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ABSTRACT
A social network is an ecosystem, and one of its ultimate goals

is to maintain itself sustainable, namely keeping users generating

information and being informed. However, the reasons why some

social ecosystems can keep self-sustaining and others end up with

non-active or dead states are largely unknown.

In this paper, rather than studying social ecosystems at the pop-

ulation level, we analyze the fates of different microscopic social

ecosystems, namely the final states of their collective activity dy-

namics in a real-world online social media with detailed individ-

ual level records for the first time. We find huge complexities in

microscopic social ecosystems, including complex species types,

complex individual interaction networks, and complex dynamics

and final states. In order to capture the observed complexities in

the real-world data, we propose a microscopic ecological model,

which is able to capture the complex fates of heterogeneous micro-

scopic social ecosystems accurately in both synthetic and empirical

datasets. Furthermore, we analyze the driven factors of the fates

of microscopic social ecosystems, including interaction networks

of individuals and dynamical interaction mechanisms of species,

leading to the control of microscopic social ecosystems, that is the

ability to influence the temporal behaviours and their final states

towards active or dead fates.
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1 INTRODUCTION
An ecosystem in nature is a community of plants and animals

which live interdependently, ranging from the earth, a tropical rain

forest, or a fox-rabbit ecosystem. What is a healthy ecosystem and

how to keep itself sustainable are major issues in ecology studies

[8, 9, 16, 20, 29].

Similarly, social media is a new kind of ecosystem with complex

social features. However, many social ecosystems are struggling

with keeping users active, such as the death of Myspace in the U.S.

and Renren in China. Other social media like Facebook, Twitter,

and StackOverflow are somehow losing users’ activities [30]. In

order to prevent social media from losing users’ activities or even-

tually die-out, it is important to understand the mechanisms of how

social ecosystems can keep active at the microscopic level, that

is information producers are keeping generating user-generated

content (UGC) while information consumers are kept informed and

can give feedback or rewards to the producers.

Previous social ecosystems studies mainly focus on the activity

of social ecosystems at the population level, including competition

dynamics of two viruses/ideas [5] or membership-based websites

[28]. Epidemic models based on SI or SIR model [1, 22] are proposed

to capture the dynamics of different populations. These works

assume that individuals in a social ecosystem are homogeneously

mixing, which largely ignore the interaction networks of individuals

and the heterogeneity of individuals’ influence [12, 30]. In order to

solve aforementioned problems, network-based ecological models

are investigated to capture the activity of collaboration networks

[30], or the resilience dynamics of ecosystems [12], etc. However,

due to the lack of detailed datasets, the dynamics of individual

behaviour and the fates of microscopic social ecosystems, namely

the final states (e.g. alive, active or dead) of their collective activity

dynamics are unexplored.

In this paper, we analyze a real-world dataset consisting of 5,500

microscopic social ecosystems with 675,027 users fromWeChat, i.e.,

one of the world’s largest social networks. Indeed, we find rich un-

explored complexities in real-world microscopic social ecosystems,

including: (1) Uncertain species
1
types: an individual in a social

ecosystemmay belong to multiple species types simultaneously and

change its species type over time; (2) Complex interaction networks:

linked individuals with different species types form different mi-

croscopic social ecosystems, and interaction relationships between

1
Species is the basic concept for classification and taxonomic rank in biology. For

anology and convenience, we borrow it into this paper to represent the "virtual species"

[27] (hereinafter referred to as "species") living on the social ecosystems for classifying

users into different groups/memberships/categories and quantifying them.

https://doi.org/10.1145/3292500.3330827
https://doi.org/10.1145/3292500.3330827


Figure 1: Complexities inMicroscopic Social Ecosystems. a. Uncertain species types captured by the distribution of production
score ofWeChat Users. We find a bimodal distribution for the score, indicating that most users are either information produc-
ers or information consumers, and others are information dealers. b. Complex final states of microscopic social ecosystems,
including dead ones (28.0%), taciturn ones (36.6%), alive ones (25.6%) and active ones (9.9%), where the blue, yellow and red bars
represent the proportion of consumers, dealers and producers respectively. c. Complex interaction networks of microscopic
social ecosystems. c-1 to c-4 show four typical microscopic social ecosystems in b, featuring different interaction networks
and different production score distributions.

species are also heterogeneous; (3) Complex final states: final states

of different microscopic social ecosystems exhibit quite different

patterns, ranging from dead ones to active ones and beyond.

