
Non-transitive Hashing with Latent Similarity Components

Mingdong Ou1, Peng Cui1, Fei Wang2, Jun Wang3, Wenwu Zhu1

1Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University. Beijing, China

2Department of Computer Science and Engineering, School of Engineering, University of Connecticut.
Storrs, U.S.

3Data Science, Alibaba Group. Seattle, WA, U.S.
oumingdong@gmail.com,cuip@tsinghua.edu.cn, fei_wang@engr.uconn.edu,

jwang@ee.columbia.edu, wwzhu@tsinghua.edu.cn

ABSTRACT
Approximating the semantic similarity between entities in
the learned Hamming space is the key for supervised hash-
ing techniques. The semantic similarities between entities
are often non-transitive since they could share different la-
tent similarity components. For example, in social networks,
we connect with people for various reasons, such as shar-
ing common interests, working in the same company, being
alumni and so on. Obviously, these social connections are
non-transitive if people are connected due to different rea-
sons. However, existing supervised hashing methods treat
the pairwise similarity relationships in a simple and unified
way and project data into a single Hamming space, while
neglecting that the non-transitive property cannot be ade-
quately captured by a single Hamming space. In this pa-
per, we propose a non-transitive hashing method, namely
Multi-Component Hashing (MuCH), to identify the latent
similarity components to cope with the non-transitive sim-
ilarity relationships. MuCH generates multiple hash tables
with each hash table corresponding to a similarity compo-
nent, and preserves the non-transitive similarities in differ-
ent hash table respectively. Moreover, we propose a similar-
ity measure, calledMulti-Component Similarity, aggregating
Hamming similarities in multiple hash tables to capture the
non-transitive property of semantic similarity. We conduct
extensive experiments on one synthetic dataset and two pub-
lic real-world datasets (i.e. DBLP and NUS-WIDE). The re-
sults clearly demonstrate that the proposed MuCH method
significantly outperforms the state-of-art hashing methods
especially on search efficiency.

Categories and Subject Descriptors
H.4 [Information System Applications]: Miscellaneous

Keywords
Non-transitive similarity; Hashing; Similarity components

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

KDD’15, August 10-13, 2015, Sydney, NSW, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783283.

1. INTRODUCTION

Figure 1: Non-transitive image triangle (i.e.
(A,B,C)). Although (A,B) and (B,C) are similar
pairs, A and C are dissimilar, which violates the
transitive intuition on similarity. This is because
the similar pairs ((A,B) and (B,C)) are determined
by different similarity components, i.e. object (cat
or dog) or scene (grass or floor). The blue full lines
represent similar relationship, and the blue dashed
lines with red cross represent dissimilar relationship.

With the explosive growth of data, similarity search is
becoming increasingly important for a wide range of large
scale applications, including image retrieval [9, 21], docu-
ment search [30], and recommendation systems [16, 15, 37].
Due to the simplicity and efficiency, hashing techniques are
one of the best options for indexing large scale datasets and
performing approximate nearest neighbor search. In partic-
ular, recent hashing methods often employ machine learning
techniques to leverage supervised information like pairwise
constraints to design more efficient hash codes to search se-
mantically similar entities [35, 39, 22, 28]. The key for the
learning based hashing methods is to approximate the se-
mantic similarity between entities in the learned Hamming
space. However, an important but often neglected intuition
is that similarity between entities is often non-transitive
since the semantic similarity could be determined by dif-
ferent latent components.

As illustrated in Figure 1, image A is similar to image B
for a common scene (i.e. grass), while image B is similar
with image C for a common object (i.e. cat). However, im-
age A is dissimilar with image C since they share no common
components, neither the object nor the scene. Due to the
existence of latent similarity components, such a similarity
metric has non-transitive triangle relationships, which can
be observed in many real world applications. In Facebook,

for instance, people are connected by friendship links for var-
ious reasons, such as sharing common interests, working in
the same industry, being graduated from the same school,
and so on. Apparently, such friendship connections could
be non-transitive. Although non-transitive similarity exists
in many scenarios, we usually can only observe the pairwise
relationship between entities while the underlying similar-
ity components, which is the main cause of non-transitive
similarity, are unknown.

In literature, most of the supervised hashing techniques
use the pairwise relationship links without identifying the
true similarity components, and neglect the non-transitive
property of the semantic metric. In general, it is difficult
to capture the true non-transitive triangle relationship in
a single metric space [7, 33]. As an example illustrated
in Figure 2, we have a non-transitive relationship between
three images {A,B,C}. Although the similarities between
{A,B,C} are determined by different components (scene or
object), existing supervised hashing methods treat them in
a unified way, e.g. all the similar image pairs arise from the
common cause (i.e. similar on both scene and object). Con-
sidering that image A is similar to image B and image B is
similar to image C, A need to be close to B, and B need to be
close to C in the Hamming space learned by existing super-
vised hashing methods. Thus, A will be relatively close to C,
which violates the truth that A is dissimilar to C. Therefore,
in order to fully capture the non-transitive similarity while
maintaining the retrieval accuracy, we need to identify the
latent similarity components and design hash functions upon
each similarity component, namely non-transitive hashing.

However, it is very challenging to design an effective non-
transitive hashing technique. First, since we can only ob-
serve the similarity relationships between entities, it is diffi-
cult to identify different latent similarity components explic-
itly from a single pairwise relationship. Second, the similar
relationship means a pair of entities share at least one com-
mon similarity components, and the dissimilar relationship
means a pair of entities share no common similarity compo-
nent. Therefore, it is desired to distinguish these two types
of relationships with the identified latent similarity compo-
nents. Finally, the volume of labeled pairwise similarity is
often limited. Hence, the learning algorithm should be able
to handle the issue of limited labels, while avoiding overfit-
ting.

