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Abstract—Heterogeneous information network (HIN) embedding aims at learning the low-dimensional representation of nodes while

preserving structure and semantics in a HIN. Existing methods mainly focus on static networks, while a real HIN usually evolves over

time with the addition (deletion) of multiple types of nodes and edges. Because even a tiny change can influence the whole structure

and semantics, the conventional HIN embedding methods need to be retrained to get the updated embeddings, which is time-

consuming and unrealistic. In this paper, we investigate the problem of dynamic HIN embedding and propose a novel Dynamic HIN

Embedding model (DyHNE) with meta-path based proximity. Specifically, we introduce the meta-path based first- and second-order

proximities to preserve structure and semantics in HINs. As the HIN evolves over time, we naturally capture changes with the

perturbation of meta-path augmented adjacency matrices. Thereafter, we learn the node embeddings by solving generalized

eigenvalue problem effectively and employ eigenvalue perturbation to derive the updated embeddings efficiently without retraining.

Experiments show that DyHNE outperforms the state-of-the-arts in terms of effectiveness and efficiency.

Index Terms—Dynamic heterogeneous information network, network embedding, social network analysis
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1 INTRODUCTION

HETEROGENEOUS information network (HIN) has shed a
light on the analysis of network (graph) data, which con-

sists of multiple types of nodes connected by various types of
edges [1]. For example, the DBLP network has four types of
nodes: Author (A), Paper (P), Conference (C) and Term (T);
and multiple types of relations: writing/written relations
between authors and papers, and publish/published relations
between papers and conferences, etc. Moreover, a meta-path,
describing a composite relation between nodes, is widely
used to exploit rich semantics in HINs [2]. In DBLP, the meta-
path APA means the co-author relation, while APCPA repre-
sents that two authors publish papers in the same conference.
Hence, aHIN containsmuch complex structure and semantics
and studying HIN is of great importance for applications in
practice.

Recently, HIN embedding, as a promising way of HIN
analysis, has attracted considerable attention [3], [4]. It aims at

learning the low-dimensional representation of nodes while
preserving the HIN structure and semantic information, so
that various downstreamapplications, such as node classifica-
tion [5] and link prediction [6], [7], can be benefited fromHIN
embedding. Several HIN embeddingmethods have been pro-
posed. For example, the random walk based methods [8], [9],
the decomposition based methods [10], [11], [12], the deep
neural network based methods [7], [13], [14] and some task-
specific methods [15], [16]. However, all of these methods are
designed for static HINs, i.e., the structure and semantics do
not change over time. In reality, a HIN usually exhibits high
dynamics with the evolution of various types of nodes and
edges, e.g., the newly added (deleted) nodes or edges. More-
over, the changes of nodes and edges in a dynamic HIN may
vary by types. Still taking the DBLP as an example, an advisor
collaborates with different students on different papers,
resulting in the continuous evolutions of co-author relations
and emerging papers. Besides, a large number of new papers
are added to the network while the number of conferences
remains almost unchanged each year.

Actually, the current HIN embedding methods can hardly
handle such complex evolutions effectively in a dynamic
HIN. Even with a tiny change in a HIN, these methods have
to be retrained repeatedly at each time step, which is very
time-consuming and does not meet the realtime processing
demand. Although some methods are proposed to deal with
dynamic networks [17], [18], [19], theydo not consider the het-
erogeneity of networks and largely ignore various semantic
relations in HINs. Directly utilizing these methods for
dynamicHINswill inevitably lose some structure and seman-
tics, and reduce the performance of downstream tasks. Thus,
an effective and efficient dynamic HIN embedding method is
highly desirable in a real HIN analysis scenario.
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Basically, there are two fundamental problemswhich need
to be carefully considered for dynamic HIN embedding. One
is how to effectively preserve the structure and semantics in a
dynamic HIN. Since the network structure and semantic rela-
tions are the two most important and direct information in
HINs, they essentially ensure the effectiveness of the learned
embeddings. As the HIN evolves with a newly added node,
the local structure centered on this node will be changed, and
such changes will be gradually propagated across all the
nodes via different meta-paths, leading to changes in the
global structure. Moreover, the new node will not only estab-
lish direct links with neighborhoods, but also establish com-
plex relations with other nodes through various meta-paths,
which will inevitably influence the semantic relations in
HINs. Thus, both structure and semantics will change with
the evolution of the dynamic HIN. Modeling the changes and
encoding the (high-order) structure and semantics in the
learned embeddings simultaneously are very critical yet chal-
lenging for an effective dynamicHIN embeddingmethod.

The other problem is how to efficiently update the node embed-
dings without retraining on the whole HIN, when the HIN
evolves over time. For each time step, retraining a HIN
embedding method is the most straightforward way to get
the optimal embeddings. However, apparently, this strategy
is very time consuming, especially when the change of net-
work structure is very slight. In the era of big data, retrain-
ing manner becomes unrealistic. These problems motivate
us to seek an effective and efficient method to preserve the
structure and semantics for dynamic HIN embedding.