In order to capture the complexities in real-world microscopic

social ecosystems, we propose the SocialFate model, an ecologi-

cal model at the microscopic level. Specifically, we first define the

species types of individuals in microscopic social ecosystems who

are playing uncertain roles. Next, we propose our model at the

microscopic individual level by incorporating uncertain species

types, network structures, and species interaction mechanisms,

which can accurately capture the observed complex final states

of different microscopic social ecosystems. Our SocialFate model

encompasses several traditional ecological models as special cases.

Furthermore, we illustrate how aforementioned driven factors cap-

tured by our SocialFate model influence the activity dynamics of

different microscopic social ecosystems, implying the applications

of controlling the microscopic social ecosystems towards active or

healthy states instead of dead ones.

In short, we summarize our contributions as follows:

• Novel Problems and Findings: We study the fates of social

media in ecological perspectives at the microscopic level.

By data-driven approaches, we uncover new and complex

patterns of microscopic social ecosystems in the real world.

• Novel Model: We model the fates of microscopic social

ecosystemswith complex dynamics. Ourmodel encompasses

several population ecological models as special cases.

• Control Applications: We reveal the determining factors

of the fates of microscopic social ecosystems, leading to the

control of the fates towards active or dead.

Table 1: The Analogy between Rainforest Ecosystems and
Social Ecosystems

Rainforest Ecosystems Social Ecosystems
Species Species

(e.g., trees/insects/birds, (e.g., bloggers/

grains/rats/raccoons) forwarders/

followers)

Energy flow Information flow
Energy production Information production

(e.g., trees photosynthesis) (e.g., upload videos)

Energy transmission Information transmission
(e.g., insects feed on leaves) (e.g., watch videos and forward)

Energy consumption Information consumption
(e.g., birds feed on insects) (e.g., watch videos)



2 RELATEDWORK
We review related works in ecology and social ecosystem studies:

Ecological Models. Ecology studies focus on species popula-

tions and how these populations interact with each other and the en-

vironment. Ecologists first studied the growth law of single species.

Malthus proposed the exponential law [26] of population growth.

McKendrick extended the exponential growth to the logistic growth

equation [18]. Then, ecologists began to study the population ecol-

ogy of different species and their interactions. One of the most

famous models is the Lotka-Volterra (LV) model [13], which de-

scribes the population dynamics of prey and predator. Interactions

between more species [15, 19, 24, 25] are further modeled based

on the Lotka-Volterra model. However, these models are so-called

homogeneous models at the population level. Each individual has

same probability in contacting others. These works ignore the inter-

action networks of individuals and the heterogeneity of individuals’

influence.

Social Ecosystems. Social media [2, 17, 21, 31–34] is another

kind of ecosystem with complex social features. We compare so-

cial ecosystems and rainforest ecosystems in Table 1. For example,

species in social ecosystems can be defined functionally or be-

haviorally (e.g., bloggers/forwarders/followers), while species in

rainforest ecosystems can be defined taxonomically or phylogeneti-

cally (e.g., trees/insects/birds). The same thing is that they both try

to divide individuals into species according to their roles. In social

ecosystem studies, [5] studied competing dynamics of two species

and found factors impacting final states. [28] studied competing

dynamics of membership-based websites to predict their growth

and death trends. [27] considered online activities behaving like

species in an ecological system and studied large-scale co-evolving

online activities. However, all these works modeled dynamics of

species at the population level. The concepts of "species" and "in-

formation flow" in social ecosystems have been proposed but how

to quantify species of any user and figure out the interaction are

not explored. Due to the lack of detailed datasets, the dynamics and

fates (alive, active or dead) of microscopic social ecosystems are

largely unknown. Driven by a real-world dataset, we illustrate the

complexities discovered in microscopic social ecosystems in next

section, which none of existing methods focus on specifically.