In this paper, we propose a novel non-transitive hashing
algorithm, Multi-Component Hashing (MuCH for short), to
address the above challenges. MuCH jointly learns multiple
linear hash functions to project entities into multiple hash
tables, and approximates each single latent similarity com-
ponent using a different hash table to preserve non-transitive
properties (see the top part in Figure 2). By aggregating
multiple hash tables, we propose a unified similarity mea-
sure, called multi-component Hamming similarity, to model
the different properties of the similar and dissimilar rela-
tionships. Besides, in order to cope with limited and noisy
pairwise labels and avoid overfitting, a regularizer is de-
signed to maximize the information captured by hash codes.
Moreover, We optimize the objective by a gradient descent
method. The time complexity of each iteration is linear with
the size of training set, which is scalable for large-scale data.
In the testing scenario, given a query, we assign it a hash
code in each hash table, and use them to merge similar enti-
ties across different hash tables. After that, an aggregation

strategy is designed to aggregate the retrieval results from
different hash tables, and a simple metric that matches the
strategy is proposed for ranking these results. Extensive ex-
periments are conducted on one synthetic dataset and two
public real-world datasets, i.e. NUS-WIDE [8] and DBLP1.
The results demonstrate that our method, MuCH, can effec-
tively identify the similarity components and outperform the
other comparative methods, especially on search efficiency.

The rest of this paper is presented as follows. In Section
2, we give a brief review of the related works. In Section 3,
we describe the framework and model of MuCH. Then, we
describe the experiment setting and analyse the results in
Section 4. Finally, we conclude our work in Section 5.

2. RELATED WORKS
In this section, we give a brief review of works on two

fields, i.e. non-transitive similarity and hashing.

2.1 Non-transitive Similarity Learning
Although most of existing methods [6] assume that simi-

larity are all transitive, non-transitive similarity have been
studied in different fields. In metric learning, researchers
realize the limitation of metric space on capturing the non-
transitive similarity, and propose some effective non-metric
learning algorithms for non-transitive similarity [7, 33]. Sim-
ilarity Component Analysis (SCA) [7] proposes a probabilis-
tic graphical model to discover latent pairwise similarity
components, and aggregating them as the final similarity.
Note that the similarity components discovered in our work
are entity-wise, and each entity is represented by a combi-
nation of similarity components. Multiple maps t-SNE [33]
aims to represent non-transitive similarity and central ob-
jects in two-dimensional visualizations. In social networks,
many works [32, 10, 13, 2, 1] focus on extracting the multi-
ple types of relationship or finding the overlapping commu-
nities. Mixed membership stochastic blockmodels [2] dis-
covers overlapping communities in networks, and represents
vertices in networks with mixed membership to communi-
ties. However, these methods cannot work in the scenario
of hashing. Though they can effectively measure the non-
transitive similarity, they cannot conduct efficient search for
similar entities in very large scale.

2.2 Hashing
With the rapid increase of the data volume, hashing is pro-

posed to solve the efficiency problem on approximate nearest
neighbors search in large-scale high-dimensional data. Lo-
cality Sensitive Hashing (i.e. LSH) methods [14, 4] are first
proposed, which generate hash codes with random projec-
tions or permutations. Moreover, Mu et. al. [27] apply LSH
to non-metric similarity. While locality sensitive hashing
is independent with data, and has to generate long hash
code to achieve high accuracy, Spectral hashing [38] is pro-
posed to learn hash functions based on the data distribution,
and achieves much compact hash code and higher accuracy.
Some more unsupervised hashing methods [23, 12, 17, 11]
based on data distributions are proposed later. For the well-
known semantic gap between low-level features and semantic
concepts, the performance of unsupervised hashing suffers
bottleneck. Semi-supervised or supervised hashing meth-
ods [36, 22, 34, 19, 20] exploit the labeled pairwise simi-

1http://www.informatik.uni-trier.de/~ley/db/

Figure 2: The framework of Multi-Component Hashing (MuCH). The image triangle (A,B,C) is a non-transitive
triangle. The blue full lines between images represent similar relationship, and the blue dashed lines with
red cross represent dissimilar relationship. The text in the left of images are id and label of images (latent
in our setting, showed here just for clear description), and the binary codes below the images are their hash
codes. The framework splits into three parts by gray dashed lines corresponding to three procedure of MuCH,
i.e. offline hash function learning, online hash code generation and similar entity retrieval. In the top part,
MuCH learns multiple hash tables to capture the latent similarity components (i.e. object and scene in above
figure), and approximates the non-transitive triangle with multiple inherently transitive triangle in generated
hash tables. In the middle part, given a query, say image Q, MuCH first generates hash codes in different
hash tables, then uses these hash codes to search similar entities (i.e. A1 and C2) in corresponding hash
tables. Finally, in the bottom part, MuCH aggregates all the results retrieved from multiple hash tables.

larity relationship between entities to capture the high-level
semantics. Moreover, some multi-modal hashing methods [5,
18, 41, 31, 40, 29] are proposed to exploit multiple features
for hashing to get higher accuracy. However, these hashing
methods cannot discover the latent similarity components
and capture the non-transitive similarity.

Another class of hashing methods that is related to our
work is the hashing methods using multiple hash tables. In
order to improve the recall of hashing and preserve the pre-
cision at the same time, some multi-table hashing meth-
ods [39, 24] are proposed, where complementary hashing [39]
learns multiple hash tables with boosting methods, and re-
ciprocal hashing [24] learns multiple hash tables by selecting
hash functions from a pool of hash functions that learned by
many hashing methods. Since these methods treat similarity
and dissimilarity relationships in the same way, these multi-
table hashing methods are not designed to identify latent
similarity components and cannot capture non-transitive sim-
ilarity. Hashing on multi-label data [26, 25] learn different
hash tables for different known labels. Heterogeneous hash-
ing [28] generates a variant of original hash table in each
domain to search, in order to capture the specific character-
istics of target domain. The setting of the above two class of
hashing methods are different from our setting where simi-

larity components (i.e. label or domain) are latent. So, how
to identify latent similarity components and capture non-
transitive similarity in hashing remains an open problem.

