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ABSTRACT

Approximating the semantic similarity between entities in
the learned Hamming space is the key for supervised hash-
ing techniques. The semantic similarities between entities
are often non-transitive since they could share different la-
tent similarity components. For example, in social networks,
we connect with people for various reasons, such as shar-
ing common interests, working in the same company, being
alumni and so on. Obviously, these social connections are
non-transitive if people are connected due to different rea-
sons. However, existing supervised hashing methods treat
the pairwise similarity relationships in a simple and unified
way and project data into a single Hamming space, while
neglecting that the non-transitive property cannot be ade-
quately captured by a single Hamming space. In this pa-
per, we propose a non-transitive hashing method, namely
Multi-Component Hashing (MuCH), to identify the latent
similarity components to cope with the non-transitive sim-
ilarity relationships. MuCH generates multiple hash tables
with each hash table corresponding to a similarity compo-
nent, and preserves the non-transitive similarities in differ-
ent hash table respectively. Moreover, we propose a similar-
ity measure, called Multi-Component Similarity, aggregating
Hamming similarities in multiple hash tables to capture the
non-transitive property of semantic similarity. We conduct
extensive experiments on one synthetic dataset and two pub-
lic real-world datasets (i.e. DBLP and NUS-WIDE). The re-
sults clearly demonstrate that the proposed MuCH method
significantly outperforms the state-of-art hashing methods
especially on search efficiency.
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1. INTRODUCTION

A -
grass

Figure 1: Non-transitive image triangle (i.e.
(A,B,C)). Although (A,B) and (B,C) are similar
pairs, A and C are dissitmilar, which violates the
transitive intuition on similarity. This is because
the similar pairs ((A, B) and (B,C)) are determined
by different similarity components, i.e. object (cat
or dog) or scene (grass or floor). The blue full lines
represent similar relationship, and the blue dashed
lines with red cross represent dissimilar relationship.

With the explosive growth of data, similarity search is
becoming increasingly important for a wide range of large
scale applications, including image retrieval [9, 21], docu-
ment search [30], and recommendation systems [16, 15, 37].
Due to the simplicity and efficiency, hashing techniques are
one of the best options for indexing large scale datasets and
performing approximate nearest neighbor search. In partic-
ular, recent hashing methods often employ machine learning
techniques to leverage supervised information like pairwise
constraints to design more efficient hash codes to search se-
mantically similar entities [35, 39, 22, 28]. The key for the
learning based hashing methods is to approximate the se-
mantic similarity between entities in the learned Hamming
space. However, an important but often neglected intuition
is that similarity between entities is often non-transitive
since the semantic similarity could be determined by dif-
ferent latent components.

As illustrated in Figure 1, image A is similar to image B
for a common scene (i.e. grass), while image B is similar
with image C for a common object (i.e. cat). However, im-
age A is dissimilar with image C since they share no common
components, neither the object nor the scene. Due to the
existence of latent similarity components, such a similarity
metric has non-transitive triangle relationships, which can
be observed in many real world applications. In Facebook,



for instance, people are connected by friendship links for var-
ious reasons, such as sharing common interests, working in
the same industry, being graduated from the same school,
and so on. Apparently, such friendship connections could
be non-transitive. Although non-transitive similarity exists
in many scenarios, we usually can only observe the pairwise
relationship between entities while the underlying similar-
ity components, which is the main cause of non-transitive
similarity, are unknown.

In literature, most of the supervised hashing techniques
use the pairwise relationship links without identifying the
true similarity components, and neglect the non-transitive
property of the semantic metric. In general, it is difficult
to capture the true non-transitive triangle relationship in
a single metric space [7, 33]. As an example illustrated
in Figure 2, we have a non-transitive relationship between
three images {A, B,C}. Although the similarities between
{A, B,C'} are determined by different components (scene or
object), existing supervised hashing methods treat them in
a unified way, e.g. all the similar image pairs arise from the
common cause (i.e. similar on both scene and object). Con-
sidering that image A is similar to image B and image B is
similar to image C, A need to be close to B, and B need to be
close to C' in the Hamming space learned by existing super-
vised hashing methods. Thus, A will be relatively close to C',
which violates the truth that A is dissimilar to C. Therefore,
in order to fully capture the non-transitive similarity while
maintaining the retrieval accuracy, we need to identify the
latent similarity components and design hash functions upon
each similarity component, namely non-transitive hashing.