3 COMPLEXITIES IN MICROSCOPIC SOCIAL
ECOSYSTEMS

We find rich complexities in microscopic social ecosystems, includ-

ing: (1) Uncertain species types (Figure 1-a); (2) Complex interaction

networks (Figure 1-c); (3) Complex final states (Figure 1-b).

Uncertain Species Types: An individual may belong to multi-

ple species types simultaneously or change its species type over

time in a social ecosystem. In a rainforest ecosystem, the species

types are deterministic and stable. However, in a social ecosystem,

an information producer can be a information consumer simulta-

neously and vice verse. Besides, a pure information producer may

become a pure information consumer later.

We tag the species types of users in a social ecosystem accord-

ing to their information niche similar with the energy niche in a

rainforest ecosystem. For example, users in WeChat can produce

information by publishing a photo post and their friends can con-

sume it through like or comment function. We classify the species

of users in a social ecosystem quantitatively according to what

extent a user n is a pure producer by the production score which is

defined as:

production score(n) =
#production(n)

#production(n) + #consumption(n)
, (1)

where the number of production #production(n) is the number of

photos the usern posted in a predefined time period and the number

of consumption #consumption(n) is the number of comments or

likes he/she made in the same time period. In our experiments,

we set the time period as 1 month. We plot the distribution of

production score(n) of all the users as shown in Figure 1-a. We find

3 different clusters, i.e., different species types:

species types :=


producer , production score ∈ [2/3, 1]

dealer , production score ∈ [1/3, 2/3).

consumer , production score ∈ [0, 1/3)

(2)

• Producers are information sources in social ecosystems

who tend to generate information frequently. Typical pro-

ducers include media accounts, celebrities, or salesmen who

post lots of advertisements.

• Consumers are users who seldom post or produce informa-

tion but prefer to like or comment others’ posts.

• Dealer are users who strike a balance between producing

and consuming. Such users may convert to producers or

consumers in the future.

Then we calculate the species type of users by their production

scores with Equation 2 for all the users in our dataset. As shown

in Figure 1-a, we plot the distribution of the continuous random

variable production score of each individual being an information

producer in social ecosystems, indicating uncertain species types

in the real world scenarios and difficulty of modeling uncertain

species types in social ecosystems.

Complex Interaction Networks: Linked individuals with dif-

ferent species types form largely different microscopic social ecosys-

tems, and interaction relationships between species are also hetero-

geneous. Lacking of interaction datasets of individuals, previous

ecological studies can only model population dynamics [3, 11, 14,

23], which assume individuals are homogeneously mixing, namely

random graphs or complete graphs. In reality, individuals are linked

with their different neighbors rather than all the other individu-

als in a network. As shown in Figure 1-c, we illustrate four types

of different microscopic social ecosystems with different network

structures, indicating interaction relationships between species are

also heterogeneous. More specifically, how information producers

influence information consumers is different in one microscopic

social ecosystem from others.

Complex Final States: Different microscopic social ecosystems

exhibit quite different patterns of final states of their collective

activity dynamics, namely fates. By discretizing the production

score of each individual being an information producer into three

types, namely producer, dealer, and consumer in each microscopic

social ecosystem, we cluster the microscopic social ecosystems

according to their abundance distributions of these three types. The

fate of a microscopic social ecosystem is the collective final states



of each individuals in this system. By a data-driven approach, We

find four typical microscopic social ecosystem patterns as shown

in Figure 1-b:

• Dead microscopic social ecosystems consist of many users

who seldom produce posts and we name these ecosystems

"dead", accounting for 28.0% of all the microscopic social

ecosystems.

• Taciturn microscopic social ecosystems have several users

producing information and most of users prefer listening,

serving as the the largest cluster with a 36.6% proportion of

all the microscopic social ecosystems.

• Alive microscopic social ecosystems have relatively close

number of producers and consumers, which account for

25.6% of all the microscopic social ecosystems.

• Active microscopic social ecosystems have a large number

of users who are information producers, accounting for 9.9%

of all the microscopic social ecosystems.

