
Scalable Optimization for Embedding Highly-Dynamic and
Recency-Sensitive Data

Xumin Chen

Tsinghua University

chen.xm.mu@gmail.com

Peng Cui

Tsinghua University

cuip@tsinghua.edu.cn

Lingling Yi

Tencent Technology (Shenzhen) Co Ltd

chrisyi@tencent.com

Shiqiang Yang
∗

Tsinghua University

yangshq@mail.tsinghua.edu.cn

ABSTRACT
A dataset which is highly-dynamic and recency-sensitive means

new data are generated in high volumes with a fast speed and of

higher priority for the subsequent applications. Embedding tech-

nique is a popular research topic in recent years which aims to

represent any data into low-dimensional vector space, which is

widely used in different data types and have multiple applications.

Generating embeddings on such data in a high-speed way is a chal-

lenging problem to consider the high dynamics and the recency

sensitiveness together with both effectiveness and efficient. Popular

embedding methods are usually time-consuming. As well as the

common optimization methods are limited since it may not have

enough time to converge or deal with recency-sensitive sample

weights. This problem is still an open problem.

In this paper, we propose a novel optimization method named

Diffused Stochastic Gradient Descent for such highly-dynamic and

recency-sensitive data. The notion of our idea is to assign recency-

sensitive weights to different samples, and select samples according

to their weights in calculating gradients. And after updating the

embedding of the selected sample, the related samples are also

updated in a diffusion strategy.

We propose a Nested Segment Tree to improve the recency-

sensitiveweightmethod and the diffusion strategy into a complexity

no slower than the iteration step in practice. We also theoretically

prove the convergence rate of D-SGD for independent data samples,

and empirically prove the efficacy of D-SGD in large-scale real

datasets.

KEYWORDS
recency-sensitive data, embedding, dynamic, diffusion

∗
Tsinghua National Laboratory for Information Science and Technology(TNList)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00

https://doi.org/10.1145/3219819.3219898

ACM Reference Format:
Xumin Chen, Peng Cui, Lingling Yi, and Shiqiang Yang. 2018. Scalable

Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data.

In KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, August 19–23, 2018, London, United Kingdom.ACM,

New York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/3219819.

3219898

1 INTRODUCTION
Embedding techniques, aiming to represent the original data sam-

ples into low-dimensional vector space, have aroused considerable

research interest in recent years. Many methods have been pro-

posed to transform a variety of data types into embedding vectors,

such as words [6], documents [11], images [1], users[4] and even

networks [16]. These embeddings significantly facilitates data anal-

ysis and prediction by exploiting off-the-shelf machine learning

methods. Therefore embedding techniques have been widely used

in real applications, such as recommendation systems [13] and

network analytics [14].

Here we consider a typical application scenario, where real data

are generated in a highly-dynamic and recency-sensitive way. In

such a scenario, new data is generated in high volumes with a fast

speed, and the newly generated data is of higher priority for the

subsequent applications. Take news recommendation as an example.

We analyzed a large-scale article reading dataset fromWeChat
1
. 8.1

new articles, in average, are generated every second. The interaction

behaviors, i.e. a user read an article, are generated with the speed of

1, 400 times per second in average. Meanwhile, we find that these

article reading behaviors are very recency-sensitive, i.e. users tend

to read the latest articles. As shown in Figure 1a, most of the articles

have very short life-cycles. About 73% of articles will never be read

after 6 hours since their generation. Putting the characteristics

of highly-dynamic and recency-sensitive together, we confront a

challenging problem with respect to learning embeddings: how to

generate embeddings for new articles and update embeddings for

existing articles in a very efficient way, and incorporate as much

new data (e.g. newly generated article reading behaviors) as possible

to make the embeddings more effective?

The popular embedding methods, such as word2vec [6], doc2vec

[11] and node2vec [7], are learning-based methods and thus need to

involve optimization processes which are usually time-consuming.

The commonly-used optimization methods include Gradient De-

scent (GD) [15], Stochastic Gradient Descent (SGD) [3] or other

1
The largest social network platform in China, developed by Tencent.

https://doi.org/10.1145/3219819.3219898
https://doi.org/10.1145/3219819.3219898
https://doi.org/10.1145/3219819.3219898

variants like Adam [10]. In ideal cases where the computing power

is unlimited, all these optimization methods can work well in our

setting if they finally converge. In real industrial experience, how-

ever, the provided computing power cannot guarantee optimization

processes to converge within an acceptable time duration, especial-

ly in highly-dynamic scenarios. The key problem, then, becomes

how to distribute the limited computing power to optimize the

samples with different priorities. Although Weighted SGD [12] pro-

vide the flexibility of assigning weights to samples, but how to deal

with recency-sensitive data where sample weights may change over

time, and attain a satisfactory convergence rate in real applications

is still an open problem.

In this paper, we propose a novel optimization method named

Diffused Stochastic Gradient Descent (D-SGD) that is specifically

designed for embedding highly-dynamic and recency-sensitive da-

ta. The notion of our idea is to assign recency-sensitive weights

to different samples, and select samples according to their weight-

s in calculating gradients. By setting a higher weight to a newly

generated sample, it will be selected with larger probability and

thus account more for the resulted gradient. After updating the

embedding of the selected sample, the embeddings of other samples

that are related with the updated sample also need to be updated.

For example, after updating the embedding of an article, the em-

beddings of the users who have read the article need to be updated.