In this paper, we propose aDynamicHeterogeneous infor-
mationNetwork Embeddingmodel (DyHNE) withmeta-path
based proximity to effectively and efficiently learn the node
embeddings. Inspired by the perturbation theory [20] widely
used for capturing changes of a system, we learn the node
embeddings by solving the generalized eigenvalue problem
and model the evolution of the HIN with the eigenvalue per-
turbation. Along this line, we first adopt meta-path aug-
mented adjacencymatrices to model the typology of the HIN,
and build a basic static HIN embedding model (i.e., StHNE)
to preserve both of the meta-path based first- and second-
order proximities. Thus we can better capture the structure
and semantics in dynamic HINs. For capturing the evolution
of the HIN, we then utilize the perturbations of multiple
meta-path augmented adjacency matrices to model the
changes of the structure and semantics of the HIN in a natural
manner. Finally, we employ the eigenvalue perturbation the-
ory to incorporate the changes and derive the node embed-
dings efficiently. In this way, there is no need to retrain
StHNE to get the optimal embeddings.

The contributions of our work are summarized as
follows:

� For the first time, we study the problem of incremen-
tally learning node embeddings for dynamic HINs ,
which makes the HIN embedding more practical in
the real-world scenario.

� We initiate a static HIN embedding model (StHNE) to
preserve structure and semantics in a HIN. Based on
StHNE, a dynamic HIN embedding model with meta-
path basedproximity is proposed to derive the updated
embeddings efficiently, which can be applied to large-

scaleHINswith the linear time complexitywith respect
to the number of nodes.

� We conduct comprehensive evaluations to show that
our model significantly outperforms several state-of-
the-arts in terms of effectiveness and efficiency.

The remainder of this paper is organized as follows.
Section 2 introduces the related works. Section 3 describes
notations used in the paper and presents some definitions.
Then, we propose the dynamic HIN embedding method in
Section 4. Experiments and detailed analysis are reported in
Section 5. Finally, we conclude the paper in Section 6.

2 RELATED WORK

In this section, we first introduce the related methods of
general network embedding, and then discuss the recent
works on HIN embedding. At last, we briefly present recent
works on dynamic network embedding.

2.1 Network Embedding

Network embedding aims to to project a network into a low-
dimensional latent space while preserving the original struc-
tural information and properties in networks [3], [4], [21]. In
the literature, network embedding can be traced back to the
dimensionality reduction technique, which typically learns
the latent low-dimensional vectors for nodes or edges by
decomposing a network [22], [23]. Ahmed et al. [24] propose
to represent a graph as a matrix where matrix elements corre-
spond to edges between nodes, and then conduct matrix fac-
torization to learn a low-dimensional representation of a
graph. Isomap [22] aims to find the low-dimensional repre-
sentations for a data set by approximately preserving the geo-
desic distances between data pairs. These decomposition-
based graph embeddingmethods have achieved good perfor-
mance in some cases. However, they suffer from the complex
computation of a large-scale matrix decomposition, which
makes themneither practical nor effective for addressing data
mining tasks in large-scale networks.

Along with word2vec [25], which embeds words with
low-dimensional vectors, many advances have been made
toward this emerging network analysis paradigm [17], [18],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38]. For instance, [26], [30] combine random walk and skip-
gram [39] to learn node representations. These methods
construct some node sequences by randomly walking on a
network, and then leverage skip-gram based models to
learn node embeddings. In order to preserve the first-order
and second-order proximities between nodes, Tang et al.
[27] present a large-scale information network embedding
model. GraRep [28] and HOPE [40] are both designed to
model the high-order proximity between nodes in net-
works. [32], [36] perform matrix factorization to find a low-
rank space to represent a network. Some deep neural net-
work based models are also proposed for network embed-
ding, such as autoencoder based methods [31], [37]. Besides
network topology, some works focus on utilizing the side
information, e.g., node content in networks [29], [35]. Recent
graph neural networks (GNN) have achieve large attention
and some GNN-based models are proposed to solve various
data mining tasks (e.g., classification) [41], [42], [43].
Although these methods achieve promising performance,
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all of them can only handle homogeneous networks and
cannot be directly applied to embed HINs which contain
multiple types nodes and edges.

2.2 HIN Embedding

Due to the heterogeneity of networks,HIN embedding focuses
on preserving structural and semantic information in a net-
work [1], [3], which provides a new perspective for heteroge-
neous data analysis and makes network embedding more
practical in the real world. Analogous to homogeneous net-
work embeddingmentionedbefore,HINembeddingmethods
can be broadly categorized into four types. The first is meta-
path based randomwalk [8], [9], [44]. Dong et al. [9] propose to
randomly walk on a HIN based on meta-paths and then
embed different types of nodes into their corresponding latent
spaces. HIN2Vec [8] conducts random walk and learns latent
vectors of nodes by conducting multiple prediction training
tasks jointly. Second, some methods decompose a HIN into
simple networks and then model them separately [10], [11],
[16]. For example, EOE [11] decomposes the complex aca-
demic heterogeneous network into a word co-occurrence net-
work and an author cooperative network, and simultaneously
performs representation learning on node pairs in sub-net-
works. Third, there are also some neural network basedmeth-
ods that are designed to embed HINs [7], [13], [14], [45].Wang
et al. [7] model heterogeneous information with an autoen-
coder and then obtain the final node embeddings by aggregat-
ing multiple feature representations. At last, some HIN
embedding methods are proposed for exploring HIN unique
properties (e.g., heterogeneous structures) [46], [47] or con-
ducting specific tasks (e.g., recommendation and link predic-
tion) [15], [48]. In PME [15], Chen et al. propose to map
different types of nodes into the same relation space and con-
duct heterogeneous link prediction. All of the above methods
only focus on embedding static HIN networks, while ignoring
that the network itself is dynamically changing over time.