4 PROPOSED METHOD
In this section, based on the aforementioned complexities in the

real world datasets, we propose our SocialFate model to capture

the fates of microscopic social ecosystems.

4.1 Background - Ecological Models
Lotka-Volterra model: One of the most famous models in popu-

lation ecology is the Lotka-Volterra model (LV) [13]. It is used to
describe the dynamics of two species interacting in an ecosystem,

one as predator and the other as prey. The equations are:
dλ1
dt
= αλ1 − βλ1λ2

dλ2
dt
= δλ1λ2 − γλ2

, (3)

where λ1 is the number of prey, λ2 is the number of predator. In

the equations, α represents the own growth rate of prey and γ rep-

resents the dead rate of predator. β and δ represent the interaction

strength between prey and predator.

Competitive Lotka-Volterra model: Competition is another

common interaction mechanism between species. The population

dynamics of species competing for some common resources can be

described by the competitive Lotka-Volterra model [4]. When

there areK species competing against each other for some resources,

the population of species i follows the equation:

dλi
dt
= riλi (1 −

K∑
j=1

αi, jλj ), (4)

where λi is the population size of species i at a given time, ri is
inherent per-capita growth rate of species i , and αi, j > 0 represents

the intensity of competition between species i and j.
Generalized Lotka-Volterramodel: Besides predator-prey and

competition, there are some other relationships [6, 7] between differ-

ent species, such as mutualism, commensalism, amenalism, etc. So

ecologists use interaction matrixA to capture all these relationships

between species, in which Ai, j describes the rate of species j im-

pacting on species i . So the Generalized Lotka-Volterra model

(GLV) [18] can be written as:

dλi
dt
= λi (ri +

K∑
j=1

Ai, jλiλj ). (5)

Different from the competitive Lotka-Volterra model, the entry

values of interaction matrix A can be either positive or negative,

which can represent more kinds of interaction relationships. The

solutions of the equations are λ∗i , determined by the initial pop-

ulation λi (0), parameters such as growth rate ri , and interaction

matrix A, solved by equations
dλi
dt = 0. The solutions represent the

final state of all populations and the fate of this ecosystem.

4.2 Our SocialFate Model

Table 2: Symbols and Definitions

Symbols Definitions
N Total number of users in a social ecosystem

K Total number of species in a social ecosystem

X User-Species matrix (N × K )
Xn,k Probability that user n belongs to the species k
Xn, : Species probability distribution of the user n

M Network structure (N × N )

Φ Local species abundance matrix

Φn,k Abundance of species k near user n

A Species interaction matrix (K × K )

The existing ecological models cannot capture the complexities

observed in the real-world microscopic social ecosystems and thus

fail in capturing the dynamics and the fates of them. We follow the

ecological framework by modeling two parts, namely the intrinsic

growth term f (X (t); r) and the network effect term д(X (t);M,A),
as follows:

dX (t)

dt
= f (X (t); r) + д(X (t);M,A). (6)

Specifically, we describe the uncertain species types by a User-

Species matrix X (t) ∈ RN×K
at time t , and each entry Xn,k (t) in

X (t) represents the probability that user n belongs to the species k .
We use K to represent the number of species and N for the number

of users in a microscopic social ecosystem. We use r ∈ RK×1
to

capture the heterogeneous intrinsic growth rates of species where

rk is the growth rate of species k . In order to capture the complex

individual interaction networks, we use adjacency matrix M ∈

RN×N
to represent the network structure of a microscopic social

ecosystem, whereMn,m = 1 indicates a bidirectional relationship

between usern and userm, andMn,m = 0 indicates that they are not

linked. Furthermore, we use A ∈ RK×K
to capture complex species

interaction network where Ai, j is the influence rate of species j on
species i .

