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follows power-law growth with exponents 2:15 and 3:01 for nodes
and links respectively. We open our code for generating stochastic
growth dynamics in arbitrary parameter settings.

Figures 6a-d illustrate ten stochastic instances generated by the
NETTIDE-Survival which are distinguished by different colors.
Although the NETTIDE-Survival generates quite different n(t),
dn(t)

dt , e(t), and de(t)
dt with stochastic fluctuations, surprisingly, our

NETTIDE capture all the stochastic trajectories quite well. Due to
fact that � = 1, the NETTIDE-Survival generate power-law-like
growth dynamics, as shown in insets of Figs. 6e-f. We generate
1; 000 n(t) and e(t) instances by NETTIDE-Survival and fit the
generated power-law early growth of by least square method.
Figures 6c&f show the distributions of the power-law exponents of
node and link growth respectively, indicating that the NETTIDE-
Survival generate n(t) and e(t) with power-law exponents near
2:15 and 3, implying that the NETTIDE-Survival successfully
reproduces the WeChat growth dynamics.

4.4.2 Stochastic dynamics from NETTIDE-Process
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Fig. 7. NETTIDE-Process generates realistic stochastic dynamics. (a-b)
Ten stochastic trajectories of n(t) (squares 2) and dn( t)

dt (dash-dot line)
generated from NETTIDE-Process respectively. The solid lines are the
fitting results of the generated stochastic trajectories by our NETTIDE
model. Each specific color corresponds to one generated instance.
(e) The histogram of power-law exponents of 1; 000 n(t) trajectories
generated from NETTIDE-Process. The red asterisk denotes the real
exponent in WeChat case. The curves in inset on log-log scale are the
same n(t) as in (a), which exhibit power-law early growth. (cd&f) are the
counterparts for links.

We further analyze the second stochastic generator of the NET-
TIDE from micro-level stochastic interactions within a network,
i.e., the NETTIDE-Process. Given the underlying organizational
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Fig. 8. NETTIDE-Process can be inferred by NETTIDE. The parameters
of the NETTIDE-Process and the underlying random graph are inferred
by our NETTIDE model. (a-f) The histograms of the inferred parameters
of the same 1; 000 instances as in Fig. 6. The asterisks in red denote the
real values of the parameters used in NETTIDE-Survival. In the reference
process, we set  = 1 for the random graph case.

structure G0, the modeling parameters we need for simulation
are (�; �; � 0). As discussed in model section, under the random
graph assumption, the micro-pairwise infection probability pn (t)
and linking probability pe(t) during time interval (t; t +h) can be
derived from equation 16 and 17 respectively. We again report our
results under the setting (� = 2:485 � 10�4 ; � = 1; � 0 = 0:48)
and G0 = RandomGraph(� = 0:01; N = 104), which
again generates similar growth dynamics as WeChat case. For
generating stochastic trajectories in arbitrary parameter settings
can be realized by our open-sourced code.

The stochastic growth dynamics generated by NETTIDE-
Process are shown in Fig. 7. Again, the solid curves almost
hit every dot, indicating that NETTIDE fits the stochastic n(t),
dn(t)

dt , e(t), and de(t)
dt well. By using the NETTIDE-Process with

aforementioned parameters, we generate 1; 000 stochastic growth
instances. We find the generated trajectories show power-law early
growths (illustrated in the insets of Figs. 7e-f), and the power-law
exponents of n(t) and e(t) are close to 2:15 and 3, implying the
NETTIDE-Process generate realistic growth dynamics as WeChat
case.

We further examine whether NETTIDE can uncover the “real”
parameters which NETTIDE-Process used. In fitting process, we
set the  = 1 due to the random graph setting. We find NETTIDE

infers the modeling parameters as shown in Fig. 8. Our NETTIDE

not only finds the values of � , � and � 0 which controls behaviors,
but also uncovers the structure parameters N = 104 and � =
0:01.

In all, both NETTIDE-Survival and NETTIDE-Process can
generate realistic growth dynamics of the node and link, and the
generated stochastic growth dynamics can be well captured by
NETTIDE well.