Therefore, we design a weight diffusion strategy to progagate the

high weights to the samples related to the selected sample, so that

the related samples will be selected and updated with high proba-

bility subsequently and iteratively. Inevitably, the weight diffusion

strategy induces some additional computational cost in selecting

samples, which affects its performance in highly-dynamic scenar-

ios. To overcome it, we further design a nested segment tree for

weighted sample selection, and realize it in O(log (N)) where N is

the total sample size. Finally, we theoretically prove that the con-

vergence rate of D-SGD is guaranteed if samples are independent,

and empirically prove that D-SGD can achieve best performance in

real data where samples are not independent.

It is worthwhile to highlight our contributions.

(1) We propose a novel optimization method D-SGD for embed-

ding highly-dynamic and recency-sensitive data.

(2) We design aweight diffusion strategy to assign sampleweight-

s for recency-sensitive data and a distributed segment tree

to improve the efficiency of weighted sample selection.

(3) We theoretically prove the convergence rate of D-SGD for

independent data samples, and empirically prove the efficacy

of D-SGD in large-scale real datasets.

The remained sections are organized as follows. We briefly re-

view the related works in section 2, provide the motivation and

formulation of dynamic embedding on recency data in section 3, in-

troduce the details of D-SGD in section 4, present the experimental

results in section 5 and draw the conclusions in section 6.

2 RELATEDWORK
Here we briefly review the prior works in two closely related direc-

tions: dynamic embedding and online optimization.

Dynamic embedding. There have been many methods proposed

to learn embedding vectors of words[6], documents[11], images[1]

and even networks. Network embedding is a class of methods to

map network objects like vertices and edges into vectors. For in-

stance, LINE [16], DeepWalk[14] and node2vec[7] are some popular

network embedding methods in recent years. However, these opti-

mization process of these algorithms are complicated, making them

inadequate in embedding highly dynamic and recency-sensitive

data.

Word embedding is also a popular research problem in recent

years. Instead of paying attention on efficiency and recency, recent

works aremostly focus on learning the embedding continuously. For

example, [2] improves word2vec so that the embedding is trained

to be similar with the old one when items change. [17] modified

the dynamic word embedding to discover evolving semantic. Both

of them need to scan all of the current dataset at a new timestamp

which is not practical for our highly dynamic problem.

Online optimization algorithms. Online optimization is a sub-

domain of optimization theory[5] and [9]. Instead of providing

general ways to find the optimal solution for a specified problem,

works in this domain often study the convergence or other property

for a optimization method. In [8], authors discuss a class of meth-

ods known as online convex optimization to tackle loss functions

which change in many specified ways. It also theoretically proves

boundaries and convergence if loss functions change more general-

ly. These methods do not aim at our problem, which focus more on

the practical performance in highly-dynamic and recency-sensitve

scenarios. Though these cannot be applied into our problem, some

of them like [12] provide the important basis to prove the boundary

and convergence of our method.

On the other hand, element-wised or batch-wised optimization

algorithms, like Stochastic Gradient Descent(SGD)[3], are widely

used as general frameworks. Among these algorithms, Adam[10] is

a state-of-art one which is widely used, and we use it as one of our

baselines.

3 DYNAMIC EMBEDDING ON RECENCY
DATA

3.1 Motivation
Our study in this paper is mainly motivated by our observations in

two real datasets collected from WeChat.

WeChat article reading dataset (WA). In WeChat, a widely-used

function is ’Moments’, where a user can post information there

and his/her friends can read the posted information in their own

’Moments’, like wall post function in Facebook. In this dataset,

the users’ article reading behaviors are recorded. Each record is

formated into a triplet (user, article, time_stamp), meaning a user
reads an article at time time_stamp.

WeChat friendship network dataset (WF). WeChat is an undirect-

ed social network. Users can establish friendship links with each

other. In this dataset, the dynamic process of users establishing

friendship links are recorded. Each record is formated into a triplet

(useri , user j , time_stamp), meaning useri and user j establish a link

at time_stamp.
The detailed statistics of these two datasets are summarized as

Table 1.

y = 1768.8e-0.006x

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0 1E+1 1E+2 1E+3

nu
mb
er
 o
f
ar
ti
cl
es

article duration / hours

y = 0.0148e-2.259x

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

0 2 4 6

2-
no
rm
 o
f
th
e
di
ff
er
en
ce

distance to the new edge

average

(a) Duration of each article

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600

nu
m
b
er
 o
f
 a
r
t
ic
le
s

time stamp / hour

(b) Number of new articles each hour

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 200 400 600

nu
mb

er
 o

f
re

co
rd

s

time stamp / hour

(c) Number of new records each hour

Figure 1: Dynamic and recency of the dataset

Table 1: Statistics of the datasets

Name WeChat article WeChat friend

max |V | 39, 951(users) + 1, 312, 327(articles) 42, 589

max |E | 6, 105, 938 4, 291, 256

time span 1 month 6.5 years

time unit second second

From these two datasets, we observe similar highly-dynamic

and recency-sensitive applications scenarios. For brevity, we only

show the statistical analysis results of WA dataset in Figure 1. We

first plot the distribution of article duration in Figure 1a, where the

duration of an article is calculated by the difference between the first

and last timestamps that the article gets read. We can see that the

duration of more than 73% articles are less than 6 hours, and there

is an obvious exponential decay in the distribution. The distribution

demonstrates that users’ article reading behaviors are very recency-

sensitive andmost users only care about latest articles. Also, we plot

the number of new articles and new behavior records generated

per hour in Figure 1b and 1c. From the embedding perspective, we

need to generate new embeddings for 2000 new articles per hour,

and update embeddings for 8000 existing articles and their related

users per hour. Note that this is only a sampled dataset of WeChat,

and the generating speed of new articles and behaviors is much

higher. Such an application scenario requires effective and efficient

method for dynamic embedding on recency data.