Thus, we propose our SocialFate model:

dX (t)

dt
= X (t)R̃ + X (t) ∗ (M̃X (t)AT ). (7)

M̃ represents "average effect" of neighbors:

M̃n,m =
Mn,m∑N
p=1Mn,p

,
(8)



Figure 2: The framework of our SocialFate model. Our model captures the observed complexities in microscopic social ecosys-
tems, including uncertain species types, complex interaction networks, and complex final states explicitly.

and R̃ is :

R̃ = diaд(r1, r2, . . . , rK ). (9)

In order to further clarify the model, we show how to update the

species states of a particular user n as follows:

dXn,i (t)

dt
= Xn,i (t)(ri +

K∑
j=1

Ai, jΦn, j ), (10)

Φ = M̃X , (11)

Φn, : =

∑N
m=1Mn,mXm, :∑N

p=1Mn,p

=

N∑
m=1

Mn,m∑N
p=1Mn,p

Xm, : .

(12)

Φn,k is local abundance of species k near user n, for the assumption

that users are influenced by their neighbors rather than all users

in the same social ecosystem. Because SocialFate is a probability
model, we normalize each user’s species probability distribution

Xn, : to satisfy

∑K
k=1 Xn,k = 1.

Figure 2 illustrates the framework of our SocialFate model. In

this model, the solution of the Equation 10, derived from dX/dt = 0,

represents the outcome that our expected stable state X ∗
, which is

decided by not only the initial value X (0) and species interaction

matrix A but also the structureM of the microscopic social ecosys-

tems. The Generalized Lotka-Volterra (GLV) model can be regarded

as a degenerated case of our model when the network structure

is fully connected. In this situation, the local species abundance

equals to the overall abundance for each individual, and we can

use the GLV model instead. Our SocialFate model is a general

one which encompasses all the ecological models in Section 4.1 as

special cases.

Lemma 4.1. Our SocialFate model degenerates to the General-
ized Lotka-Volterra model in Equation 5 when individuals are fully
connected, i.e.,M is a matrix of ones.

Proof. We denote operator L as:

L(X) =
∑N
n=1 Xn , :

N
. (13)

If individuals are fully connected in a microscopic social ecosystem,

individual interaction networkM is a matrix of ones, and Equation

12 leads to:

Φn, : =

∑N
m=1Mn,mXm, :∑N

p=1Mn,p
=

∑N
m=1 Xm, :

N
= L(X). (14)

By replacing Φn, j in Equation 10 with L(X)j , we get:

dXn,i (t)

dt
= Xn,i (t)(ri +

K∑
j=1

Ai, jL(X)j ). (15)

Because users in fully connected network are homogeneous, we

can get population dynamics by summing the states of each user:

1

N

N∑
n=1

dXn,i (t)

dt
=

1

N

N∑
n=1

Xn,i (t)(ri +
K∑
j=1

Ai, jL(X)j ), (16)

d 1

N
∑N
n=1 Xn,i (t)

dt
=

1

N

N∑
n=1

Xn,i (t)ri +
K∑
j=1

Ai, j
1

N

N∑
n=1

Xn,i (t)L(X)j ,

(17)

dL(X)i
dt

= L(X)i ri +
K∑
j=1

Ai, jL(X)iL(X)j . (18)

Define λi = L(X)i , and we get Generalized Lotka-Volterra model:

dλi
dt
= λi ri +

K∑
j=1

Ai, jλiλj (19)

□

4.3 Parameter Learning
Because we model the species distribution in SocialFate in a prob-

abilistic way, we can use the maximum likelihood estimation (MLE)

method to learn the modeling parameters. Let X̂n,k represents the

estimated possibility that user n belongs to the species k calculated

by our model, the likelihood function of a social ecosystem with N
users of K species is:

log likelihood =
N∑
n=1

log[

K∑
k=1

X̂n,k · 1n (k)], (20)

where 1n (k) is an indicator function, by definition,

1n (k) :=

{
1 ,user n ∈ species k

0 ,user n < species k
.



Figure 3: Illustrations of fitting results for the four typical
microscopic social ecosystems by our SocialFate model and
baselines. The colored nodes represent the users which are
accurately captured while the shaded nodes are those with
large errors. The red color, blue color and yellow color de-
note producers, consumers and dealers respectively.

Therefore, we can estimate the parameters by maximize the log-

likelihood function with commonly-used optimization methods

such as BFGS algorithm [10].