2.3 Dynamic Network Embedding

Recently, some researchers have begun to pay attention to
dynamic network embedding and some attempts have been
done [17], [33], [38], [49], [50], [51]. DANE [33] is proposed
to learn node embeddings in dynamic attribute networks,
which learns node embeddings with an offline method and
updates embeddings as network and attribute change over
time. Based on the generalized eigenvalue problem, DANE
captures the changes of structures with the adjacency matrix
and models the changes of attributes with the attribute
matrix, which only considers the first-order proximity. In
order to preserve high-order proximity between nodes in a
dynamic network, Zhu et al. [17] design a GSVD based
method DHPE to learn and update node embeddings as
network evolves. By transforming the GSVD problem to a
generalized eigenvalue problem, DHPE incorporates the
changes of dynamic networks with Katz Index based
matrix, so as to preserve high-order proximity in homoge-
nous networks. In DynamicTriad [38], Zhou et al. model the
evolution of a network as a triadic closure process and learn
node embeddings for each network snapshot at different
timesteps. DynamicTriad imposes triad (i.e., a group of
three vertices) to model the dynamic changes of network

structures, and models how a closed triad develops from an
open triad. Song et al. [50] extend skip-gram based models
and propose a dynamic network embedding framework.
Most recently, DHNE [52] is proposed to learn node embed-
dings in dynamic heterogeneous networks. DHNE con-
structs comprehensive historical-current networks based on
subgraphs of snapshots, on which random walks are per-
formed and a dynamic heterogeneous skip-gram model is
used to learn the embeddings. DHNE focuses on preserving
dynamic characteristics of nodes with a dynamic heteroge-
neous skip-gram mode, which cannot incrementally update
node embeddings without retraining model.

All in all, the aforementioned methods are either designed
for homogeneous networks which contains relatively simple
structures, or cannot handle dynamic HINs which have to be
retrained on thewholeHIN to obtain fresh embeddings as the
structure changes.

3 NOTATIONS AND DEFINITIONS

As a HIN evolves over time, nodes and edges may be added
(deleted) and changes will vary by types. Formally, we
define a dynamic HIN as follows:

Definition 1. (Dynamic Heterogeneous Information Net-
work). A dynamic Heterogeneous Information Network at
time step t is defined as Gt ¼ ðVt; Et;f;’Þð1 � t � T Þ, where
Vt and Et denote the set of nodes and edges at time step t. In a
HIN, each node v and edge e are associated with their type map-
ping functions f : Vt ! T V and ’ : Et ! T E . T V and T E
denote the sets of node and edge types, where jT Vj þ jT Ej > 2.

A meta-path connects two nodes via semantic paths,
which is superior to capture structure and semantics in a
HIN [1], [2].

Definition 2. (Meta-path). A meta-path m is defined as a
sequence of node type tvi 2 T V or edge type tej 2 T E in the
form of tv1 �!

te1
tv2 � � � �!

tel
tvlþ1

(abbreviated as tv1 tv2 � � � tvlþ1)
which describes a composite relation between v1 and vlþ1. A
path ðv1; v2; . . . ; vlþ1Þ following the meta-path m is called as
path instance of meta-pathm.

Example 1. As shown in Fig. 1, a meta-path A �!write P
�!Published

C �!publish
P �!written

A (abbreviated asAPCPA) describes
a composite relation between two authors, which indicates

that ‘two authors write papers published in the same conference’.
Notice that two nodes can be connected via multiple meta-

paths, and thus there are multiple path instances between

two nodes. In Fig. 1, nodes a1 and a3 can be connected via

APA (e.g., path instance a1p2a3) and APCPA (e.g., path

instance a1p1c2p2a3).

Since meta-paths have shown their superiority in terms
of capturing structure and semantics [1], we define the
meta-path based first- and second-order proximities and
meta-path augmented adjacency matrix in HINs.

Definition 3. (Meta-path based First-Order Proximity). For
a pair of nodes ðvi; vjÞ, the number of path instances following
the meta-path m connecting them represents the first-order
proximity between vi and vj, which measures the local structure
proximity between nodes in HINs.
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Definition 4. (Meta-path based Second-Order Proximity).
Under a meta-path m, the neighborhoods NðviÞm of node vi
contain nodes connected to vi via path instances following m.
The proximity between vi’s neighborhoods NðviÞm and vj’s
neighborhoods NðvjÞm is defined as the second-order proximity
based on meta-path m, which measures the similarity of two
nodes in term of their neighborhood structure.