3. MULTI-COMPONENT HASHING
In this section, Multi-component Hashing (MuCH) is pro-

posed to capture the non-transitive property of semantic
similarity. Thus, we can perform efficient and accurate simi-
larity search on data where similarity is determined by mul-
tiple similarity components. In the remaining of this section,
we will first give a brief overview of the framework showed
in Figure 2. Then, we will formally formulate the problem
and propose our model. Finally, an efficient optimization
algorithm will be given along with theoretical complexity
analysis.

3.1 Framework
Figure 2 shows the framework of MuCH. MuCH consists

of two phase: offline learning (the top part of Figure 2) and
online retrieval (the bottom two parts of Figure 2). For
simplicity, we just show a case with two hash tables. It is
easy to generalize to more hash tables. In the top part of
Figure 2, MuCH learns two linear projections that project
entities in original feature space into two hash tables, and

each hash table corresponds to a similarity component (ob-
ject or scene). For simplicity, we call the two hash tables
object table and scene table respectively. The hash codes
of similar pair (B,C) are close in the object table, and the
hash codes of similar pair (A,B) are close in the scene ta-
ble. Meanwhile, the hash codes of dissimilar pair (A,C) are
far from each other in both hash tables. Thus, because of
the inherent transitivity property of hash tables, the simi-
lar pair (A,B) cannot be well preserved in object table and
(B,C) cannot be well preserved in scene table. But, if we
apply the combination rule that a pair of entities are similar
when their hash codes are close in at least one hash table
and a pair of entities are dissimilar when their hash codes
are far from each other in all the hash tables, we can recon-
struct the non-transitive triangle (A,B,C) by combining the
corresponding triangles (inherently transitive) in two hash
tables.

In the bottom part of Figure 2, given a query image Q,
MuCH generates hash codes for Q in two hash tables re-
spectively, then uses these hash codes to search for similar
images in corresponding hash tables, we can find that Q is
similar to A in object table and similar to C in scene table.
Finally, we aggregate the similar images (i.e. A and C) re-
trieved from different hash tables as the search results for
Q.

3.2 Notations
Suppose there are N entities with feature matrix X =

[x1,x2, · · · ,xN] ∈ R
L×N , where L is dimensionality of fea-

ture. M hash tables are generated by a set of linear projec-
tion matrices W = [W1,W2, · · · ,WM] ∈ R

L×KM , where
Wm ∈ R

L×K and K is the length of a hash code (i.e. the
number of hash bits) in each hash table. Then, we calculate
m-th hash table Hm ∈ {−1, 1}K×N by

Hm = sgn(Wm�X) (1)

where

sgn(x) =

{
1 x > 0

−1 x ≤ 0

{Hm} are concatenated as H = [H1�,H2�, · · · ,HM�
]�.

For simplicity, we give a unified definition for variables
with subscript. For a matrix, sayD, Dij denotes the element
in i-th row and j-th column and dj denotes the j-th column.

We use the matrix R ∈ {−1, 0, 1}N×N to formulate the
observed pairwise relationships, where 1 means similar, −1
means dissimilar and 0 means unobserved. We denote the
number of non-zero elements in R as Ne, i.e. the num-
ber of observed relationships between entities. Let M =
{(i, j)|Rij = 1} be the set of similar pairs, and C = {(i, j)|Rij =
−1} be the set of dissimilar pairs. The similarity between
hash codes in m-th hash table is denoted as Sm ∈ [0, 1]N×N ,
whose elements is defined as

Sm
ij = h�

i hj

Thus, Sm
ij ∈ [−K,K].

3.3 Problem Formulation
We need to learn the linear projection matrix W so that

the similarity relationship matrix R can be approximated
by the similarity matrices {Sm}Mm=1. First, we define the

aggregated similarity as

Sij = g(S1
ij , S

2
ij , · · · , SM

ij) ∈ [−K,K] (2)

Thus, we denote the aggregated similarity matrix as S =
{Sij}N×N . As Rij is binary, the approximation problem can
be formulated as restricting that Sij and Rij have common
sign, formally

max
W

∑
i,j

sgn(RijSij) (3)

As the sgn function is not continuous, the optimization
problem are often intractable. So, we relax the above prob-
lem as below

min
W

∑
i,j

f(RijSij) (4)

where function f(x) is continuous and monotonously de-
creasing with respect to x. Thus, Sij should be large when
Rij = 1, and Sij should be small when Rij = −1.

3.4 Model Formulation
In this section, we focus on designing the function expres-

sions in formula (4) (i.e. f and g) to well capture the prop-
erties of data, such as non-transitive similarity and sparsity.

3.4.1 Multi-Component Similarity
The design of aggregated similarity function g is the key of

our model. To approximate R, it needs to capture the non-
transitive property of semantic similarities. According to the
multiple similarity components assumption that explains the
non-transitive phenomena, we need to preserve at least one
of the similarities {Sm

ij }Mm=1 large when Rij = 1, and all of

the similarities {Sm
ij }Mm=1 small when Rij = −1. It is simply

equivalent to that the maximum similarity max{Sm
ij }Mm=1

should be large when Rij = 1 and small when Rij = −1.
Formally, we give the lemma below

Lemma 1. Given a constant sc, ∃s ∈ {sm} so that s ≥ sc
if and only if max{sm} ≥ sc; ∀s ∈ {sm}, s ≤ sc if and only
if max{sm} ≤ sc.