5 EXPERIMENTS
Here we introduce the dataset and the experimental settings to

validate our proposed model.

5.1 Experiment Setup
Dataset. We validate our model by a real-world social network

dataset -WeChat, which includes users’ records at the microscopic

level. WeChat
2
is the largest online social network in China with

more than 600 million monthly active users. We obtain the dataset

directly fromWeChat via an agreement. We randomly sample 5,500

WeChat users and their ego-networks to represent different micro-

scopic social ecosystems and their behaviour logs, including the

post records, comment records and like records (a function that

users can give some posts the thumbs up)
3
. We summarize the

dataset in Table 3.

The states of microscopic social ecosystems are relatively steady

in a range of time just like natural ecosystems do not change ob-

viously without special factors. Figure 4 shows us most of the

microscopic social ecosystems are steady, namely their states do

not change in a month. So we can use this state as its final state.

Baselines. Given a microscopic social ecosystem consisting of

user’s activity like information production and consumption, we

2
https://weixin.qq.com/

3
For privacy issues, the dataset is fully anonymized and all data are collected according

to the terms and conditions of WeChat.

Table 3: Dataset Description

Name Value

Ecosystem Number 5,500

User Number 675,027

Average ecosystem population 122.7

Time Duration 30 days

Total Post Records Number 70,508,791

Total Comment Records Number 51,098,216

Total Like Records Number 119,229,171

can get network structure M and species of each user. We use

X̂ to represent final states derived from SocialFate and different

baselines. We compare our SocialFate model with 3 baselines:

• Random model: we randomly assign X̂n,k following uni-

form distribution and then normalize it to satify

∑K
k=1 X̂n,k =

1 for each user n.
• Mean model: We use overall species abundance distribu-

tion of the social ecosystem as species abundance distribu-

tion of each user n. So the output of this method is X̂n,k =
1

N
∑N
n=1 Xn,k .

• Generalized Lotka-Volterra model (GLV): The state-of-
the-art ecological model. We can use GLV model to optimize

A to get final states of species distribution for each user n.

Evaluation Metrics. For each user n, we can derive his/her

ground truth final state of species distribution Xn, : from real data.

Xn, : is a one-hot vector representing the species that user n belongs

to. For example, Xn, : = (1, 0, 0) represents a pure consumer, while

a user with Xn, : = (0, 0, 1) is a pure producer. In reality, Xn, : is a
multinomial distribution, implying uncertain species types. There-

fore, we can validate the goodness of fitting by mean absolute error

(MAE) between user species distribution from the ground-truth

Xn,k , which presents the probability that user n belongs to species

k and the output results X̂ from different models. TheMAE is:

MAE =
1

N

1

K

N∑
n=1

K∑
k=1

����X̂n,k − Xn,k

����. (21)

5.2 Fitting the Fates of Micro-Social
Ecosystems

We first validate our SocialFatemodel by answering if SocialFate
and baselines can fit the fate of each empirical microscopic social

system accurately. Given the empirical fates Xn,k , i.e., the prob-
ability that user n belongs to the species k of each microscopic

social ecosystem, we fit X by our SocialFate and baselines by MLE

framework in Equation 20 and then compare the accuracy of fitting

results for all 5, 500 ecosystems.

Results. Our model gets very low errors and outperforms all the

baselines. Table 4 shows the fitting results of our SocialFatemodel

and three baselines. With respect toMAE, our model gets smallest

error value 0.092. We further investigate different sub-types, i.e.,

dead, taciturn, alive, active, of ecosystems. Our model hits the low-

est error for all the scenarios. We illustrate the results of our model

and baselines in Figure 3. For each microscopic social ecosystem,

if the model fits the species distributions of user nodes accurately,



Figure 4: Illustrations of the states of four types microscopic social ecosystems in a month. We randomly selected some mi-
croscopic social ecosystems and calculated their production scores every day. Each line represents the production score of a
microscopic ecosystem in 30 days. The line that is limited in one shaded area means its state not changing. The final states or
fates of most microscopic social ecosystems are steady.