3.2 Problem Formulation
With generality, we represent data into a matrix A. In WA dataset,

the rows of A represent users, the columns represent articles, and

ai j represents the weight between user i and article j . InWF dataset,

A is symmetric where both rows and columns represent users, and

the ai j represents the weight between user i and user j. Here A
is also equivalent with a graph G = (V ,E), where V is the vertex

set and E is the edge set. It is a bipartite graph in WA dataset and

undirected plain graph in WF dataset. In later sections, we use

either A or G to represent the data without confusion.

In a dynamic setting, the matrixAwill evolve over time, resulting

in a dynamic dataset A(t) or G(t) =
(
V (t),E(t)

)
, where t = 1, 2, . . .

is the timestamp. In this paper, the timestamp t is defined in event

time, i.e. only one node or edge is updated between two consecutive

timestamps. There are two cases in the dynamic dataset. One is

rows or columns in A are added or deleted (i.e. new nodes are

added into or existing nodes are deleted from G), and the other

is the entries in A are updated (i.e. new edges are added into or

existing edges are deleted from G). As adding nodes and deleting

nodes can be equivalently reflected by adding and deleting edges,

we unify the two cases by only considering the updating of entries

in A.
Here we define the problem of dynamic embedding on recency

data based on commonly-used matrix factorization framework, as

follow:

Definition 3.1 (Dynamic embedding on recency data). Given a

dynamic dataset A(t), finding the optimal embedding matrices U
and V, so that the following objective function can be minimized

J (U,V) =

W(t) ◦ (A(t) − UTV)

2
F

=
∑
i, j

w
(t)
i, j

(
uTi · vj − a

(t)
i, j

)
2 , (1)

whereW(t) is the recency weight matrix, andw
(t)
i, j represents the

weight of a
(t)
i, j .

Note that the recency weight matrix W(t) change over time. We

define the recency weighting strategy as follow:

w
(t+1)
i, j =

{
1 if (i, j) is the newly added or deleted edge

τw
(t)
i, j elsewise

,

(2)

where τ ∈ (0, 1) is the decay factor that controls the degree of

recency sensitivity. This recency weighting strategy enforces that

the embeddings of the nodes linked by the newly updated (added or

deleted) edge shouold be more emphasized in the learning process.

As W(t) changes very fast in highly dynamic environment, all

optimization methods cannot guarantee to converge between two

timestamps given limited computing power. Then how well the

recency weights can be incorporated in the embedding learning

heavily depend on the effectiveness and efficiency of the underlying

optimization method.

4 OPTIMIZATION
4.1 A Base Optimization Method
For ease of understanding, we call an edge as a data sample and a

node as an object in the optimization process. Let us first define an

entry-wise loss function according to equation (1):

f (ui , vj ,ati, j) =
(
uTi · vj − a

(t)
i, j

)
2

. (3)

If we assume that the optimization process can converge between

time t and t+1, we can regard the weights of samples are unchanged

in the optimization process and directly use Weighted SGD [12] to

optimize it. In each iteration step, Weighted SGD randomly select

an edge according tow
(t)
i, j and update the embedding matrices with

gradients as follow:

ui (r) ← ui (r − 1) − η
∂ f

∂ui

(
ui (r − 1), vj (r − 1),ai, j

)
vj (r) ← vj (r − 1) − η

∂ f

∂vj

(
ui (r − 1), vj (r − 1),ai, j

), (4)

where η is the learning rate and r ≥ 1 is the iteration step. When

it comes to timestamp t + 1, we set U(t+1)(0) = U(t)(r),V(t+1)(0) =
V(t)(r).

In highly-dynamic environment, we need to consider the cases

when the optimization process cannot converge between two times-

tamps. In such cases, the Weighted SGD method have the following

limitations.

Redundant. Though the weights of samples are dynamic along

different timestamps, the weight is fixed across different iteration

steps given a certain timestamp t . This cause SGD to probably

select the new sample multiple times as it always have high weights

across all iteration steps before next timestamp. However, training

the embedding of a node with the same linked edge repeatedly is

meaningless if this embedding was not updated by other edges.

Also, if the embedding of a node is updated, the embeddings of its

neighbors should also be updated. But there is no mechanism in

SGD to realize this propagation.

Incomplete training. As weighted SGD select edges according to

w
(t)
i, j , if some existing edges have not been selected enough times to

attain full training on their related nodes before a new edge coming,

the weights of these existing edges will decrease and thus less likely

to be selected any more, resulting in incomplete training on node

embeddings.

Inefficient. In highly dynamic setting, the speed of edge updating

is very fast. Even if we cannot guarantee the optimization process

converge between two consecutive timestamps, more iteration steps

in-between two timestamps can necessarily bring better optimiza-

tion effect. However, in the base optimization method, the weights

of all edges are updated at each timestamp, and weighted SGD

selects samples according to the updated weights, inducing a com-

plexity of O (|E |) in random sample selection. Such a complexity is

unaffordable in highly dynamic setting.