However, it is very challenging to design an effective non-
transitive hashing technique. First, since we can only ob-
serve the similarity relationships between entities, it is diffi-
cult to identify different latent similarity components explic-
itly from a single pairwise relationship. Second, the similar
relationship means a pair of entities share at least one com-
mon similarity components, and the dissimilar relationship
means a pair of entities share no common similarity compo-
nent. Therefore, it is desired to distinguish these two types
of relationships with the identified latent similarity compo-
nents. Finally, the volume of labeled pairwise similarity is
often limited. Hence, the learning algorithm should be able
to handle the issue of limited labels, while avoiding overfit-
ting.

In this paper, we propose a novel non-transitive hashing
algorithm, Multi-Component Hashing (MuCH for short), to
address the above challenges. MuCH jointly learns multiple
linear hash functions to project entities into multiple hash
tables, and approximates each single latent similarity com-
ponent using a different hash table to preserve non-transitive
properties (see the top part in Figure 2). By aggregating
multiple hash tables, we propose a unified similarity mea-
sure, called multi-component Hamming similarity, to model
the different properties of the similar and dissimilar rela-
tionships. Besides, in order to cope with limited and noisy
pairwise labels and avoid overfitting, a regularizer is de-
signed to maximize the information captured by hash codes.
Moreover, We optimize the objective by a gradient descent
method. The time complexity of each iteration is linear with
the size of training set, which is scalable for large-scale data.
In the testing scenario, given a query, we assign it a hash
code in each hash table, and use them to merge similar enti-
ties across different hash tables. After that, an aggregation

strategy is designed to aggregate the retrieval results from
different hash tables, and a simple metric that matches the
strategy is proposed for ranking these results. Extensive ex-
periments are conducted on one synthetic dataset and two
public real-world datasets, i.e. NUS-WIDE [8] and DBLP'.
The results demonstrate that our method, MuCH, can effec-
tively identify the similarity components and outperform the
other comparative methods, especially on search efficiency.
The rest of this paper is presented as follows. In Section
2, we give a brief review of the related works. In Section 3,
we describe the framework and model of MuCH. Then, we
describe the experiment setting and analyse the results in
Section 4. Finally, we conclude our work in Section 5.

2. RELATED WORKS

In this section, we give a brief review of works on two
fields, i.e. non-transitive similarity and hashing.

2.1 Non-transitive Similarity Learning

Although most of existing methods [6] assume that simi-
larity are all transitive, non-transitive similarity have been
studied in different fields. In metric learning, researchers
realize the limitation of metric space on capturing the non-
transitive similarity, and propose some effective non-metric
learning algorithms for non-transitive similarity [7, 33]. Sim-
ilarity Component Analysis (SCA) [7] proposes a probabilis-
tic graphical model to discover latent pairwise similarity
components, and aggregating them as the final similarity.
Note that the similarity components discovered in our work
are entity-wise, and each entity is represented by a combi-
nation of similarity components. Multiple maps t-SNE [33]
aims to represent non-transitive similarity and central ob-
jects in two-dimensional visualizations. In social networks,
many works [32, 10, 13, 2, 1] focus on extracting the multi-
ple types of relationship or finding the overlapping commu-
nities. Mixed membership stochastic blockmodels [2] dis-
covers overlapping communities in networks, and represents
vertices in networks with mixed membership to communi-
ties. However, these methods cannot work in the scenario
of hashing. Though they can effectively measure the non-
transitive similarity, they cannot conduct efficient search for
similar entities in very large scale.

2.2 Hashing

With the rapid increase of the data volume, hashing is pro-
posed to solve the efficiency problem on approximate nearest
neighbors search in large-scale high-dimensional data. Lo-
cality Sensitive Hashing (i.e. LSH) methods [14, 4] are first
proposed, which generate hash codes with random projec-
tions or permutations. Moreover, Mu et. al. [27] apply LSH
to non-metric similarity. While locality sensitive hashing
is independent with data, and has to generate long hash
code to achieve high accuracy, Spectral hashing [38] is pro-
posed to learn hash functions based on the data distribution,
and achieves much compact hash code and higher accuracy.
Some more unsupervised hashing methods [23, 12, 17, 11]
based on data distributions are proposed later. For the well-
known semantic gap between low-level features and semantic
concepts, the performance of unsupervised hashing suffers
bottleneck. Semi-supervised or supervised hashing meth-
ods [36, 22, 34, 19, 20] exploit the labeled pairwise simi-
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Figure 2: The framework of Multi-Component Hashing (MuCH). The image triangle (A, B, C) is a non-transitive
triangle. The blue full lines between images represent similar relationship, and the blue dashed lines with
red cross represent dissimilar relationship. The text in the left of images are id and label of images (latent
in our setting, showed here just for clear description), and the binary codes below the images are their hash
codes. The framework splits into three parts by gray dashed lines corresponding to three procedure of MuCH,
i.e. offline hash function learning, online hash code generation and similar entity retrieval. In the top part,
MuCH learns multiple hash tables to capture the latent similarity components (i.e. object and scene in above
figure), and approximates the non-transitive triangle with multiple inherently transitive triangle in generated
hash tables. In the middle part, given a query, say image (), MuCH first generates hash codes in different
hash tables, then uses these hash codes to search similar entities (i.e. Al and C2) in corresponding hash
tables. Finally, in the bottom part, MuCH aggregates all the results retrieved from multiple hash tables.