5 CONCLUSIONS

In this paper, we studied the growth dynamics of real-world social
networks and presented NETTIDE to capture growth dynamics of
both nodes and links. We examine a range of real-world evolving
social networks, especially China’s largest online social network
WeChat. We find both node and link in real social networks
follow Power-Law growth, rather than the exponential growth
or uniform growth as expected. Thus, we propose NETTIDE,
along with differential equations for the growth of the number



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2801844, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

of nodes, as well as links. Our NETTIDE-Node gives a unified but
parsimonious model to capture real social network growth, like
the power law early growth of the Log-Logistic growth, and more
general form Stretched-Exponential early growth of the Stretched-
Logistic growth. Our NETTIDE-Link is the first-ever differential
equation to capture the growth dynamics of links, accurately
fitting reality. Furthermore, we propose two stochastic generators,
i.e., NETTIDE-Survival and NETTIDE-Process, which generate
realistic growth dynamics from the perspective of survival analysis
and microscopic level stochastic interactions within a network
respectively. Our NETTIDE again accurately fits the stochastic
generators, and infers the parameters of the generators well. The
main contributions are:

1) Novel model NETTIDE: NETTIDE-Node captures a wide
range of growth dynamics and NETTIDE-Link is the first dif-
ferential equation to capture the link growth dynamics. Both
equations are parsimonious and explainable on microscopic
level.

2) Accuracy: We presented experiments on four real-world
evolving social networks, especially the WeChat (300 million
nodes, 4.75 billion links). Our NETTIDE model matches the
real-world growth dynamics accurately.

3) Usefulness: Our NETTIDE can be used to both the short-term
and long-term forecasting. We validated NETTIDE’s forecast
power empirically, and showed that it can forecast the nodes
and links in the short term and even the long term accurately
(730 and 870 days ahead into the future for WeChat and
arXiv respectively).

4) Generators: We propose two stochastic generators at micro-
scopic level, i.e., NETTIDE-Survival and NETTIDE-Process,
which successfully generate realistic stochastic growth dy-
namics.

Reproducibility: We have already open-sourced our code of
the NETTIDE together with two generators NETTIDE-Survival
and NETTIDE-Process, to fit/generate the deterministic/stochastic
growth dynamics of both nodes and links, at https://github.com/
calvin-zcx/NetTide

There exist many directions of further studies. First, the
proposed growth models can be applied to validate the ubiquitous
growth phenomena in other fields, like the ecology, social science,
demography, and so on. Second, inspired by the physical meanings
of the modeling parameters of NETTIDE, how to improve the
social network services and boost the social behaviors are open
questions. Third, one major limitation of our NETTIDE is the
neglect of external influences. How the external signals influence
the growth or decay dynamics of social networks remains to be
examined.

ACKNOWLEDGMENTS

This work was supported in part by National Program on Key
Basic Research Project (No. 2015CB352300), National Natural
Science Foundation of China (No. U1611461, No. 61772304,
No. 61521002, No. 61531006), the research fund of Tsinghua-
Tencent Joint Laboratory for Internet Innovation Technology, and
the Young Elite Scientist Sponsorship Program by CAST.

REFERENCES

[1] arxiv hep-ph network dataset – KONECT, May 2015.
[2] R. Albert and A.-L. Barabási. Topology of evolving networks: local

events and universality. Physical review letters, 85(24):5234, 2000.

[3] R. M. Anderson, R. M. May, and B. Anderson. Infectious diseases of
humans: dynamics and control, volume 28. Wiley Online Library, 1992.

[4] D. Antoniades and C. Dovrolis. Co-evolutionary dynamics in social
networks: A case study of twitter. Computational Social Networks,
2(1):1–21, 2015.

[5] R. B. Banks. Growth and diffusion phenomena: mathematical frame-
works and applications, volume 14. Springer Science & Business Media,
1994.

[6] A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics.
Nature, 435(7039):207–211, 2005.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.
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