The limitations of the base optimization method motivate us

to propose a new optimization method, Diffused SGD, specially

designed for highly-dynamic and recency-sensitive data.

y = 0.0148e-2.259x

1E-11

1E-09

1E-07

1E-05

1E-03

1E-01

0 2 4 6

2-
no
rm
 o
f
th
e
di
ff
er
en
ce

distance to the new edge

average

Figure 2: Difference of each object after inserting a relation-
ship

4.2 Diffused SGD Method
4.2.1 Weight Diffusion Mechanism. In order to address the first

two limitations, we first conduct empirical analysis in synthetic

data to find the characteristics of embeddings in a dynamic dataset.

More specifically, we study how embeddings change when data

dynamically changes. We generate some networks with power-

law degree distributions, and dynamically add a new edge at each

timestamp. We use singular value decomposition (SVD) to generate

node embeddings at each timestamp, and quantify the difference

of embedding vectors in two consecutive timestamp for each node.

Then we plot the distribution of embedding difference of a single

node versus its distance to the newly added edge, as shown in Figure

2. We can see that the embedding differences exponentially decay

with the distance becoming larger. This implies that the embedding

updating of nodes should be diffused from the newly updated edge

to neighboring nodes.

Motivated by this, we design a iteration step-wise weight diffu-

sion mechanism. We use p
(t)
i, j (r) as the weight and set p

(t)
i, j (0) = 1

if edge (i, j) is a new edge inserted at timestamp t . For each itera-

tion step r , if edge (i, j) is selected and ui and vj are updated with

equation (4), we update the weight of edge (i, j) and all of node i’s
neighbors in following way:

For edge (i, j), we have

pi, j (r) ← τe
(
i,pi, j (r − 1)

)
; (5)

for (i,k) ∈ E ∧ k , j, we use

pi,k (r) ← pi,k (r − 1) + τn
(
i,pi, j (r − 1)

)
; (6)

and for other edges (l ,k) ∈ E ∧ l , i ,

pl,k (r) ← pl,k (r − 1); (7)

where τe and τn are two decay functions, which are defined as

τe (i,p) =
τp

2

τn (i,p) =
τp

2OD(t)(i)

, (8)

where OD(t)(i) is the out-degree of vertex i in graph G(t). And
in-degree is used when updating vj , symmetrically.

Equation (5) means that the weight of the new edge decays

over iteration steps. In this way, the new edge will not be selected

too many times to avoid redundant optimization. While equation

(6) means the weights of other links to the updated node i are
increased, so that they will be selected with higher probability

and the embedding updating can be diffused along neighborhood

structures. Although this is a one-hop diffusion, it can realize global

diffusion in a iterative way.

This method guarantees the probability of old edges to be less

than new edges. Also, if an existing edge well trained, i.e. it is select-

ed few times, its weight will not decay and make it more possibly

to be selected in future. Those said, the first two limitations of the

base optimization method can be largely alleviated by the weight

diffusion mechanism. Furthermore, the mechanism can be flexibly

combined into the existing optimization methods like Weighted

SGD, and we can theoretically prove that such a mechanism will

not affect the convergence of an optimization method, which will

be introduced in section 4.3.

4.2.2 Nested Segment Trees for Weighted Sampling. In this sec-

tion, we focus on addressing the third limitation of base optimiza-

tiommethod, the efficiency issue. As mentioned that the bottle-neck

of efficiency is the weighted sampling. With the weight diffusion

mechanism, we have already decreased the number of updated

weights from O (|E |) into O(OD(i)) in each step. However, we still

need to further improve efficiency because:

(1) Even using a faster algorithm as mentioned in [16], gen-

erating a random table and conducting weighted sample

selection still needs to traverse all of the edges.

(2) O(OD(i)) is still too large since there are often some hub

nodes with very large degree in power-law graphs.

We can directly construct a Segment Tree
2
to maintain the

random table, and thus we can randomly select an edge according to

edgeweights inO(log |E |). In order to further improve the efficiency,

we propose a Nested Segment Trees with lazy propagation. With

lazy propagation, we can change the consecutive elements of an

array into the same value in O(logN) time, and also query the

the values of consecutive elements in O(logN) time, where N is

the number of elements of the array. Then we propose the nested

segment tree to transform the neighbors in a graph to consecutive

elements in an array.

Here are the steps of this method:

Nested Segment Trees with lazy propagation. Firstly, we build a

segment tree T (t)∗ whose leaves represent every vertex in V (t).

For each vertex i , we build two segment trees T
(t)+
i and T

(t)−
i

whose leaves respectively represent every neighbors through each

edge satisfies (i, j) ∈ E and (j, i) ∈ E.
The weightwi, j is separately stored in two leaf nodes (i, j) inT+i

and (j, i) inT−j . While the leaf node i inT ∗ represents the summation

of weight on T+i and T−i which does NOT represent

∑
(i, j)∈E wi, j

but part of it. Each non-leaf node in T ∗, T+i and T−i represents the

summation weight of the sub-tree whose root is this node.

When we need to plus a same value on each edge from i except
(i, j), we are to modify two intervals on T+i , while two intervals on

T−i when updating the edges to i except (j, i). With lazymodification

method, we can apply this change in O(log (OD(i))). After that, we

2
A brief introduction to basic Segment Tree with lazy propagation can be found at

https://www.geeksforgeeks.org/lazy-propagation-in-segment-tree/

can calculate the new summation of T+i and T−i and update T ∗ in
O(log |V |).

When we need to roll an edge with the probability proportional

to its weight, we firstly random a real number in range

[
0,
∑
wi, j

]
while

∑
wi, j is maintained by the root of T ∗ and then put the

number on the root of T ∗.
When the number is on any non-leaf node, compare it with

the summation maintained by the left child. If less or equal, then

move to the left child, else move to the right child after minus the

summation on the left child.