larity relationship between entities to capture the high-level
semantics. Moreover, some multi-modal hashing methods [5,
18, 41, 31, 40, 29] are proposed to exploit multiple features
for hashing to get higher accuracy. However, these hashing
methods cannot discover the latent similarity components
and capture the non-transitive similarity.

Another class of hashing methods that is related to our
work is the hashing methods using multiple hash tables. In
order to improve the recall of hashing and preserve the pre-
cision at the same time, some multi-table hashing meth-
ods [39, 24] are proposed, where complementary hashing [39]
learns multiple hash tables with boosting methods, and re-
ciprocal hashing [24] learns multiple hash tables by selecting
hash functions from a pool of hash functions that learned by
many hashing methods. Since these methods treat similarity
and dissimilarity relationships in the same way, these multi-
table hashing methods are not designed to identify latent
similarity components and cannot capture non-transitive sim-
ilarity. Hashing on multi-label data [26, 25] learn different
hash tables for different known labels. Heterogeneous hash-
ing [28] generates a variant of original hash table in each
domain to search, in order to capture the specific character-
istics of target domain. The setting of the above two class of
hashing methods are different from our setting where simi-

larity components (i.e. label or domain) are latent. So, how
to identify latent similarity components and capture non-
transitive similarity in hashing remains an open problem.

3. MULTI-COMPONENT HASHING

In this section, Multi-component Hashing (MuCH) is pro-
posed to capture the non-transitive property of semantic
similarity. Thus, we can perform efficient and accurate simi-
larity search on data where similarity is determined by mul-
tiple similarity components. In the remaining of this section,
we will first give a brief overview of the framework showed
in Figure 2. Then, we will formally formulate the problem
and propose our model. Finally, an efficient optimization
algorithm will be given along with theoretical complexity
analysis.

3.1 Framework

Figure 2 shows the framework of MuCH. MuCH consists
of two phase: offline learning (the top part of Figure 2) and
online retrieval (the bottom two parts of Figure 2). For
simplicity, we just show a case with two hash tables. It is
easy to generalize to more hash tables. In the top part of
Figure 2, MuCH learns two linear projections that project
entities in original feature space into two hash tables, and



each hash table corresponds to a similarity component (ob-
ject or scene). For simplicity, we call the two hash tables
object table and scene table respectively. The hash codes
of similar pair (B, C) are close in the object table, and the
hash codes of similar pair (A, B) are close in the scene ta-
ble. Meanwhile, the hash codes of dissimilar pair (A, C) are
far from each other in both hash tables. Thus, because of
the inherent transitivity property of hash tables, the simi-
lar pair (A, B) cannot be well preserved in object table and
(B, C) cannot be well preserved in scene table. But, if we
apply the combination rule that a pair of entities are similar
when their hash codes are close in at least one hash table
and a pair of entities are dissimilar when their hash codes
are far from each other in all the hash tables, we can recon-
struct the non-transitive triangle (A, B, C') by combining the
corresponding triangles (inherently transitive) in two hash
tables.

In the bottom part of Figure 2, given a query image @,
MuCH generates hash codes for @ in two hash tables re-
spectively, then uses these hash codes to search for similar
images in corresponding hash tables, we can find that @ is
similar to A in object table and similar to C' in scene table.
Finally, we aggregate the similar images (i.e. A and C) re-
trieved from different hash tables as the search results for

Q.
3.2 Notations

Suppose there are N entities with feature matrix X =
[X1,X2,- - ,xn] € REYN | where L is dimensionality of fea-
ture. M hash tables are generated by a set of linear projec-
tion matrices W = [W! W2 ... WM] ¢ REXEM " where
W™ € REXE and K is the length of a hash code (i.e. the
number of hash bits) in each hash table. Then, we calculate
m-th hash table H™ € {—1,1}**Y by

H™ = sgn(W™ ' X) (1)
where

sqn(z) = 1 x>0

I 21 2 <0
{H™} are concatenated as H = [HlT,HzT, e ,HMT]T.