Example 2. Fig. 1 shows a toy example of the meta-path
based first- and second-order proximities in a HIN. Note
that the meta-path based first-order proximity indicates
the pairwise similarity between nodes, while the meta-
path based second-order proximity means the similarity
between a node and its neighborhood set.

Since the adjacency matrix is the most basic and common
way to model the network structure, we integrate meta-path
and adjacency matrix to define the meta-path augmented
adjacency, which can capture the structure and semantics of
theHIN in a naturalmanner.

Definition 5. (Meta-path Augmented Adjacency Matrix).
Given a meta-path m, we define a meta-path augmented adja-
cency matrix as Wm ¼ ½wm

ij �, where wm
ij is the number of path

instances following m connecting nodes vi and vj. Naturally,
Wm combines the topological structure and semantics of the
HIN. And it is symmetric, ifm is a symmetric meta-path.

4 THE DYHNE MODEL

In this section, we first present the static HIN embedding
model as a basic model for preserving the meta-path based
first- and second-order proximities, which learns the node
embeddings by solving the generalized eigenvalue problem.
Then we introduce the eigenvalue perturbation theory to
derive the updated embeddings, so that our dynamic model
(DyHNE) with meta-path based proximity can learn the node
embeddings effectively while capturing the structure and
semantics efficiently.Wepresent an overall schematic illustra-
tion of StHNE andDyHNE in Fig. 2.

4.1 Basic Idea

The core idea of DyHNE is to build an effective and efficient
architecture that can capture the changes of structure and
semantics in a dynamic HIN and derive the node embed-
dings efficiently. To achieve this, we first introduce the
meta-path based first-order and second-order proximities to
preserve structure and semantics in HINs. As shown in

Fig. 1. A toy example of the meta-path based first- and second-order prox-
imities in aHIN.With themeta-pathAPA, nodes a1 and a2 should be placed
closely in the low-dimensional space as they are connected with a meta-
path instance a1p1a2, which indicates the meta-path based first-order prox-
imity. Since the neighborhoods of a1 is the same as a4’s, i.e., fa2; a3g, under
the meta-path APA, nodes a1 and a4 should also be close to each other in
the low-dimensional space even though they are not directly connected,
which indicates themeta-path based second-order proximity.

Fig. 2. The overall architecture of the proposed StHNE and DyHNE. At time step t, StHNE extracts three meta-path augmented adjacency matrices (i.e.,
WAPA,WAPCPA andWAPTPA) basedonmeta-pathAPA,APCPA andAPTPA, and fuses themwith weights. By solving the generalized eigenvalue problem,
StHNE derives the node embeddings that preserve themeta-path based first- and second-order proximities. At the next time stem tþ 1, three new nodes
(i.e., author a3, paper p4 and term t3) appear in the HIN, and correspondingly, five edges (i.e., ða3; p4Þ; ða1; p4Þ; ðp4; c2Þ; ðp4; t2Þ; ðp4; t3Þ) join the network. The
changes of structure and semantics in the HIN are captured with the perturbation of fused meta-path augmented adjacency matrix DW. Based on matrix
perturbation theory, DyHNE efficiently derives the changed embeddingDU and updates network embeddings fromUðtÞ toUðtþ1Þ withUðtþ1Þ ¼ DUþUðtÞ.
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Fig. 2, three augmented adjacency matrices based on meta-
path APA, APCPA and APTPA are defined and fused with
weights, which gives rise to the fused matrix WðtÞ at time t.
Then, we propose a basic static HIN embedding model
(StHNE) which learns node embeddings UðtÞ by solving the
generalized eigenvalue problem in terms of the fused
matrix WðtÞ. As the HIN evolves from time t to tþ 1, new
nodes and edges are added into the network (i.e., nodes a3,
p4 and t3; edges ða3; p4Þ; ða1; p4Þ; ðp4; c2Þ; ðp4; t2Þ and ðp4; t3Þ),
leading to the changes of meta-path augmented adjacency
matrices. Since these matrices are actually the realization of
structure and semantics in the HIN, we naturally capture
changes of structure and semantics with the perturbation of
the fused matrix (i.e., DW). Further, we tailor the embed-
dings update formulas for dynamic HIN with matrix per-
turbation theory, so that our dynamic HIN embedding
model can efficiently derive the changed embedding DU
and update network embedding from UðtÞ to Uðtþ1Þ with
Uðtþ1Þ ¼ DUþUðtÞ.

In a nutshell, the proposed StHNE is capable of capturing
the structures and semantics in a HIN with meta-path based
first-order and second-order proximities, andDyHNEachieves
the efficient update of network embeddings with the perturba-
tion ofmeta-path augmented adjacencymatrices.

4.2 Static HIN Embedding

Before achieving effective update node embeddings when
the HIN evolves over time, a proper static HIN embedding
for capturing structural and semantic information is a must.
Hence, we next propose a static HIN embedding model,
which preserves themeta-path based first- and second-order
proximities.