When the number reaches a leaf node which represents i , we
can determine this number is on either T+i or T−i . Then we use the

similar process to choose T+i or T−i and one leaf on it which means

we get an edge randomly by the real number.

When a vertex or an edge is inserted or deleted, we can use

full-double and half-full strategy to get a complexity of O(1) in

average for tree reshape.

�
In summary, we can accomplish the weight diffusion and weight-

ed sampling with O(log |E |) in average for each iteration step, and

finish updating node embeddings with O(d) where d is the dimen-

sion of the embedding of one node.

4.3 Boundary and convergence
In optimization theory, convergence is often scrutinized on smooth

functions which is strongly, strictly or weakly convex. For instance,

if we fix t andV, J (U) in (1) convex and smooth, and strongly convex

under some conditions.

Here we analyze an extension of (1), as follow, which is obviously

smooth.

J (U,V) =

W(t)(r) ◦ (A(t) − UTV

)

2
F

=
∑

(i, j)∈E (t)
w
(t)2
i, j (r)

(
uTi · vj − a

(t)
i, j

)
2

+
∑

(i, j)<E (t)
w
(t)2
i, j (r)

(
uTi · vj

)
2

(9)

A function f : X → Y with gradient is convex if and only if

there exists an µ ≤ 0, for any x1, x2 ∈ X ,

f (x2) − f (x1) ≥ ∇f (x1)T(x2 − x1) +
µ

2

∥x2 − x1∥22 . (10)

If µ > 0 we call it a strongly convex function, and µ is defined as

the strongly convex parameter.

Theorem 4.1. Equation (9) is strongly convex.

Proof. For any U1,U2 ∈ R
d×|V |

,

J (U2) − J (U1) − J (U1)
T(U2 − U1)

=

W ◦ (U2 − U1)

T V

2
F

=
∑
i ∈V

(
u2i − u1i

)T
(wi ◦ V) (wi ◦ V)T

(
u2i − u1i

)
=
∑
i ∈V

∑
j ∈V

(
wi, j

(
u2i − u1i

)T vj)2.
This equation is non-negative, i.e. this is a convex function. We can

also infer that (wi ◦V)(wi ◦V)T is a non-negative-definite quadratic

 https://www.geeksforgeeks.org/lazy-propagation-in-segment-tree/

matrix since

∑
j ∈V

(
wi, j

(
u2i − u1i

)T vj)2 ≥ 0. Furthermore, if we

assume that (wi ◦ V)(wi ◦ V)T is a non-singular matrix, which is

almost always true in practice, then we have(
u2i − u1i

)T
(wi ◦ V) (wi ◦ V)T

(
u2i − u1i

)
≥ λmin

u2i − u1i

22 ,
where λmin is the smallest eigenvalue of (wi ◦ V) (wi ◦ V)T which
must be positive. Therefore, we can prove that (1) is strongly convex.

�

In our case, the objective function is summed by strongly convex

sub-functions J (U) =
∑
i, j Ji, j (U) optimized by SGD. The initial

error ε0 is defined as ∥U(0) − U∗∥2F , where U(t)∗ is the optimized

vector and U(r) is the vector after r training iterations. Current

error is ε that E ∥U(r) − U∗∥2F ≤ ε . According to the theory of

Weighted Stochastic Gradient Descent [12], we have the following

theorem.

Theorem 4.2. If we sample sub-functions with probability propor-
tional to a weight function, the expecting step size r is bounded by ε ,
ε0 and the Lipschitz constant.

As a result, each step in our training step is expectedly getting

closer to the optimized value of the objective function at that time

whatever the weight function is.

Theorem 4.3. As edge (i, j) added, i.e. ai, j is set from zero to non-
zero. We have the difference of optimal embeddings in two consecutive
timestamps bounded:

µ

2

∑
k,i

u(t+1)k∗ − u(t)k∗

2
2

+

√ µ

2

(
u(t+1)i∗ − u(t)i∗

)
+

√
2

µ
w
(t+1)2
i, j a

(t)
i, jvj

2
2

≤

(���w(t+1)2i, j −w
(t)2
i, j

��� + 2

µ
w
(t+1)4
i, j a

(t)2
i, j

)
vTj vj .

Proof. We denote

∆(U) = J (t+1)(U) − J (t)(U)

=
(
w
(t+1)2
i, j −w

(t)2
i, j

) (
uTi v
(t)
j

)
2

−w
(t+1)2
i, j

(
2a
(t)
i, ju

T
i v
(t)
j − a

(t)2
i, j

)
.

Then we can infer that

J (t+1)
(
U(t+1)∗

)
= J (t)

(
U(t+1)∗

)
+ ∆

(
U(t+1)∗

)
≥ J (t)

(
U(t)∗

)
+ ∆

(
U(t+1)∗

)
J (t+1)

(
U(t)∗

)
= J (t)

(
U(t)∗

)
+ ∆

(
U(t)∗

)
µ(t+1)

2

U(t+1)∗ − U(t)∗

2
F

≤J (t+1)
(
U(t)∗

)
− J (t+1)

(
U(t+1)∗

)
− ∇J (t+1)

(
U(t+1)∗

)T (
U(t)∗ − U

(t+1)
∗

)
≤∆

(
U(t)∗

)
− ∆

(
U(t+1)∗

)
=
(
w
(t+1)2
i, j −w

(t)2
i, j

) ((
u(t+1)

T

i∗ vjvTj u
(t+1)
i∗

)
−

(
u(t)

T

i∗ vjvTj u
(t)
i∗

))
− 2w

(t+1)2
i, j a

(t)
i, j

(
u(t+1)i∗ − u(t)i∗

)T
vj

≤

���w(t+1)2i, j −w
(t)2
i, j

��� vTj vj − 2w(t+1)2i, j a
(t)
i, j

(
u(t+1)i∗ − u(t)i∗

)T
vj

Then we can infer the formula in Theorem 4.3 is correct. �

Thus we have the difference between U(t+1)∗ and U(t)∗ bounded.