According to Lemma 1, we just need to work on max{Sm
ij }Mm=1

to capture the non-transitive similarities. Moreover, we can
find that max{Sm

ij }Mm=1 also matches the request to aggre-
gated similarity Sij in formula (4), so we can define the
aggregated similarity function as

g(S1
ij , S

2
ij , · · · , SM

ij) = max{Sm
ij }Mm=1 (5)

However, with the maximum function, the minimization
problem in formula (4) will be hard to solve. So, we use
softmax function to approximate the maximum function as
below

max{Sm
ij }Mm=1 ≈

∑M
m=1 S

m
ij e

Sm
ij∑M

m=1 e
Sm
ij

(6)

Finally, we define the final aggregated similarity Sij , called
Multi-Component Similarity, based on softmax as below

Sij =

∑M
m=1 S

m
ij e

Sm
ij∑M

m=1 e
Sm
ij

(7)

3.4.2 Final Objective
With the aggregated similarity defined, we can define how

well the aggregated similarity Sij approximates semantic
similarity Rij , i.e. loss function f . According to formula (4),
loss function f(x) should be continuous and monotonously
decreasing with respect to x. Moreover, as R is often very
sparse, the loss function should lead to model with strong
generalization ability. So, we adopt the logistic loss, which
can effectively avoid overfitting, as below:

f(x) = log(1 + e−x) (8)

We will explain the advantage of logistic loss in detail in
section 3.5 where the explanation based on gradient will be
more intuitive.

Thus, by substituting Equation (8) into Formula (4), we
can get the empirical loss function of the whole data:

LE =
∑
i,j

log(1 + e−RijSij). (9)

To alleviate the overfitting problem further, we restrict
that the linear projections should be little correlated with
each other, thus we can preserve more information in hash
codes [35]. Moreover, to avoid trivial results, we restrict that
the magnitude of linear projections should be small. So, we
add two regularizers to the final objective, that is

LR = γ1
∑
i �=j

(w�
i wj)

2 + γ2‖W‖2F (10)

where γ1 and γ2 are two constant parameters to tune the
contribution weight of the regularizers.

Then, the final objective that combines empirical loss func-
tion and regularizers is

min
W

L = LE + LR (11)

where

LE =
∑
i,j

log(1 + e−RijSij) (12)

LR = γ1
∑
i �=j

(w�
i wj)

2 + γ2‖W‖2F (13)

3.5 Optimization
It is hard to get an analytic solution of the final objec-

tive (11), we solve it with iterative optimization algorithm.
However, the hash function (Equation (1)) is not contin-

uous which make the final objective intractable. So, we ap-
proximate the sign function with the smooth sigmoid func-
tion [22] as below

H =
2

1 + e−W�X
− 1 (14)

Thus, the final objective is differentiable.
We optimize the final objective with Block Coordinate De-

scent (BCD), and the step of Gradient Descent is determined
by line search (see Algorithm 1). The gradient of L is

∂L
∂W

=
∂LE
∂W

+
∂LR
∂W

(15)

Algorithm 1 Multi-Component Hashing (MuCH)

Require: feature matrix of training set X, adjacency ma-
trix R, number of hash bits K, number of hash tables
M

Ensure: hash codes H, linear hash functions W =
[W1,W2, · · · ,WM]

1: initialize W by PCA
2: while the value of objective function don’t converge do
3: for all linear projections {Wm} of hash tables do

4: calculate the gradient of
∂L

∂Wm

5: determine the step a with line search

6: update Wm by Wm = Wm − a ∗ ∂L

∂Wm

7: end for
8: end while
9: encoding H by H = sgn(W�X)

The gradient of empirical objective LE is

∂LE
∂wm

k

=
∑
i �=j

∂f(RijSij)

∂wm
k

∂f(RijSij)

∂wm
k

=
−Rij

1 + eRijSij
∗ ∂Sij

∂wm
k

(16)

∂Sij

∂wm
k

=
(1 + Sm

ij − Sij)e
Sm
ij∑M

n=1 e
Sn
ij

∗ ∂Sm
ij

∂wm
k

(17)

∂Sm
ij

∂wm
k

= Hkj
∂Hm

ki

∂wm
k

+Hki

∂Hm
kj

∂wm
k

∂Hm
ki

∂wm
k

=
2e−wm

k
�xi

(1 + e−wm
k

�xi)2
xi

From Equation (16), we can see that the smaller RijSij

is, the larger the magnitude of gradient is. As that RijSij is
small means that Rij has not been approximated well, the
optimization algorithm will approximate the poorly approx-
imated Rij with higher priority. Thus, we can expect that
all the semantic similarities will be approximated as well
as possible, and the model will have strong generalization
ability.

The gradient of regularizers LR is

∂LR
∂wk

= γ1 ∗ 4 ∗
∑
i �=k

wiw
�
i wk + γ2 ∗ 2 ∗wk (18)

3.5.1 Complexity analysis
During the procedure of optimization, the main cost is to

calculate the loss and the gradient, and we analyse the time
complexity of them respectively. For the calculation of loss,
we need to first encode hash codes by linear hash functions
with complexity O(KMLN), then calculate empirical loss
LE with complexity O(KMLNe), consequently calculate the
regularizer with complexity O(K2M2N + KML). For the
calculation of gradient, we need to calculate the gradient
of H with complexity O(KMLN), then calculate the gra-
dient of empirical loss with complexity O(KM(K + L)Ne),
finally calculate the gradient of regularizer with complexity
O(KM(KM + L)N). In total, the time complexity of each
iteration of Gradient Descent is

O(KM(KM + L)N +KM(K + L)Ne) (19)

We can see that the time complexity of each iteration is
linear with the number of entities (i.e. N) and the number
of links (i.e. Ne). As theR is usually sparse, we can optimize
the final objective efficiently, and our method is scalable for
large-scale training data.

As the hash functions are linear projections W, the time
complexity for generating hash code for a query is O(KML)
which is very efficient.

3.6 Aggregation Strategy
For a query q, we retrieve entities from mutiple hash ta-

bles. Each returned entity has different hamming distances
from query in different hash tables, which make it hard to
rank these entities directly. This ranking problem mainly
comes from the absence of unified ranking strategy and cri-
teria.