4.2.1 StHNE With Meta-Path Based

First-Order Proximity

The meta-path based first-order proximity models the local
proximity in HINs, which means that the nodes connected
via path instances are similar. Given a node pair ðvi; vjÞ con-
nected via path instances following m, we model the meta-
path based first-order proximity as follows:

pm1 ðvi; vjÞ ¼ wm
ij jjui � ujjj22; (1)

where ui 2 Rd is the d-dimension representation vector of
node vi. To preserve the meta-path based first-order proxim-
ity inHINs,weminimize the following objective function:

Lm
1 ¼

X

vi;vj2V
wm

ij jjui � ujjj22: (2)

As larger wm
ij indicates that vi and vj have more connections

via the meta-path m, which makes nodes vi and vj closer in
the low-dimensional space.

4.2.2 StHNE With Meta-Path Based

Second-Order Proximity

The meta-path based second-order proximity is determined
through the shared neighborhood structure of nodes. Given
the neighbors of node vp under the meta-path m, denoted as
NðvpÞm, we can model the second-order proximity based on

meta-path as follows:

pm2 ðvp;NðvpÞmÞ ¼ jjup �
X

vq2NðvpÞm
wm

pquqjj22: (3)

Here, we normalize wm
pq so that

P
vq2NðvpÞm wpq ¼ 1.

With Eq. (3), we keep the node p close to its neighbors
under a specific meta-path. As shown in Fig. 1, under the
meta-path APA, nodes a1 and a4 share the same neighbor-
hood set fa2; a3g, Eq. (3) guarantees that node a1 is close to
set fa2; a3g, and node a4 is also close to fa2; a3g, so nodes a1
and a4 will be close even if they are not directly connected.
This implicitly preserves the meta-path based second-order
proximity of two unconnected nodes, as defined in Defini-
tion 3. To preserve the meta-path based second-order prox-
imity in HINs, we minimize the following object function:

Lm
2 ¼

X

vp2V
jjup �

X

vq2NðvpÞm
wm

pquqjj22: (4)

Intuitively,minimizing Eq. (4)will cause the small distance
between node vp and its neighbors in the low-dimensional
space. Thus, nodes that shares the same neighbors with
node vp will also be close to vp. In this way, the meta-path
based second-order proximity defined in Definition 3 can
be preserved.

4.2.3 The Unified StHNE Model

Considering multiple semantic relations in a HIN, we define
a set of meta-paths M and assign weights fu1; u2; . . . ; ujMjg
to each meta-path, where 8ui > 0 and

PjMj
i¼1 ui ¼ 1. Thus,

our unified model, which combines multiple meta-paths
while preserving both of the meta-path based first- and sec-
ond-order proximities, is as follows:

L ¼
X

m2M
umðLm

1 þ gLm
2 Þ; (5)

where g is the trade-off factor. Now, the static HIN embed-
ding problem is turned to

arg min
U>DU¼I

X

m2M
umðLm

1 þ gLm
2 Þ; (6)

where D is the degree matrix that will be described later.
The constraint U>DU ¼ I removes an arbitrary scaling fac-
tor in the embedding and avoids the degenerate case where
all node embeddings are equal.

4.3 Optimization With Spectral Theory

Inspired by spectral theory [23], [53], we transform the
problem of Eq. (6) as the generalized eigenvalue problem,
so that we can get a closed-form solution and dynamically
update embeddings with the eigenvalue perturbation the-
ory [20]. Hence, we reformulate Eq. (2) as follows:

Lm
1 ¼

X

vi;vj2V
wm

ij jjui � ujjj22

¼ 2trðU>LmUÞ;
(7)

where trð�Þ is the trace of the matrix, U is the embedding
matrix, Lm ¼ Dm �Wm is the Laplacian matrix under the
meta-pathm, andDm is a diagonal matrix withDm

ii ¼
P

j w
m
ij .
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Similarly, Eq. (4) can be rewritten as follows:

Lm
2 ¼

X

vp2V
jjup �

X

vq2NðvpÞm
wm

pquqjj22

¼ 2trðU>HmUÞ;
(8)

where Hm ¼ ðI�WmÞ>ðI�WmÞ is symmetric. As discussed
earlier, we fuse all meta-paths inM, which gives rise to

W ¼
X

m2M
umW

m; D ¼
X

m2M
umD

m: (9)

Hence, the StHNE can be reformulated as

L ¼ trðU>ðLþ gHÞUÞÞ; (10)

where L ¼ D�W and H ¼ ðI�WÞ>ðI�WÞ. Now, the
problem of static HIN embedding reduces to

arg min
U>DU¼I

trðU>ðLþ gHÞUÞ; (11)

where Lþ gH is symmetric.
The problem of Eq. (11) boils down to the generalized

eigenvalue problem as follows [54]:

ðLþ gHÞU ¼ DLU; (12)

where L ¼ diagð�1; �2; . . . ; �NMÞ is the eigenvector matrix,
NM is the number of nodes in the meta-path setM.

Having transformed the StHNE as the generalized eigen-
value problem, the embedding matrix U is given by the top-
d eigenvectors with the smallest non-zero eigenvalues. As
the HIN evolves from time t to tþ 1, the dynamic HIN
embedding model focuses on efficiently updating UðtÞ to
Uðtþ1Þ. That is, update the eigenvectors and eigenvalues.