It is obvious that the boundary of ui is looser than other nodes,

which may explain why we need to pay special attention to the

nodes linked with the newly added edge. When edge (i, j) is deleted,
we can get a similar conclusion.

In a similar way, we can also prove the following theorem:

Theorem 4.4. For edge (i, j), ifw(t)i, j (r) is decreased intow
(t)
i, j (r +1),

we have
µ

2

∑
k,i

∥uk∗(r + 1) − uk∗(r)∥
2

2
+

√ µ

2

(ui∗(r + 1) − ui∗(r)) +

√
2

µ

(
w2

i, j (r + 1) −w
2

i, j (r)
)
ai, jvj

2
2

≤

(���w2

i, j (r + 1) −w
2

i, j (r)
��� + 2

µ

(
w2

i, j (r + 1) −w
2

i, j (r)
)
2

a2i, j

)
vTj vj .

As thewi, j (r) is decreasing in an exponential speed, this bound-

ary finally converge to zero.

Because themovements of optimal embeddings in different times-

tamps are bounded, the distance between the current embeddings

and the optimal ones can not change dramatically if we change the

objective function locally and slightly. As the convergence rate is

bounded by the difference between the current embeddings and

the optimal embeddings, we can tweak the objective function in

some subtle way to reflect the characteristic of the real data without

damaging the convergence process.

For a smooth and convex function without the condition of

strong convex, we may not prove the above boundaries. In this case,

although the optimal embeddings of next timestamp may move a

long distance from the current optimial embeddings, there are such

embeddings nearby the current optimal embeddings that are sub-

optimal for next timestamp but can achieve similar performances

as the optimal embeddings of next timestamp.

5 EXPERIMENT
5.1 Experiment setup
In our experiment, we use the two datasets which are introduced

in section 3.

We use the two datasets introduced in section 3.1 in our exper-

iments. We select articles which are read for at least 50 times in

the WA dataset and use all of the data in WF dataset. Also, we use

the first 10% of data as the initial training data in both datasets. For

every timestamp t in the remained data, we useG(t) as the training

set, the newly updated edge inG(t+1) as the testing set. Note that
only one edge is updated between two consecutive timestamps in

our setting, so each test case only contains one edge.

We compare our method with baselines in different aspects. First,

we select the following optimization framework as baselines:

• Stochastic Gradient Descent(SGD): A general, classic and

widely used optimization framework. It randomly selects one

sample, which means an edge in our setting, per iteration

step. The probability of selecting a sample is proportional

to its weight, which is either static or globally decay. The

learning rate is set as 0.05.

• Adam: A state-of-the-art optimization framework which is

often used for sparse data with multiple biases. This frame-

work is usually batched, and we also select batches from data

with static weights or globally decayed weights. Learning

rate is set as 0.007 and β1 = 0.9, β2 = 0.999.

We also summarize the different recency strategies here:

• Static Weight(SW): For any edge, either new or existing, we

use the same weight in optimization framework.

• Globally Decay(GL): New edges have a largest weight while

existing ones’ are decayed as time goes by. We use the equa-

tion (2) as the strategy with τ = 0.05. Since the weights are

changing, we use basic segment tree to optimize its efficien-

cy.

By combining the optimization frameworks with recency strate-

gies, we get 4 baselines: SGD-SW, SGD-GL, Adam-SW and Adam-

GL. Our method D-SGD exploit SGD framework empowered with

the weight diffusion mechanism and nested segment tree with lazy

propagation. We use equation (8) as the weight decay functions

with τ = 0.005. Learning rate is set as 0.05. For all of the methods

above, we use the same negative sampling ratio 5, and the same

embedding dimension d = 40.

In order to simulate a highly-dynamic and recency-sensitive

scenario and conduct fair comparisons among baselines and our

method, we design the following settings:

• Similar Runing Time (ST): We fix the running time for all

the above methods, and evaluate the resulted embeddings

in their prediction accuracy in real applications. In order

to simulate highly dynamic scenarios, we set the runnning

time to a relative short duration.

• Batch-wise Re-train (BRT): Another commonly used setting

is batch-wise retrain. We run re-training for every 3.3% of

data and use the resulted embeddings to predict the following

3.3% of data. In this setting, we let the baseline algorithms

to converge.

In experiments, we mainly report the results of BRT in Adam

and SGD. Due to the efficiency issue of SGD-BRT-GL, we omit its

results. Our method is specially designed for highly-dynamic and

recency-sensitive data, so we only report its performance in ST

setting.

Note that, for all methods except the BRT mode, training and

testing are conducted in an edge-wised manner. When a new edge

is added, we first use the current embeddings to predict it and

count it into the testing performance, and then use the edge to

train and update embeddings, and use the updated embeddings to

predict next new edge. Iteratively, we can report the average testing

performance.