One intuitive strategy is to rank the entities according to
the minimum of Hamming distances from query in all hash
tables. As hamming distances in each hash table only have
K + 1 discrete values (i.e. {0, 1, 2, · · · ,K}), there may be
many returned entities sharing the same hamming distance
from query, which make the entities not discriminative. On
the other hand, the strategy also ignores some important
information of multiple hash tables. For example, the more
hash tables a pair of entities is close in, the more confident
the similarity relationship between them is. So, we propose
an aggregation strategy based on the intuitive strategy and
exploits the hamming distances in all the hash tables. Par-
ticularly, we first sort the M hamming distances of each
returned entity from query with ascending order; then, to
determine the order of two returned entities (say i, j), we
compare their sorted hamming distance list beginning from
the minimum distance and forwarding until one’s (say i) dis-
tance is smaller than the other’s distance (say j); thus, we
say that i is more similar to query q than j.
Formally, we denote the sorted hamming distance list as

hdlqi = (hd
(1)
qi , hd

(2)
qi , · · · , hd(M)

qi), and the order between two
sorted hamming distance list (hdlqi, hdlqj) is defined by the
following definition.

Definition 1. Given two sorted hamming distance lists

with ascending order, hdlqi = (hd
(1)
qi , hd

(2)
qi , · · · , hd(M)

qi), hdlqj =

(hd
(1)
qj , hd

(2)
qj , · · · , hd(M)

qj), hdlqi < hdlqj if and only if there
exists some l that

hd
(k)
qi = hd

(k)
qj , ∀k < l

hd
(l)
qi < hd

(l)
qj

4. EXPERIMENTS
In this section, we will show the results of experiments on

one synthetic dataset and two public datasets (i.e. DBLP
and NUS-WIDE). First, we give a brief introduction of ex-
periment setting. Then, we will report and analyse the re-
sults.

4.1 Experiment Setting
The task of the experiment is hash look up. That is, given

a query, we need to search similar entities in hash table by
sequentially looking up hash buckets until enough entities
are found. The hash buckets are looked up in ascending or-
der of Hamming distance between the hash codes of these
buckets and the hash code of query. We select three met-
rics, i.e. Mean Average Precision (MAP), Precision-Recall

Curve, Hamming Radius to Search (HRS), to measure the
performance from different aspects. Given the number of
entities, Nq, to retrieve, HRS refers to the minimum Ham-
ming distance from query, within which we can retrieve at
least Nq entities by scanning all the hash buckets. Given the
number of results to search, HRS reflects the size of search
space (i.e. the number of hash codes to scan), which is
tightly correlated to the search efficiency. Assume the hash
bit number of a hash table is K, then the number of hash
codes to search is

∑HRS
i=0

(
K
i

)
. So, when HRS decreases by

1, the search space will reduce by
(

K
HRS

)
, which is dominant

in
∑HRS

i=0

(
K
i

)
when HRS is relatively small. That is, when

HRS is relatively small, reduction by 1 on HRS will save
most of the search space.

We select three state-of-art hashing methods, i.e. Kernel-
based Supervised Hashing (KSH) [22], Semi-supervised Hash-
ing (SPLH) [36], Iterative Quantization (ITQ) [12], as base-
lines. KSH is a supervised method, SPLH is a semi-supervised
method, ITQ is a unsupervised methods. For KSH, we ran-
domly select 300 anchors in NUS-WIDE, and 50 anchors in
DBLP and the synthetic dataset.

We set parameters by grid search. And we get the optimal
parameters as γ1 = 1.0× 10−10, γ2 = 1.0× 10−7.
Finally, all the algorithms are implemented using Matlab.

We run experiments on a machine running Windows Server
2008 with 12 2.4GHz cores and 192GB memory.

4.2 Experiments on Synthetic Data

4.2.1 Dataset
Synthetic Data is generated to simulate the situation

that similarity arises from multiple components. This dataset
includes 400 entities represented with 4-dimensional feature
vector. The 4-dimensional feature vector consists of two 2-
dimensional feature vector with each 2-dimensional feature
vector corresponding to a similarity component.

−5 0 5
−5

0

5

(a) Similarity Component 1

−5 0 5
−5

0

5

(b) Similarity Component 2

Figure 3: Distribution of synthetic data on two com-
ponents. There are four clusters in each similarity
component. Each cluster is plotted by a specific
color and marker. The green lines represent the lin-
ear hash functions of MuCH.

Figure 3 shows the distribution of Synthetic Data on each
component respectively. In each component, there are four
clusters sampled from four Gaussian distribution with cen-
ters {(2, 2), (2,−2), (−2, 2), (−2,−2)}, and each cluster con-
tains 100 samples. In our experiments, the clusters are re-
garded as labels. In each component, we set the points be-
long to the same cluster similar, and the points belong to
different clusters dissimilar. Note that the clusters in one
component is independent with that in the other component.
From the global view, two entities are similar when they are

similar on any similarity component, otherwise, they are dis-
similar. We randomly select 300 entities as training set, and
the others as testing set. Besides, we randomly select 100
entities from the training set, and set their pairwise similar-
ities as observed.

4.2.2 Results on Synthetic Data
Figure 4 shows the hash projection matrix W. We can see

that four elements in different rows and columns are large,
and the others are very small.

Figure 4: Hash projection matrix W. The grid in
i-th row and j-th column represents Wij. The darker
the grid is, the magnitude of Wij is larger. As the
last two rows of W(1) (first two columns) is large and
the first two row is small, Similarity Component 2
can be extracted by W(1). In a similar way, W(2)

(last two columns) can extract Similarity Compo-
nent 1.

So, the two large elements in the first two rows of W(2)

can extract the first two dimensions of the feature vector,
i.e. Similarity Component 1; and the two large elements in
the last two rows of W1 extract the last two dimensions of
the feature vector, i.e. Similarity Component 2. That is,
MuCH can accurately identify the similarity components in
the synthetic data. Figure 3 shows the linear hash projec-
tions, W(2) and W(1), in two similarity components, respec-
tively. We can see that the clusters are separated well by
hash projections.

Table 1: Performance on Synthetic Data, where F1
is measured on the results that share the common
hash buckets with queries. All the methods use 4-bit
hash codes. MuCH learns two 2-bit hash tables.