For simplicity, we give a unified definition for variables
with subscript. For a matrix, say D, D;; denotes the element
in ¢-th row and j-th column and d; denotes the j-th column.

We use the matrix R € {—1,0,1}*¥ to formulate the
observed pairwise relationships, where 1 means similar, —1
means dissimilar and 0 means unobserved. We denote the
number of non-zero elements in R as N., i.e. the num-
ber of observed relationships between entities. Let M =

{(4,j)|Ri; = 1} be the set of similar pairs, and C = {(4, j)|Ri; =

—1} be the set of dissimilar pairs. The similarity between
hash codes in m-th hash table is denoted as S™ € [0, 1]V >V,
whose elements is defined as

S =h/ hy
Thus, Sf} € [-K, K].

3.3 Problem Formulation

We need to learn the linear projection matrix W so that

the similarity relationship matrix R can be approximated

by the similarity matrices {S™}M_,. First, we define the

aggregated similarity as
Sij = 9(Sij S5+, 8 ) € [- K, K] (2)

Thus, we denote the aggregated similarity matrix as S =
{S:; }V*N. As R;; is binary, the approximation problem can
be formulated as restricting that S;; and R;; have common
sign, formally

m‘%XZSgn(RijSij) (3)
i,
As the sgn function is not continuous, the optimization

problem are often intractable. So, we relax the above prob-
lem as below

Il‘lg,nzf(RijSij) (4)

(%)

where function f(z) is continuous and monotonously de-
creasing with respect to x. Thus, S;; should be large when
R;i; =1, and S;; should be small when R;; = —1.

3.4 Model Formulation

In this section, we focus on designing the function expres-
sions in formula (4) (i.e. f and g) to well capture the prop-
erties of data, such as non-transitive similarity and sparsity.

3.4.1 Multi-Component Similarity

The design of aggregated similarity function g is the key of
our model. To approximate R, it needs to capture the non-
transitive property of semantic similarities. According to the
multiple similarity components assumption that explains the
non-transitive phenomena, we need to preserve at least one
of the similarities {Sj} } =, large when R;; = 1, and all of
the similarities {S7} }5—; small when R;; = —1. It is simply
equivalent to that the maximum similarity maz{S} WM
should be large when R;; = 1 and small when R;; = —1.
Formally, we give the lemma below

LEMMA 1. Given a constant sc, 3s € {s™} so that s > s.
if and only if max{s™} > s¢; Vs € {s™}, s < s if and only
if max{s™} < sc.

According to Lemma 1, we just need to work on max{S{?}%il
to capture the non-transitive similarities. Moreover, we can
find that max{S{?}%:l also matches the request to aggre-
gated similarity S;; in formula (4), so we can define the
aggregated similarity function as

9(57,1]7S7,2j7 7Si]¥[) = maX{SZ'L}ﬁ{:]_ (5)

However, with the maximum function, the minimization
problem in formula (4) will be hard to solve. So, we use
softmax function to approximate the maximum function as
below

sm
M gm ST
aX{S?jL 7]\1/1[:1 ~ mel Usm (6)

Z%:l e
Finally, we define the final aggregated similarity S;;, called
Multi-Component Similarity, based on softmax as below

M m S
Zmzl Sije I

m
E]\/I esij

m=1

Sij = (7)



3.4.2  Final Objective

With the aggregated similarity defined, we can define how
well the aggregated similarity S;; approximates semantic
similarity R;j, i.e. loss function f. According to formula (4),
loss function f(z) should be continuous and monotonously
decreasing with respect to . Moreover, as R is often very
sparse, the loss function should lead to model with strong
generalization ability. So, we adopt the logistic loss, which
can effectively avoid overfitting, as below:

f(x) =log(1+e™) (8)

We will explain the advantage of logistic loss in detail in
section 3.5 where the explanation based on gradient will be
more intuitive.

Thus, by substituting Equation (8) into Formula (4), we
can get the empirical loss function of the whole data:

LE = log(1+ e Mis%is), 9)

2%

To alleviate the overfitting problem further, we restrict
that the linear projections should be little correlated with
each other, thus we can preserve more information in hash
codes [35]. Moreover, to avoid trivial results, we restrict that
the magnitude of linear projections should be small. So, we
add two regularizers to the final objective, that is

LR =Y (W w;)” +7[|[W|F (10)
i#]

where 1 and 72 are two constant parameters to tune the
contribution weight of the regularizers.

Then, the final objective that combines empirical loss func-
tion and regularizers is

min L =LE+ LR (11)
AY%
where
L£E =" "log(1+e %) (12)
@]
LR=m (W w;)?+7|W|F (13)
i£]

3.5 Optimization

It is hard to get an analytic solution of the final objec-
tive (11), we solve it with iterative optimization algorithm.