5.2 Recommendation and Link Prediction
We first testify all the methods on their prediction performances in

highly-dynamic and recency-sensitive setting. We first define the

following two variables:

• Running duration δt : for each timestamp t , each optimiza-

tion method can only run for a time duration δt . It is used
to simulate highly dynamic scenarios, where only a small

optimization duration is allowed between two timestamps.

• Recency ratio c: for each article we test the prediction per-

formance of first c reading records, and report the average

performance over all articles. It is used to simulate recency-

sensitive scenarios, where the edges linking to a new node

is limited.

For different max r and different c , we calculate the AUC(Area

under the curve) of each algorithm their prediction accuracy in

both recommendation or link prediction. In ths experiment, we

constraint all methods to run. The results on WA dataset are shown

in Figure 3a, 3b and 3c.

From the figure we have the following observations.

(1) Overall, D-SGD performs much better than other baselines,

no matter varying runnng duration δt or recency ratio c .
(2) Given a certain running duration, we can see that the pre-

diction performance of D-SGD is the best in most settings.

When the recency ratio is very small, all methods performs

similar, as there is no sufficient information about the new

articles to make reliable prediction. But as the recency ratio

c becomes larger, the performance of D-SGD grows much

faster than other baselines, demonstrating that D-SGD can

fully and effectively exploit the new edges to update embed-

dings.

(3) Given a certain recency ratio, the overall performance of

D-SGD is the best. When the running duration is very small,

D-SGD do not show any advantage, but when the running

duration becomes larger, he performance of D-SGD improves

much faster than other baselines, demonstrating that the

edge weights are effectively diffused in each iteration.

(4) When both the recency ratio and running duration is very

small, Adam-ST-GL works better than D-SGD. This is rea-

sonable because Adam-ST-GL will repeatedly select the new

edges, and thus the embeddings of new articles will be up-

dated frequently. But when the recency ratio or running

duration becomes larger, the advantage of Adam-ST-GL dis-

appears, because of its redundant optimization on new edges.

Furthermore, we testify the overall performances of all the meth-

ods in both two datasets, and the results are shown in Figure 3.

For WA dataset, we let the baseline methods run for a similar

duration as our method, i.e. follow the ST setting. We can see that

our D-SGD significantly and consistently outperforms all other

baselines. Adam-ST-GL, the best method with global weight decay

strategy(GL) in our experiment has a better performance than stat-

ic weighted models. It has a improvement of 0.161 (with relative

improvement of 28.1%) than the best static weighted model which

is Adam-SW in this dataset . Our method(D-SGD) performs much

better and more stable than Adam-ST-GW in this dataset, and get a

improvement of 0.197 (with relative improvement of 34.3%). We al-

so testify SGD and Adam methods in BRT mode, where we let these

methods converge every time. However, their performances are

not satisfactory. SGD-BRT-SW performs similarly as Adam-ST-GW

and much worse than D-SGD, but it takes much longer running

time than Adam-ST-GW and D-SGD.

Compared with WA dataset, WF dataset in Figure 3e shows less

recency and dynamic characteristic. The edges there are considered

to be effective for a much longer time, and the updating speed

0 100 200 300 400 500
recency ratio c

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C
of

ea
ch

al
go

ri
th

m

SGD-ST-SW

D-SGD

Adam-ST-SW

Adam-ST-GL

(a) AUC when max r = 3

0 100 200 300 400 500
recency ratio c

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

(b) AUC when max r = 6

0 100 200 300 400 500
recency ratio c

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

(c) AUC when max r = 9

0.0 0.5 1.0 1.5 2.0 2.5

time stamp t of the network G(t) ×106

0.5

0.6

0.7

0.8

0.9

A
U

C
of

ea
ch

al
go

ri
th

m

Adam-ST-SW

Adam-ST-GL

Adam-BRT-SW

Adam-BRT-GL

SGD-BRT-SW

SGD-ST-SW

D-SGD

(d) AUC for WeChat article data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

time stamp t of the network G(t) ×106

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

(e) AUC for WeChat friend network

Figure 3: The AUC result for our datasets

of edges are not very fast. Still, D-SGD achieves satisfactory per-

formances. The weight decay strategy and the weight diffusion

mechanism still works well in all baselines. As mentioned the char-

acteristics of this dataset are not very consistent with our targeting

scenarios. In such a case, it is not strange that SGD-BRT-SW per-

forms slightly better than D-SGD, because it take much longer time

for optimization and reaches convergence at each timestamp. As

well as the Adam-ST-GL, it performs much worse than the D-SGD

when data is highly dynamic in the early stage. It also costs much

longer time when the timestame grows up, which will be shown in

the next subsection. Although not the best, the performance of D-

SGD is still stable and reliable, demonstrating the wide applicability

of D-SGD.

These results fully demonstrate that D-SGD, especially theweight

diffusion mechanism in it, can effectively address the challenges

brought by highly-dynamic and recency-sensitive scenarios.

5.3 Efficiency
Herewe design experiments to evaluate the efficiency of ourmethod

and baselines. We run all of the tests on CPU Intel(R) Xeon(R) CPU

E5-2630 whose main frequency is 2.30GHz without any parallel

mechanism.