4.4 Dynamic HIN Embedding

The core idea of a dynamic HIN embedding model is to
learn node embeddings efficiently in a dynamic manner,
thus we next develop an efficient way to update the eigen-
vectors and eigenvalues based on matrix perturbation.

4.4.1 Matrix Perturbation in DyHNE

Following the previous works [17], [33], we assume that the
network evolves on a common node set of cardinality N . A
nonexistent node is treated as an isolated node with zero
degree and thereby the evolution of a network can be
regarded as the change of edges [55]. Besides, the addition
(deletion) of edges may vary by types. It is naturally appeal-
ing to capture the evolution of a dynamic HIN with the
perturbation of meta-path augmented adjacency matrix
DW ¼

P
m2M umDW

m. Thus, the changes of L and H can be
calculated as follows:

DL ¼ DD� DW; (13)

DH ¼ DW>DW� ðI�WÞ>DW� DW>ðI�WÞ: (14)

Since perturbation theory can give approximate solution to
a problem by adding a perturbation term [20], we can update
eigenvalues and eigenvectors from the eigenvalues and eigen-
vectors at the previous timewith the eigenvalue perturbation.
Hence, at new time step, we have the following equation

based on Eq. (12):

ðLþ DLþ gHþ gDHÞðUþ DUÞ

¼ ðDþ DDÞðLþ DLÞðUþ DUÞ; (15)

where DU and DL are the changes of the eigenvectors and
eigenvalues. Here, we omit the ðtÞ superscript for brevity
since the perturbation process for any time step t is the
same. Let us focus on a specific eigen-pair ðui; �iÞ, Eq. (15)
can be rewritten as follows:

ðLþ DLþ gHþ gDHÞðui þ DuiÞ

¼ ð�i þ D�iÞðDþ DDÞðui þ DuiÞ: (16)

Hence, the dynamic HIN embedding problem is how to cal-
culate the changes of the ith eigen-pair ðDui;D�iÞ, because if
we have DU and DL between t and tþ 1, we can efficiently
update the embedding matrix with Uðtþ1Þ ¼ UðtÞ þ DU.

We first introduce how to calculate D�i. By expanding
Eq. (16) and removing the higher order terms that have lim-
ited effects on the accuracy of the solution [20], such as DLDui

and D�iDDDui, then based on the fact ðLþ gHÞui ¼ �iDui,
we have the following:

ðLþ gHÞDui þ ðDLþ gDHÞui

¼ �iDDui þ �iDDui þ D�iDui: (17)

Furthermore, left multiplying both sides by u>
i , we have

u>
i ðLþ gHÞDui þ u>

i ðDLþ gDHÞui

¼ �iu
>
i DDui þ �iu

>
i DDui þ D�iu

>
i Dui: (18)

As Lþ gH and D are symmetric, then based on the fact
ðLþ gHÞui ¼ �iDui and right multiplying both side by Dui,
we have u>

i ðLþ gHÞDui ¼ �iu
>
i DDui. Thus, we can rewrite

Eq. (18) as follows:

u>
i ðDLþ gDHÞui ¼ �iu

>
i DDui þ D�iu

>
i Dui: (19)

Based on Eq. (19), we get the changes of the eigenvalue �i

D�i ¼
u>
i DLui þ gu>

i DHui � �iu
>
i DDui

u>
i Dui

: (20)

It is easy to see that D is a positive-semidefinite matrix, so
we have u>

i Dui ¼ 1 and u>
i Duj ¼ 0ði 6¼ jÞ [20], [56]. Thus,

D�i ¼ u>
i DLui þ gu>

i DHui � �u>
i DDui: (21)

Having got the change of eigenvalue D�i between two con-
tinuous time steps, our next goal is to calculate the changes
of eigenvectors Dui.

As a HIN usually evolves smoothly [55], the network
changes based on meta-paths (i.e., DW) are subtle. We
assume the perturbation of the eigenvectors Dui is linearly
weighted by the top-d eigenvectors with the smallest non-
zero eigenvalues [20]

Dui ¼
Xdþ1

j¼2;j6¼i

aijuj; (22)
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where aij indicates the weight of uj on Dui. Thus, the prob-
lem of calculating Dui now is transformed into how to deter-
mine these weights. Considering Eq. (16), by replacing Dui

with Eq. (22) and removing the higher order terms that
have limited effects on the accuracy of the solution [57], we
obtain the following:

ðLþ gHÞ
Xdþ1

j¼2;j 6¼i

aijuj þ ðDLþ gDHÞui

¼�iD
Xdþ1

j¼2;j6¼i

aijuj þ �iDDui þ D�iDui:

(23)

With the fact that ðLþ gHÞ
Pdþ1

j¼2 aijuj ¼ D
Pdþ1

j¼2 aij�juj,
and by multiplying u>

p ð2 � p � dþ 1; p 6¼ iÞ on both sides of
Eq. (23), we get

u>
p D

Xdþ1

j¼2;j6¼i

aij�juj þ u>
p ðDLþ gDHÞui

¼�iu
>
p D

Xdþ1

j¼2;j6¼i

aijuj þ �iu
>
p DDui þ D�iu

>
p Dui:

(24)

Based on u>
i Dui ¼ 1 and u>

i Duj ¼ 0ði 6¼ jÞ, we can simplify
the above formula and get

�paip þ u>
p ðDLþ gDHÞui ¼ �iaip þ �iu

>
p DDui: (25)

Finally, we obtain the weight aip as follows:

aip ¼
u>
p DLui þ gu>

p DHui � �iu
>
p DDui

�i � �p
; i 6¼ p: (26)

To sum up, we now have the changes of eigenvalues and
eigenvectors based on Eqs. (21), (22) and (26). The new eigen-
values and eigenvectors at tþ 1 can be updated as follows:

Lðtþ1Þ ¼ LðtÞ þ DL; Uðtþ1Þ ¼ UðtÞ þ DU: (27)

4.4.2 Acceleration

Until now, a straightforward idea to update the embeddings
is to calculate Eqs. (21), (22) and (26) for Eq. (27). However,
the calculation of Eq. (21) is time-consuming due to the defi-
nition of DH (i.e., Eq. (14)). Thus, we propose an acceleration
solution tailored for dynamic HIN embedding.

Let us focus on D�i and aij in a more detailed way. We
replace DH with Eq. (14) and remove the higher order terms
as earlier, Eqs. (21) and (26) can be reformulated as follows:

D�i ¼u>
i DLui � �iu

>
i DDui

þgf½ðW� IÞui�>DWui þ ðDWuiÞ>ðW� IÞuig;
(28)

aij ¼
u>
j DLui � �iu

>
j DDui

�i � �j

þ gf½ðW� IÞuj�>DWui þ ðDWujÞ>ðW� IÞuig
�i � �j

:

(29)

For convenience sake, we rewrite D�i and aij as follows:

D�i ¼ Cði; iÞ þ g½Að:; iÞ>Bð:; iÞ þ Bð:; iÞ>Að:; iÞ�; (30)

aij ¼
Cðj; iÞ þ g½Að:; jÞ>Bð:; iÞ þ Bð:; jÞ>Að:; iÞ�

�i � �j
; (31)

where Að:; iÞ ¼ ðW� IÞui, Bð:; iÞ ¼ DWui and Cði; jÞ ¼
u>
i DLuj � �iu

>
i DDuj.

Obviously, the calculation ofA is time-consuming. Hence,
we defineAðtþ1Þð:; iÞ at time step tþ 1 as follows:

Aðtþ1Þð:; iÞ ¼ ðW� Iþ DWÞðui þ DuiÞ: (32)

Replacing Dui with Eq. (22), we have

Aðtþ1Þð:; iÞ ¼ ðW� Iþ DWÞðui þ
Xdþ1

j¼2;j6¼i

aijujÞ

¼
Xdþ1

j¼2

bijðW� Iþ DWÞuj;

(33)

where bij ¼ aij if i 6¼ j, otherwise, bij ¼ 1. Furthermore, we
can obtain the following:

Aðtþ1Þð:; iÞ ¼
Xdþ1

j¼2

bijðAtð:; jÞ þ Btð:; jÞÞ: (34)

Now, we reduce the time complexity of updating Aðtþ1Þ

from OðedÞ to Oðd2Þ, which guarantees the efficiency of
DyHNE.

4.4.3 Complexity Analysis

Since we only need to run the static model once at the very
beginning of the dynamic model, we can dynamically
update the representation of the network over T time steps.

For the StHNE, given a meta-path set Mwith NM nodes,
the time complexity of the generalized eigenvalue problem
is OðdN2

MÞ, where d is the embedding dimension. Although
the theoretical time complexity of the StHNEl is high, the
real running time is very low since we only need to calculate
top-d eigenvalues and eigenvectors of a sparse matrix.

For the DyHNE, let us denote T as the total number of
the time steps. f and g are the number of non-zeros entries
in the sparse matrices DD and DW, respectively. In each
time step, the time complexities of calculating B and C are
OðfdÞ and Oððf þ gÞd2Þ, respectively. To calculate ai and
top-d eigenvectors, our model takes Oðd2Þ and Oðd2NMÞ,
respectively. Finally, updating Aðtþ1Þ takes Oðd2Þ. Overall,
the time complexity of the proposed dynamic update
method over T time steps is OðT ðf þ gþNMÞd2Þ. Since
d � NM, f and g are often small, the time complexity of our
dynamic model is linear with the number of nodes in the
network.

5 EXPERIMENTS

In this section, we conduct comprehensive and extensive
experiments to demonstrate the effectiveness and efficiency
of the proposed model. Specifically, we first evaluate the
effectiveness of our proposed StHNE and DyHNE. Next is
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the evaluation of the efficiency of the dynamic update
methods. At last, we investigate the parameter sensitivity.
Code and dataset are available online.1

5.1 Datasets and Settings

5.1.1 Datasets

We evaluate models on three datasets, including two aca-
demic networks (i.e., DBLP and AMiner) and a social media
network (i.e., Yelp). The statistics of these datasets are sum-
marized in Table 1.