Method MuCH KSH SPLH ITQ
MAP 0.9380 0.8275 0.6993 0.8581
F1 0.9310 0.2772 0.2359 0.2514

Table 1 shows the quantative performance on Synthetic
Data of all methods. Although the other methods can also
learn hash functions adaptive to the data distribution, but
they cannot identify the underlying similarity components.
Thus, these methods may split entity pairs that are similar
on just one component, and can only retrieve the entities

that are fully similar, i.e. similar on both similarity compo-
nents. So, the F1 score is very small. As the comparative
methods split the partially similarity pairs and mix the sim-
ilar and dissimilar entities up, the MAPs of them are much
smaller than that of MuCH.

4.3 Experiments on Public Datasets

4.3.1 Datasets
NUS-WIDE [8] is an image dataset crawled from Flickr

with about 260, 000 images and 81 concept categories. A
pair of images is regarded similar if they share at least one
common concept, otherwise, they are dissimilar. As many
images are labeled by multiple concepts, the similarity be-
tween images is non-transitive. We use the top 10 con-
cepts in our experiments, and get about 180, 000 images.
We randomly select 10000 images as training set, and 5000
images as testing set. Besides, we randomly sample 1000
images from training set, and set the pairwise similarities
between them as observed. The 500-dimeansional Bag-of-
Visual-Words (BOW) of SIFT are used as feature.

DBLP2 is a digital bibliography of computer science com-
munity. We select the authors that have published at least
3 papers in 12 specific fields which include 33 corresponding
conferences (see Table 2). After the selection, we get about
3500 authors, and about 20000 papers. A pair of authors is
regarded similar if they have published papers in at least one
common field, otherwise, they are dissimilar. As an author
may publish papers in multiple fields, the similarity between
authors is non-transitive. We aggregate the paper contents
(title and abstract) of each user as a document, then Latent
Dirichlet Allocation (LDA) [3] is performed on the docu-
ments set to get the distribution of authors on 100 topics.
We use the 100-dimensional distribution on LDA topics as
feature. 2500 authors are selected as training set, and the
others are used as testing set. Besides, we select 200 au-
thors from the training set, and set the pairwise similarities
between them observed.

Table 2: Selected research fields and corresponding
conferences in DBLP

Field Conference

Database
ICDE, VLDB, SIGMOD,

PODS, EDBT

Data Mining
KDD, ICDM, SDM,
PKDD, PAKDD

Artificial Intelligence IJCAI, AAAI
Information Retrieval SIGIR, ECIR

Computer Vision CVPR
Machine Learning ICML, ECML

Algorithms & Theory STOC, FOCS, SODA, COLT
Natural Language

ACL, ANLP, COLING
Processing

Bioinformatics ISMB, RECOMB

Networking
SIGCOMM, MOBICOM,

INFOCOM
Operating Systems SOSP, OSDI

Distributed &
PODC, ICS

Parallel Computing

2http://www.informatik.uni-trier.de/~ley/db/

Table 3: Retrieval performance evaluated by MAP and corresponding Hamming Radius to Search (HRS).
We retrieve 500 nearest entities for evaluation. For MuCH-S, the bit number in second row represents the
bit number of single hash table, and the number of hash tables is 4. For MuCH-F, the bit number in second
row represents the total bit number of all hash tables, and the number of hash tables is 2.

Method
NUS-WIDE DBLP

16 bits 32 bits 16 bits 32 bits
MAP HRS MAP HRS MAP HRS MAP HRS

MuCH-S 0.5084 2.0658 0.5191 5.6182 0.9188 3.172 0.9217 8.108
MuCH-F 0.4863 0.7783 0.5051 2.4708 0.9108 1.8640 0.9151 3.7340
KSH 0.4788 2.8595 0.4836 6.1010 0.8808 4.5020 0.8866 9.3560
SSH 0.4419 1.6221 0.4451 3.7725 0.7812 6.2000 0.7389 13.6720
ITQ 0.4236 3.4185 0.4372 8.5899 0.8816 6.4260 0.8677 13.8980

4.3.2 Results on NUS-WIDE and DBLP
Table 3 shows the retrieval performance on both public

datasets. We can see that the MAPs of MuCH-S achieve at
least 3% absolute improvement over the baselines. Although
MuCH-S cost four times more storage than the others, but
its search efficiency (HRS) is still comparative to (even a
little higher than) the baselines (MuCH-F is our method).
MuCH-F cost the same storage as the baselines and achieve
similar search performance (MAP) as the baselines. But,
MuCH-F achieves much higher efficiency. On NUS-WIDE,
HRS (i.e. Hamming Radius to Search) of MuCH is at least
0.844 smaller in 16 bits setting and 1.3 smaller in 32 bits
setting than the others. On DBLP, HRS of MuCH is at least
1.38 smaller on 16 bits setting and 3.43 smaller on 32 bits
setting than the others. According to the above comparisons
with baselines, we can see that MuCH can achieve much
higher search accuracy with comparative search efficiency
and perform much more efficiently with same storage. This
means MuCH learns more effective representation for data
with non-transitive similarity than the competitive hashing
methods.

8 12 16 20 24 28 32

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Bit Number

M
A

P MuCH
KSH
PLSH
ITQ

(a) NUS-WIDE

8 12 16 20 24 28 32

0.75

0.8

0.85

0.9

Bit Number

M
A

P MuCH
KSH
PLSH
ITQ

(b) DBLP

Figure 5: MAP on different hash bit numbers,
{8, 16, 24, 32}. The left figure is the results on NUS-
WIDE, and the right is the results on DBLP. For
MuCH, the hash bit number represents the bit num-
ber of each hash table, and the number of hash ta-
bles is 4.