However, the hash function (Equation (1)) is not contin-
uous which make the final objective intractable. So, we ap-
proximate the sign function with the smooth sigmoid func-
tion [22] as below

2

Thus, the final objective is differentiable.

We optimize the final objective with Block Coordinate De-
scent (BCD), and the step of Gradient Descent is determined
by line search (see Algorithm 1). The gradient of L is

oL aLE | OLR
oW ~ OW T OW
(15)

Algorithm 1 Multi-Component Hashing (MuCH)

Require: feature matrix of training set X, adjacency ma-
trix R, number of hash bits K, number of hash tables
M

Ensure: hash codes H, linear hash functions W =
[WI,WQ,- .. ,WM]

1: initialize W by PCA
2: while the value of objective function don’t converge do
3:  for all linear projections {W™} of hash tables do
4: calculate the gradient of —
5: determine the step a with line search
oL

6: date W™ by W™ = W™ —

update y a * W
7:  end for
8: end while
9

: encoding H by H = sgn(W ' X)

The gradient of empirical objective LE is
OLE Of(Ri;Si5)
- Z o

ow} oy Wi
Of (Ri;Sij) —Rij 98i;
= 16
owp 1+ eftiiSij * ow}" (16)
Sy _ (145 - Sij)e®s oSy an
owp Zﬁle 51 ow}
oS OH}! OH]
? = Hy. 1 H ; J
owp ki ow}" + ow}’
OH 26— Wil' T xi

X
oWt (Lt ek 2y

From Equation (16), we can see that the smaller R;;S;;
is, the larger the magnitude of gradient is. As that R;;S;; is
small means that R;; has not been approximated well, the
optimization algorithm will approximate the poorly approx-
imated R;; with higher priority. Thus, we can expect that
all the semantic similarities will be approximated as well
as possible, and the model will have strong generalization
ability.

The gradient of regularizers LR is

%:71*4*Zwiw;wk+wg*2*wk (18)
ik

3.5.1 Complexity analysis

During the procedure of optimization, the main cost is to
calculate the loss and the gradient, and we analyse the time
complexity of them respectively. For the calculation of loss,
we need to first encode hash codes by linear hash functions
with complexity O(KMLN), then calculate empirical loss
LE with complexity O(K M LN.), consequently calculate the
regularizer with complexity O(K?M?N + KML). For the
calculation of gradient, we need to calculate the gradient
of H with complexity O(KMLN), then calculate the gra-
dient of empirical loss with complexity O(KM (K + L)N.),
finally calculate the gradient of regularizer with complexity
O(KM(KM + L)N). In total, the time complexity of each
iteration of Gradient Descent is

O(KM(KM + L)N + KM(K + L)N,) (19)



We can see that the time complexity of each iteration is
linear with the number of entities (i.e. N) and the number
of links (i.e. N¢). As the R is usually sparse, we can optimize
the final objective efficiently, and our method is scalable for
large-scale training data.

As the hash functions are linear projections W, the time
complexity for generating hash code for a query is O(KML)
which is very efficient.

3.6 Aggregation Strategy

For a query g, we retrieve entities from mutiple hash ta-
bles. Each returned entity has different hamming distances
from query in different hash tables, which make it hard to
rank these entities directly. This ranking problem mainly
comes from the absence of unified ranking strategy and cri-
teria.

One intuitive strategy is to rank the entities according to
the minimum of Hamming distances from query in all hash
tables. As hamming distances in each hash table only have
K + 1 discrete values (i.e. {0,1,2,---,K}), there may be
many returned entities sharing the same hamming distance
from query, which make the entities not discriminative. On
the other hand, the strategy also ignores some important
information of multiple hash tables. For example, the more
hash tables a pair of entities is close in, the more confident
the similarity relationship between them is. So, we propose
an aggregation strategy based on the intuitive strategy and
exploits the hamming distances in all the hash tables. Par-
ticularly, we first sort the M hamming distances of each
returned entity from query with ascending order; then, to
determine the order of two returned entities (say i,7), we
compare their sorted hamming distance list beginning from
the minimum distance and forwarding until one’s (say 7) dis-
tance is smaller than the other’s distance (say j); thus, we
say that ¢ is more similar to query ¢ than j.

Formally, we denote the sorted hamming distance list as
hdly = (hd'y hd(?, - hd}"), and the order between two
sorted hamming distance list (hdlg:, hdlg;) is defined by the
following definition.

