both a large real-world graph

and synthetic data with injected lockstep behaviors.
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