Figure 5 shows the MAPs on different hash bit numbers
on NUS-WIDE and DBLP. Figure 6 and Figure 7 shows the
Precision-Recall curves on NUS-WIDE and DBLP. Differ-
ent from the above comparison, in Figure 5, the hash bit
number of single hash table in MuCH is equal to that for
the comparative methods. Although this will increase three
times more storage, the search efficiency (i.e. HRS) is still
comparable to other methods (comparing the HRS of MuCH
on 32 bits with the HRS of other methods on 16 bits in Table

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

Recall

Pr
ec

is
io

n MuCH_16
MuCH_8
KSH
PLSH
ITQ

(a) 16 bits

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n MuCH_32
MuCH_16
KSH
PLSH
ITQ

(b) 32 bits

Figure 6: Precision-Recall curve on NUS-WIDE.
From left to right, the methods in two figures use
16 hash bits and 32 hash bits respectively. MuCH k
means MuCH learning two k-bit hash tables.

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

MuCH_16
MuCH_8
KSH
PLSH
ITQ

(a) 16 bits

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

MuCH_32
MuCH_16
KSH
PLSH
ITQ

(b) 32 bits

Figure 7: Precision-Recall curve on DBLP. From
left to right, the methods in two figures use 16 hash
bits and 32 hash bits respectively. MuCH k means
MuCH learning two k-bit hash tables.

3), and the retrieval accuracy (MAP) of MuCH outperforms
the best of other methods by 7.1% on NUS-WIDE and 3.4%
on DBLP. We can see that MuCH is also better than com-
parative methods on Precision-Recall curves in Figure 6 and
Figure 7.

4.3.3 Insights on MuCH
Figure 8 and Figure 9 shows the retrieval performance of

MuCH in different settings by varying hash bit number and
hash table number. Fixing the hash bit number, in most sit-
uations, MAP increases monotonously with respect to hash
table number. This means that we can improve retrieval
accuracy by adding more hash tables. Compared with in-
creasing hash bits in single hash table, this approach can
preserve the efficiency because the search time just increases
linearly with respect to the hash table number. On the other

1 2 3 4
0.46

0.47

0.48

0.49

0.5

0.51

0.52

Table Number

M
A

P 8 bits
16 bits
24 bits
32 bits

1 2 3 4
0

1

2

3

4

5

6

7

Table Number

H
am

m
in

g
R

ad
iu

s

8 bits
16 bits
24 bits
32 bits

Figure 8: Retrieval performance of MuCH on NUS-
WIDE. Different hash bit number of each hash ta-
ble, {8, 16, 24, 32} and different hash tables number,
{1, 2, 3, 4} are tested. MAP and corresponding HRS
are used as evaluation metrics.

1 2 3 4

0.895

0.9

0.905

0.91

0.915

0.92

Table Number

M
A

P 8 bits
16 bits
24 bits
32 bits

1 2 3 4

2

4

6

8

10

Table Number

H
am

m
in

g
R

ad
iu

s

8 bits
16 bits
24 bits
32 bits

Figure 9: Retrieval performance of MuCH on
DBLP. Different hash bit number of each hash ta-
ble, {8, 16, 24, 32} and different hash table number,
{1, 2, 3, 4} are tested. MAP and corresponding HRS
are used as evaluation metrics.

hand, HRS decreases monotonously with respect to the hash
table number. And the decrease of HRS achieves about 2
in some situations, which will improve the search efficiency
significantly. The reason may be that the number of sim-
ilarity components, which each hash table corresponds to,
decreases with the hash table number increasing. Then, the
non-transitive similarities can be approximated more accu-
rately, and the similar entities will be aggregated more close.

When the hash table number is fixed, MAP increases
monotonously with respect to hash bit number, and HRS
also increases monotonously with respect to hash bit num-
ber. Therefore, when hash table number is fixed, we need
to make a tradeoff between the retrieval accuracy and effi-
ciency.

5. CONCLUSION
In this paper, we argue that non-transitive similarity due

to various latent similarity components is a ubiquitous phe-
nomenon in many real-world applications, including image
retrieval, document search, recommendation system and so
on. Many existing hashing learning methods employ the
pairwise similarity as supervised information, while neglect-
ing the non-transitivity of those similarity relationships. In
this paper, we propose a novel hashing method, called Multi-
Component Hashing (MuCH), to capture the latent sim-
ilarity components to handle the non-transitive property.
MuCH employs linear hash functions to project data into
multiple hash tables, with each hash table corresponding to
a latent similarity component, by which the non-transitive
similarity can be maintained across different hash tables.
Given a query, MuCH generates multiple hash codes to re-
trieves similar entities from each hash table of the database

points. Then the returned results are organized though
using a specific aggregation strategy to generate the final
search results. Extensive experiments on both synthetic and
real benchmark datasets shows that our method outperforms
several representative hashing techniques on both accuracy
and efficiency

One of our future directions is to leverage multiple-view
and multiple-modality data sources to further improve the
performance though identifying more discriminant similarity
components.

6. ACKNOWLEDGMENTS
This work is supported by the National Basic Research

Program of China, No. 2015CB352300; National Program
on Key Basic Research Project, No. 2015CB352300; Na-
tional Natural Science Foundation of China, No. 61370022
and No. 61210008; International Science and Technology
Cooperation Program of China, No. 2013DFG12870. Thanks
for the support of NExT Research Center funded by MDA,
Singapore, under the research grant, WBS:R-252-300-001-
490 and the research fund of Tsinghua-Tencent Joint Labo-
ratory for Internet Innovation Technology.

7. REFERENCES
[1] I. Abraham, S. Chechik, D. Kempe, and A. Slivkins.

Low-distortion inference of latent similarities from a
multiplex social network. In SODA, pages 1853–1872.
SIAM, 2013.

[2] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing.
Mixed membership stochastic blockmodels. Journal of
Machine Learning Research, 9(1981-2014):3, 2008.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. the Journal of machine Learning research,
3:993–1022, 2003.

[4] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 327–336, 1998.

[5] M. Bronstein, A. Bronstein, F. Michel, and N. Paragios.
Data fusion through cross-modality metric learning using
similarity-sensitive hashing. In IEEE Conference on
Computer Vision and Pattern Recognition, pages
3594–3601, 2010.