DEFINITION 1. Given two sorted hamming distance lists
with ascending order, hdly; = (hdé?, hdfﬁ), .
(hd), hd) - hd(3"), hdle: < hdl; if and only if there
exists some | that

(k) _ pg®)

hdY = hd), vk <1
M < pg®

hd(}) < hd)

4. EXPERIMENTS

In this section, we will show the results of experiments on
one synthetic dataset and two public datasets (i.e. DBLP
and NUS-WIDE). First, we give a brief introduction of ex-
periment setting. Then, we will report and analyse the re-
sults.

4.1 Experiment Setting

The task of the experiment is hash look up. That is, given
a query, we need to search similar entities in hash table by
sequentially looking up hash buckets until enough entities
are found. The hash buckets are looked up in ascending or-
der of Hamming distance between the hash codes of these
buckets and the hash code of query. We select three met-
rics, i.e. Mean Average Precision (MAP), Precision-Recall

- hdM), hdly,

Curve, Hamming Radius to Search (HRS), to measure the
performance from different aspects. Given the number of
entities, Ny, to retrieve, HRS refers to the minimum Ham-
ming distance from query, within which we can retrieve at
least N, entities by scanning all the hash buckets. Given the
number of results to search, HRS reflects the size of search
space (i.e. the number of hash codes to scan), which is
tightly correlated to the search efficiency. Assume the hash
bit number of a hash table is K, then the number of hash
codes to search is nggs (IZ{) So, when HRS decreases by
1, the search space will reduce by ( HI}; S), which is dominant

in nggs (If) when HRS is relatively small. That is, when
HRS is relatively small, reduction by 1 on HRS will save
most of the search space.

We select three state-of-art hashing methods, i.e. Kernel-
based Supervised Hashing (KSH) [22], Semi-supervised Hash-
ing (SPLH) [36], Iterative Quantization (ITQ) [12], as base-
lines. KSH is a supervised method, SPLH is a semi-supervised
method, ITQ is a unsupervised methods. For KSH, we ran-
domly select 300 anchors in NUS-WIDE, and 50 anchors in
DBLP and the synthetic dataset.

We set parameters by grid search. And we get the optimal
parameters as v1 = 1.0 x 1071°, 45 = 1.0 x 107 7.

Finally, all the algorithms are implemented using Matlab.
We run experiments on a machine running Windows Server
2008 with 12 2.4GHz cores and 192GB memory.

4.2 Experiments on Synthetic Data
4.2.1 Dataset

Synthetic Data is generated to simulate the situation
that similarity arises from multiple components. This dataset
includes 400 entities represented with 4-dimensional feature
vector. The 4-dimensional feature vector consists of two 2-
dimensional feature vector with each 2-dimensional feature
vector corresponding to a similarity component.

(a) Similarity Component 1 (b) Similarity Component 2

Figure 3: Distribution of synthetic data on two com-
ponents. There are four clusters in each similarity
component. Each cluster is plotted by a specific
color and marker. The green lines represent the lin-
ear hash functions of MuCH.

Figure 3 shows the distribution of Synthetic Data on each
component respectively. In each component, there are four
clusters sampled from four Gaussian distribution with cen-
ters {(2,2),(2,-2),(-2,2),(—2,—2)}, and each cluster con-
tains 100 samples. In our experiments, the clusters are re-
garded as labels. In each component, we set the points be-
long to the same cluster similar, and the points belong to
different clusters dissimilar. Note that the clusters in one
component is independent with that in the other component.
From the global view, two entities are similar when they are



similar on any similarity component, otherwise, they are dis-
similar. We randomly select 300 entities as training set, and
the others as testing set. Besides, we randomly select 100
entities from the training set, and set their pairwise similar-
ities as observed.

4.2.2  Results on Synthetic Data

Figure 4 shows the hash projection matrix W. We can see
that four elements in different rows and columns are large,
and the others are very small.

Figure 4: Hash projection matrix W. The grid in
i-th row and j-th column represents W;;. The darker
the grid is, the magnitude of W;; is larger. As the
last two rows of W) (first two columns) is large and
the first two row is small, Similarity Component 2
can be extracted by W®, In a similar way, w®
(last two columns) can extract Similarity Compo-
nent 1.

So, the two large elements in the first two rows of W2
can extract the first two dimensions of the feature vector,
i.e. Similarity Component 1; and the two large elements in
the last two rows of W' extract the last two dimensions of
the feature vector, i.e. Similarity Component 2. That is,
MuCH can accurately identify the similarity components in
the synthetic data. Figure 3 shows the linear hash projec-
tions, W® and W(l), in two similarity components, respec-
tively. We can see that the clusters are separated well by
hash projections.