Table 4: The mean value of MAE of different models for fit-
ting the final states of allmicroscopic social ecosystems. Our
SocialFate outperforms all the baselines consistently in dif-
ferent types of microscopic social ecosystems.

Cluster

MAE
Random Mean GLV SocialFate

Dead 0.444 0.185 0.295 0.046
Taciturn 0.444 0.320 0.367 0.089
Alive 0.444 0.409 0.418 0.124
Active 0.444 0.411 0.416 0.157
All 0.444 0.314 0.365 0.092

Figure 5: The distributions of MAE of different models for
fitting the final states of all microscopic social ecosystems.
Our SocialFate outperforms all the baselines, including the-
state-of-art GLV models.

we color these nodes with their corresponding colors, and shade

the nodes for which the model fails. We find our SocialFate model

recovering almost all the colors, namely species types, in the empir-

ical data, and other models have a lot of shaded nodes, indicating

worse fitting results. We also plot the distribution of MAE for all

microscopic social ecosystems in Figure 5. The outliers together

with the large variance of MAE indicate the heterogeneity of mi-

croscopic social ecosystems. However, our SocialFate model gets

the best results with respect to the lowest mean error and smaller

variance than baselines.

Table 5: The mean value ofMAE of different models for pre-
dicting the final states of all microscopic social ecosystems.
Our SocialFate outperforms all the baselines consistently in
different types of microscopic social ecosystems.

Cluster

MAE
Random Mean GLV SocialFate

Dead 0.173 0.069 0.129 0.016
Taciturn 0.173 0.138 0.155 0.036
Alive 0.174 0.215 0.196 0.086
Active 0.174 0.226 0.203 0.145
All 0.173 0.146 0.163 0.054

Figure 6: The distributions of MAE of different models for
predicting the final states of all microscopic social ecosys-
tems. Our SocialFate outperforms all the baselines, includ-
ing the-state-of-art GLV models.

5.3 Predicting the Fates of Micro-Social
Ecosystems

Then, we validate our SocialFate model by answering if Social-
Fate and baselines can predict the missing species types distribu-

tions X of individuals in microscopic social ecosystems. Given the

empirical fates Xn,k of 60% users, i.e., we only know 60% probabil-

ity that user n belongs to the species k of each microscopic social

ecosystem, we predict X by our SocialFate and baselines by MLE

framework in Equation 20 and compare the accuracy of predicting

results X̂n,k for all 5, 500 ecosystems.



Results. Our model gets very low errors and outperforms all

the baselines. Table 5 shows the predicting result of our SocialFate
model and three baselines. With respect toMAE, our model gets the

smallest error value 0.054, while the results of GLV, Mean model,

Randommodel are 0.163, 0.146, 0.173 respectively. For different sub-

types, i.e., dead, taciturn, alive, active, of ecosystems, our model hits

the lowest error for all the scenarios. The results demonstrate the

predicting power of our model, implying that our model reveals the

real mechanism of activity in social networks, which is that species

interaction matrix A and network structure M are key factors to

control the fate of microscopic social ecosystems. Figure 6 shows

SocialFate get best performance to predict fates of microscopic

social ecosystems with lower variance.

6 CONTROLLING THE FATES OF
MICROSCOPIC SOCIAL ECOSYSTEMS

By capturing the complexities in microscopic social ecosystems,

our SocialFate model can further shed light on how to control the

fates of these ecosystems. We first show how to make microscopic

social ecosystems extremely active or dead in synthetic data, and

then extend our insights to more complex empirical datasets.

Figure 7: Typical species interaction mechanisms/networks
A which control complete graph with random species to-
wards extremely active or dead final states. The red, blue and
yellownodes represent producers, consumers and dealers re-
spectively. The weights of edges: 1 for incentive effect, -1 for
suppression effect and 0 for no correlations between nodes.