To make a fair comparison, we compare the running time of each

method when they reach the same AUC performance. Here we set

the target AUC to be 0.73. For different timestamp t , we calculate
how much time will cost for each method to train the following 10

3

edges and reach the target AUC. Adam-SW and Adam-GW have

Table 2: Execution time of training 10
3 edges for each

method(seconds)

timestamp

t
D-SGD

D-SGD-

WT

SGD-SW

Adam-

SW

Adam-

GL

1 × 100 0.0234 0.134 0.231 1.84 1.58

1 × 103 0.0307 0.147 0.238 1.79 1.54

3 × 103 0.0295 0.169 0.261 1.82 1.60

1 × 104 0.0347 0.255 0.279 1.88 1.82

3 × 104 0.0336 0.469 0.423 1.98 2.44

1 × 105 0.0441 1.20 0.388 2.15 4.63

3 × 105 0.0568 3.61 0.498 2.39 10.9

1 × 106 0.0739 15.1 0.668 2.77 32.6

3 × 106 0.0664 45.9 0.684 2.87 96.2

never reached to 0.73, so we report the running time of these two

methods when they reach their best AUC. Table 2 shows the result.

From this table, we can find that D-SGD is much more efficient

than the other baselines. Though Adam-GL is a good methods

sometimes, its time cost for each edge is O(t + d max r)(where d is

the dimension of the embedding and r is the number of iteration

steps) which is not practical in real applications. We also compared

the D-SGD without Nested Segment Trees(short for D-SGD-WT).

Without this optimization, the time cost for each edge is also O(t +
d max r). Other two methods also cost several times more than

D-SGD, even their performance much worse than D-SGD.

6 CONCLUSIONS AND FUTUREWORK
We discover that the timeliness is widely existing in recency net-

works, ans we propose to use it to speedup the representation

learning on a recency network. Furthermore, we find that the em-

bedding has a diffusion characteristic. To speedup the learning

method for practical usage, we applied this characteristic and pro-

pose a general framework for embedding learning on a recency

network. We proved that our framework has a boundary and con-

vergence when the loss function satisfies some conditions, and the

experiment shows this framework have a good performance on

both effect and efficiency in realistic datasets.

To deal with highly-dynamic and recency-sensitive data, we pro-

pose an optimization method Diffused Stochastic Gradient Descent.

In calculating gradients of this method samples are selected accord-

ing to their weights, while the weights are maintained according to

the recency-sensitive weights. The related samples are also updated

in a diffusion strategy after updating the embedding of the selected

sample.

To improve the efficiency of this progress, we propose a Nested

Segment Tree. We also prove the convergence rate theoretically for

independent data samples and prove the efficacy in large-scale real

datasets.

In the future, we are to parallelize this framework since the

components of it is able to be parallelized. As well, we are going to

achieve this framework on a production environment.

ACKNOWLEDGMENTS
This work was supported in part by National Program on Key

Basic Research Project No. 2015CB352300, National Natural Science

Foundation of China Major Project No. U1611461; National Natural

Science Foundation of China No. 61772304, 61521002, and 61531006.

Thanks for the research fund of Tsinghua-Tencent Joint Laboratory

for Internet Innovation Technology, and the Young Elite Scientist

Sponsorship Program by CAST. All opinions, findings, conclusions

and recommendations in this paper are those of the authors and do

not necessarily reflect the views of the funding agencies.

REFERENCES
[1] Rehab H Alwan, Fadhil J Kadhim, and Ahmad T Al-Taani. 2005. Data embed-

ding based on better use of bits in image pixels. International Journal of signal
processing 2, 2 (2005), 104–107.

[2] Robert Bamler and Stephan Mandt. 2017. Dynamic word embeddings. In Interna-
tional Conference on Machine Learning. 380–389.

[3] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010. Springer, 177–186.
[4] Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. 2017. Deep coevolution-

ary network: Embedding user and item features for recommendation. (2017).

[5] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. 2014. SAGA: A fast

incremental gradient method with support for non-strongly convex composite

objectives. In Advances in neural information processing systems. 1646–1654.
[6] Yoav Goldberg and Omer Levy. 2014. word2vec explained: Deriving mikolov et

al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[7] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[8] Elad Hazan et al. 2016. Introduction to online convex optimization. Foundations
and Trends® in Optimization 2, 3-4 (2016), 157–325.

[9] Elad Hazan, Alexander Rakhlin, and Peter L Bartlett. 2008. Adaptive online

gradient descent. In Advances in Neural Information Processing Systems. 65–72.
[10] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[11] Jey Han Lau and Timothy Baldwin. 2016. An empirical evaluation of doc2vec

with practical insights into document embedding generation. arXiv preprint
arXiv:1607.05368 (2016).

[12] Deanna Needell, Rachel Ward, and Nati Srebro. 2014. Stochastic gradient descent,

weighted sampling, and the randomized Kaczmarz algorithm. In Advances in
Neural Information Processing Systems. 1017–1025.

[13] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017.

Embedding-based news recommendation for millions of users. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1933–1942.

[14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[15] Jan Snyman. 2005. Practical mathematical optimization: an introduction to basic
optimization theory and classical and new gradient-based algorithms. Vol. 97.
Springer Science & Business Media.

[16] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web

Conferences Steering Committee, 1067–1077.

[17] Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and Hui Xiong. 2018. Dynamic

Word Embeddings for Evolving Semantic Discovery. In Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining. ACM, 673–681.

	Abstract
	1 Introduction
	2 Related Work
	3 Dynamic Embedding on Recency Data
	3.1 Motivation
	3.2 Problem Formulation

	4 Optimization
	4.1 A Base Optimization Method
	4.2 Diffused SGD Method
	4.3 Boundary and convergence

	5 Experiment
	5.1 Experiment setup
	5.2 Recommendation and Link Prediction
	5.3 Efficiency

	6 Conclusions and future work
	References