[6] S. Chang, G. Qi, C. C. Aggarwal, J. Zhou, M. Wang, and
T. S. Huang. Factorized similarity learning in networks. In
2014 IEEE International Conference on Data Mining,
ICDM 2014, Shenzhen, China, December 14-17, 2014,
pages 60–69, 2014.

[7] S. Changpinyo, K. Liu, and F. Sha. Similarity component
analysis. In Advances in Neural Information Processing
Systems, pages 1511–1519, 2013.

[8] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.
Nus-wide: a real-world web image database from national
university of singapore. In Proceedings of the ACM
International Conference on Image and Video Retrieval,
page 48, 2009.

[9] P. Cui, S.-W. Liu, W.-W. Zhu, H.-B. Luan, T.-S. Chua, and
S.-Q. Yang. Social-sensed image search. ACM Transactions
on Information Systems (TOIS), 32(2):8, 2014.

[10] S. E. Fienberg, M. M. Meyer, and S. S. Wasserman.
Statistical analysis of multiple sociometric relations.
Journal of the american Statistical association,
80(389):51–67, 1985.

[11] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik. Angular
quantization-based binary codes for fast similarity search.
In Advances in Neural Information Processing Systems,
pages 1205–1213, 2012.

[12] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In IEEE

Conference on Computer Vision and Pattern Recognition,
pages 817–824, 2011.

[13] J. Hopcroft, T. Lou, and J. Tang. Who will follow you
back?: reciprocal relationship prediction. In Proceedings of
the 20th ACM international conference on Information
and knowledge management, pages 1137–1146. ACM, 2011.

[14] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613, 1998.

[15] M. Jiang, P. Cui, F. Wang, Q. Yang, W. Zhu, and S. Yang.
Social recommendation across multiple relational domains.
In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages
1422–1431. ACM, 2012.

[16] M. Jiang, P. Cui, F. Wang, W. Zhu, and S. Yang. Scalable
recommendation with social contextual information.
Knowledge and Data Engineering, IEEE Transactions on,
26(11):2789–2802, 2014.

[17] W. Kong and W.-J. Li. Isotropic hashing. In Advances in
Neural Information Processing Systems, pages 1655–1663,
2012.

[18] S. Kumar and R. Udupa. Learning hash functions for
cross-view similarity search. In Proceedings of the
Twenty-Second International Joint Conference on
Artificial Intelligence, pages 1360–1365, 2011.

[19] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter.
Fast supervised hashing with decision trees for
high-dimensional data. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, pages
1971–1978. IEEE, 2014.

[20] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A
general two-step approach to learning-based hashing. In
Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 2552–2559. IEEE, 2013.

[21] S. Liu, P. Cui, H. Luan, W. Zhu, S. Yang, and Q. Tian.
Social-oriented visual image search. Computer Vision and
Image Understanding, 118:30–39, 2014.

[22] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In IEEE Conference on
Computer Vision and Pattern Recognition, pages
2074–2081, 2012.

[23] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing
with graphs. In Proceedings of the 28th International
Conference on Machine Learning, pages 1–8, 2011.

[24] X. Liu, J. He, and B. Lang. Reciprocal hash tables for
nearest neighbor search. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[25] X. Liu, Y. Mu, B. Lang, and S.-F. Chang. Compact
hashing for mixed image-keyword query over multi-label
images. In Proceedings of the 2nd ACM International
Conference on Multimedia Retrieval, page 18. ACM, 2012.

[26] Y. Mu, X. Chen, T.-S. Chua, and S. Yan. Learning
reconfigurable hashing for diverse semantics. In Proceedings
of the 1st ACM International Conference on Multimedia
Retrieval, page 7. ACM, 2011.

[27] Y. Mu and S. Yan. Non-metric locality-sensitive hashing. In
AAAI, 2010.

[28] M. Ou, P. Cui, F. Wang, J. Wang, W. Zhu, and S. Yang.
Comparing apples to oranges: a scalable solution with
heterogeneous hashing. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 230–238. ACM, 2013.

[29] M. Ou, P. Cui, J. Wang, F. Wang, and W. Zhu.
Probabilistic attributed hashing. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[30] R. Salakhutdinov and G. Hinton. Semantic hashing. RBM,
500(3):500, 2007.

[31] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen.
Inter-media hashing for large-scale retrieval from
heterogeneous data sources. In Proceedings of the 2013
international conference on Management of data, pages
785–796. ACM, 2013.

[32] M. Szell, R. Lambiotte, and S. Thurner. Multirelational
organization of large-scale social networks in an online
world. Proceedings of the National Academy of Sciences,
107(31):13636–13641, 2010.

[33] L. van der Maaten and G. Hinton. Visualizing non-metric
similarities in multiple maps. Machine learning,
87(1):33–55, 2012.

[34] J. Wang, S. Kumar, and S.-F. Chang. Sequential projection
learning for hashing with compact codes. In Proceedings of
International Conference on Machine Learning, pages
1127–1134, 2010.

[35] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for large-scale search. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
34(12):2393–2406, 2012.

[36] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for large-scale search. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
34(12):2393–2406, 12 2012.

[37] Z. Wang, W. Zhu, P. Cui, L. Sun, and S. Yang. Social
media recommendation. In Social Media Retrieval, pages
23–42. Springer, 2013.

[38] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
Advances in Neural Information Processing Systems, pages
1753–1760, 2008.

[39] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu.
Complementary hashing for approximate nearest neighbor
search. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 1631–1638. IEEE, 2011.

[40] D. Zhang, F. Wang, and L. Si. Composite hashing with
multiple information sources. In Proceedings of the 34th
international ACM SIGIR conference on Research and
development in Information Retrieval, pages 225–234.
ACM, 2011.

[41] Y. Zhen and D. Yeung. A probabilistic model for
multimodal hash function learning. In Proceedings of the
18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 940–948, 2012.