6.1 Controlling the Fates in Synthetic Data
In most cases, the underlying networks and the initial states are

fixed. We try to change the species interaction networks A to con-

trol the fates of microscopic social ecosystems. For example, we

can incite the information producers by changing social media poli-

cies. Here we explore what kinds of A lead to a very active or a

dead microscopic social ecosystem, where A represents the rela-

tionships between information producers (red nodes), consumers

(blue nodes) and dealers (yellow nodes) as shown in Figure 7. We

enumerate all the A ∈ {−1, 0, 1}3×3 satisfying the condition that

A1,1 = A2,2 = A3,3 and Ai, j = Aj,i (i, j = 1, 2, 3) and totally get

3
4 = 81 types of species interaction networks A. We apply the

SocialFate dynamics with each specific A on a full-connected net-

work consisting of three species with same amounts and random

initial values. We summarize all the A which lead to very active

final states or dead states in Figure 7. We find policies which incite

producers (red nodes which have income links with weight 1) can

lead to very active fates in complete graphs. Indeed, a microscopic

social ecosystem encouraging users to generate contents can flour-

ish, which is consistent with our intuitions. Besides, if consumers

(blue nodes) and dealers (yellow nodes) suppress each other, the

final states are also very active. In contrast, a microscopic social

ecosystem prohibits users from generating contents (red nodes

which have income links with weight −1), or only encourages con-

sumers (blue nodes which have income links with weight 1) may

lead to dead final states.

Figure 8: Controlling real-world microscopic social ecosys-
tems towards active or dead states by tuning species interac-
tion mechanism A or individual interaction networkM .

6.2 Controlling the Fates in Empirical Data
We further explore how to control the final fates of microscopic

social ecosystems in much more complex empirical scenarios. We

randomly select typical taciturn or alive microscopic social ecosys-

tems, and control their fates towards active or dead by tuning

following two factors:

Species Interaction NetworkA: We apply the discovered typ-

ical species interaction networks A in previous Section 6.1 to the

real-world microscopic social ecosystems as shown in Figure 8.

Specifically, we change the empirical species interaction network in

a taciturn microscopic social ecosystem (Figure 8 a-0) to a producer-

incentive one (Figure 7 a-4), and change the empirical species inter-

action network in an alive microscopic social ecosystem (Figure 8

b-0) to a consumer-incentive one (Figure 7 b-4). Similar to our "toy"

discovery in synthetic data, indeed, we change the taciturn micro-

scopic social ecosystem (Figure 8 a-0) to an active one (Figure 8 a-1),

and change the alive microscopic social ecosystem (Figure 8 b-0) to

an dead one (Figure 8 b-1). Thus, by choosing specific species inter-

action networkA, we can control the microscopic social ecosystems

towards active or dead ones.

Individual Network StructureM :We change the connectivity

to the hub users (the users with a relatively large number of neigh-

bors) who are information producers. Specifically, by decreasing

the connectivity to the hub information producers in Figure 8 a-0,



namely cutting the edges, we change the taciturn microscopic social

ecosystem (Figure 8 a-0) to a dead one (Figure 8 a-2). In contrast,

we increase the connectivity to the hub information producers in

Figure 8 b-0, namely adding the edges, we change the alive micro-

scopic social ecosystem (Figure 8 b-0) to an active one (Figure 8

b-2). Thus, by changing the individual interaction structureM , we

can also control the microscopic social ecosystems towards active

or dead ones.

7 CONCLUSIONS
In this paper, we figure out the reasons why some social ecosystems

can keep self-sustaining and others end up with non-active or dead

states. For the first time, driven by a real-world online social media

with detailed individual behaviour records, we analyze the final

states or fates of microscopic social ecosystems rather than at the

population level. We find huge complexities in microscopic social

ecosystems and then quantify them, including complex species

types, complex individual interaction networks, and complex dy-

namics and final states. In order to capture the observed complex-

ities in the real-world data, we propose a microscopic ecological

model, which captures the complex fates of heterogeneous micro-

scopic social ecosystems accurately in both synthetic and empirical

datasets. Furthermore, we analyze the driven factors of the fates of

microscopic social ecosystems, including the individual interaction

networks and the species interaction mechanisms. These can be

applied to the control of microscopic social ecosystems, which is the

ability to influence the temporal behaviours and their final states

towards active or dead fates.
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