Table 1: Performance on Synthetic Data, where F1
is measured on the results that share the common
hash buckets with queries. All the methods use 4-bit
hash codes. MuCH learns two 2-bit hash tables.

Method | MuCH KSH | SPLH 1TQ

MAP | 0.9380 | 0.8275 | 0.6993 | 0.8581
F1 0.9310 | 0.2772 | 0.2359 | 0.2514

Table 1 shows the quantative performance on Synthetic
Data of all methods. Although the other methods can also
learn hash functions adaptive to the data distribution, but
they cannot identify the underlying similarity components.
Thus, these methods may split entity pairs that are similar
on just one component, and can only retrieve the entities

that are fully similar, i.e. similar on both similarity compo-
nents. So, the F1 score is very small. As the comparative
methods split the partially similarity pairs and mix the sim-
ilar and dissimilar entities up, the MAPs of them are much
smaller than that of MuCH.

4.3 Experiments on Public Datasets

4.3.1 Datasets

NUS-WIDE (8] is an image dataset crawled from Flickr
with about 260,000 images and 81 concept categories. A
pair of images is regarded similar if they share at least one
common concept, otherwise, they are dissimilar. As many
images are labeled by multiple concepts, the similarity be-
tween images is non-transitive. We use the top 10 con-
cepts in our experiments, and get about 180,000 images.
We randomly select 10000 images as training set, and 5000
images as testing set. Besides, we randomly sample 1000
images from training set, and set the pairwise similarities
between them as observed. The 500-dimeansional Bag-of-
Visual-Words (BOW) of SIFT are used as feature.

DBLP? is a digital bibliography of computer science com-
munity. We select the authors that have published at least
3 papers in 12 specific fields which include 33 corresponding
conferences (see Table 2). After the selection, we get about
3500 authors, and about 20000 papers. A pair of authors is
regarded similar if they have published papers in at least one
common field, otherwise, they are dissimilar. As an author
may publish papers in multiple fields, the similarity between
authors is non-transitive. We aggregate the paper contents
(title and abstract) of each user as a document, then Latent
Dirichlet Allocation (LDA) [3] is performed on the docu-
ments set to get the distribution of authors on 100 topics.
We use the 100-dimensional distribution on LDA topics as
feature. 2500 authors are selected as training set, and the
others are used as testing set. Besides, we select 200 au-
thors from the training set, and set the pairwise similarities
between them observed.

Table 2: Selected research fields and corresponding
conferences in DBLP

Field Conference
Datab ICDE, VLDB, SIGMOD,
atabase PODS, EDBT

KDD, ICDM, SDM,

Data Mining PKDD. PAKDD

Artificial Intelligence IJCAI, AAAI

Information Retrieval SIGIR, ECIR
Computer Vision CVPR
Machine Learning ICML, ECML

Algorithms & Theory | STOC, FOCS, SODA, COLT
Natural Language ACL, ANLP, COLING

Processing
Bioinformatics ISMB, RECOMB
Networking SIGCOMM, MOBICOM,
INFOCOM
Operating Systems SOSP, OSDI
Distributed & PODC, ICS

Parallel Computing

’http://www.informatik.uni-trier.de/~ley/db/



Table 3: Retrieval performance evaluated by MAP and corresponding Hamming Radius to Search (HRS).
We retrieve 500 nearest entities for evaluation. For MuCH-S, the bit number in second row represents the
bit number of single hash table, and the number of hash tables is 4. For MuCH-F, the bit number in second
row represents the total bit number of all hash tables, and the number of hash tables is 2.

NUS-WIDE DBLP
Method 16 bits 32 bits 16 bits 32 bits
MAP HRS MAP HRS MAP HRS MAP HRS
MuCH-S | 0.5084 | 2.0658 | 0.5191 | 5.6182 | 0.9188 3.172 0.9217 8.108
MuCH-F | 0.4863 | 0.7783 | 0.5051 | 2.4708 | 0.9108 | 1.8640 | 0.9151 | 3.7340
KSH 0.4788 | 2.8595 | 0.4836 | 6.1010 | 0.8808 | 4.5020 | 0.8866 9.3560
SSH 0.4419 1.6221 0.4451 | 3.7725 | 0.7812 | 6.2000 | 0.7389 | 13.6720
1TQ 0.4236 | 3.4185 | 0.4372 | 8.5899 | 0.8816 | 6.4260 | 0.8677 | 13.8980

4.3.2 Results on NUS-WIDE and DBLP

Table 3 shows the retrieval performance on both public
datasets. We can see that the MAPs of MuCH-S achieve at
least 3% absolute improvement over the baselines. Although
MuCH-S cost four times more storage than the others, but
its search efficiency (HRS) is still comparative to (even a
little higher than) the baselines (MuCH-F is our method).
MuCH-F cost the same storage as the baselines and achieve
similar search performance (MAP) as the baselines. But,
MuCH-F achieves much higher efficiency. On NUS-WIDE,
HRS (i.e. Hamming Radius to Search) of MuCH is at least
0.844 smaller in 16 bits setting and 1.3 smaller in 32 bits
setting than the others. On DBLP, HRS of MuCH is at least
1.38 smaller on 16 bits setting and 3.43 smaller on 32 bits
setting than the others. According to the above comparisons
with baselines, we can see that MuCH can achieve much
higher search accuracy with comparative search efficiency
and perform much more efficiently with same storage. This
means MuCH learns more effective representation for data
with non-transitive similarity than the competitive hashing
methods.
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Figure 5: MAP on different hash bit numbers,
{8,16,24,32}. The left figure is the results on NUS-
WIDE, and the right is the results on DBLP. For
MuCH, the hash bit number represents the bit num-
ber of each hash table, and the number of hash ta-
bles is 4.

Figure 5 shows the MAPs on different hash bit numbers
on NUS-WIDE and DBLP. Figure 6 and Figure 7 shows the
Precision-Recall curves on NUS-WIDE and DBLP. Differ-
ent from the above comparison, in Figure 5, the hash bit
number of single hash table in MuCH is equal to that for
the comparative methods. Although this will increase three
times more storage, the search efficiency (i.e. HRS) is still
comparable to other methods (comparing the HRS of MuCH
on 32 bits with the HRS of other methods on 16 bits in Table

o o
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Figure 6: Precision-Recall curve on NUS-WIDE.
From left to right, the methods in two figures use
16 hash bits and 32 hash bits respectively. MuCH_k
means MuCH learning two k-bit hash tables.
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Figure 7: Precision-Recall curve on DBLP. From
left to right, the methods in two figures use 16 hash
bits and 32 hash bits respectively. MuCH_k means
MuCH learning two k-bit hash tables.

3), and the retrieval accuracy (MAP) of MuCH outperforms
the best of other methods by 7.1% on NUS-WIDE and 3.4%
on DBLP. We can see that MuCH is also better than com-
parative methods on Precision-Recall curves in Figure 6 and
Figure 7.

4.3.3 Insights on MuCH

Figure 8 and Figure 9 shows the retrieval performance of
MuCH in different settings by varying hash bit number and
hash table number. Fixing the hash bit number, in most sit-
uations, MAP increases monotonously with respect to hash
table number. This means that we can improve retrieval
accuracy by adding more hash tables. Compared with in-
creasing hash bits in single hash table, this approach can
preserve the efficiency because the search time just increases
linearly with respect to the hash table number. On the other
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hand, HRS decreases monotonously with respect to the hash
table number. And the decrease of HRS achieves about 2
in some situations, which will improve the search efficiency
significantly. The reason may be that the number of sim-
ilarity components, which each hash table corresponds to,
decreases with the hash table number increasing. Then, the
non-transitive similarities can be approximated more accu-
rately, and the similar entities will be aggregated more close.

When the hash table number is fixed, MAP increases
monotonously with respect to hash bit number, and HRS
also increases monotonously with respect to hash bit num-
ber. Therefore, when hash table number is fixed, we need
to make a tradeoff between the retrieval accuracy and effi-
ciency.

5. CONCLUSION

In this paper, we argue that non-transitive similarity due
to various latent similarity components is a ubiquitous phe-
nomenon in many real-world applications, including image
retrieval, document search, recommendation system and so
on. Many existing hashing learning methods employ the
pairwise similarity as supervised information, while neglect-
ing the non-transitivity of those similarity relationships. In
this paper, we propose a novel hashing method, called Multi-
Component Hashing (MuCH), to capture the latent sim-
ilarity components to handle the non-transitive property.
MuCH employs linear hash functions to project data into
multiple hash tables, with each hash table corresponding to
a latent similarity component, by which the non-transitive
similarity can be maintained across different hash tables.
Given a query, MuCH generates multiple hash codes to re-
trieves similar entities from each hash table of the database

points. Then the returned results are organized though
using a specific aggregation strategy to generate the final
search results. Extensive experiments on both synthetic and
real benchmark datasets shows that our method outperforms
several representative hashing techniques on both accuracy
and efficiency

One of our future directions is to leverage multiple-view
and multiple-modality data sources to further improve the
performance though identifying more discriminant similarity
components.
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