� Yelp2 is a social media dataset provided by Yelp
Challenge. We extract information related to restau-
rants of three sub-categories: “American (New)
Food”, “Fast Food” and “Sushi Bars” [58], and con-
struct a HIN. The meta-paths that we are interested
in are BRURB (i.e., the user reviewed on two busi-
nesses) and BSB (i.e., the same star level businesses).

� DBLP3 is an academic network in computer science.
In this data set, 4057 authors are labeled with their
research areas such as data mining. We consider
meta-paths including APA (i.e., the co-author rela-
tionship), APCPA (i.e., authors sharing conferences)
and APTPA (i.e., authors sharing terms).

� AMiner4 is also an academic network, which evolved
from 1990 to 2005 in five research domains. For each
author who published in these five domains, his/her
label is assigned to the category with the majority of
his/her publications. As in DBLP, we are also inter-
ested in APA, APCPA and APTPA.

Please note that we can actually take much more meta-
paths into consideration for HIN embedding. However,
there are infinite meta-paths in a HIN, not all meta-paths
have a positive effect on embeddings [44], [59]. We consider
two aspects to choose the meta path. On the one hand, we
analyze the structure and semantics of different meta-path.
For example, in DBLP dataset, meta-path APA contains
much more information than PCP, since APA indicates a
co-author relationship but PCP only means two paper

published in the same conference. Hence, meta-path APA is
much important for co-author relationship prediction. On
the other hand, we select widely used meta-paths according
to the previous works [9], [44], [58]. In Esim [44], authors
give different weights to various meta-paths, so as to evalu-
ate the importance of different meta-path to downstream
tasks, which inspires us to select meta-path with higher
weights. Since the selection of meta-path is still an open
question and our work does not focus on this point, we
select the most used and meaningful meta-paths based on
prior knowledge and previous works [9], [44], [58].

5.1.2 Baselines

We compare our proposed models StHNE and DyHNE with
comprehensive state-of-the-art network embedding methods,
including two homogeneous network embedding methods
(i.e., DeepWalk [26] and LINE [27]); two heterogeneous
information network embedding methods (i.e., ESim [44] and
metapath2vec [9]); and two dynamic homogeneous network
embedding methods (i.e., DANE [33], DHPE [17] and DHNE
[52]). Additionally, in order to verify the effectiveness of the
meta-path based first-order and second-order proximities, we
test the performance of StHNE-1st and StHNE-2nd. We use
codes of the baselinemethods provided by their authors.

� DeepWalk [26]5 performs random walks on networks
and then learns low-dimensional node vectors via
Skip-gram model.

� LINE [27]6 considers first-order and second-order
proximities in networks. We denote the model that
only uses first-order or second-order proximity as
LINE-1st or LINE-2nd respectively.

� ESim [44]7 takes a given set of meta-paths as input to
learn the representation of nodes. For fair compari-
son, we tune the weights of meta-paths as we do in
our models.

� metapath2vec [9]8 leverages meta-path based random
walk and Skip-gram to learn node embedding. Since
metapath2vec cannot handle multiple meta-paths at
the same time, we tune theweights ofmeta-paths aswe
do in our models and then fuse embeddings learned
from singlemeta-pathswith the optimalweights.

� DANE [33]9 is a framework for dynamic attributed net-
work embedding. We train this model without consid-
ering node types and learn the representation of nodes.

� DHPE [38]10 adopts the generalized SVD to preserve
the high-order proximity in homogeneous network,
which is also designed for incrementally updating
the embeddings of nodes.

� DHNE [52]11 constructs comprehensive historical-
current networks based on subgraphs of snapshots, on
which random walks are performed and a dynamic
heterogeneous skip- gram model is used to learn the
embeddings.

TABLE 1
Statistics of Datasets

Datasets Node Types #Nodes Meta-path Time Steps

Yelp

Star (S) 9

10User (U) 1,286 BSB
Review (R) 33,360 BRURB
Business (B) 2,614

DBLP

Term (T) 8,833 APA

10Paper (P) 14,376 APCPA
Author (A) 14,475 APTPA

Conference (C) 20

AMiner

Term (T) 8,811 APA

10Paper (P) 18,181 APCPA
Author (A) 22,942 APTPA

Conference (C) 22

1. https://github.com/rootlu/DyHNE
2. https://www.yelp.com/dataset/challenge
3. https://dblp.uni-trier.de
4. https://www.aminer.cn/data

5. https://github.com/phanein/deepwalk
6. https://github.com/tangjianpku/LINE
7. https://github.com/shangjingbo1226/ESim
8. https://ericdongyx.github.io/metapath2vec/m2v.html
9. http://www.public.asu.edu/ jundongl/code/DANE.zip
10. http://pengcui.thumedialab.com
11. https://github.com/Yvonneupup/DHNE
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� StHNE-1st is our static model for HIN embedding
only utilizing the first-order proximity.

� StHNE-2nd is our static model for HIN embedding
only utilizing the second-order proximity.

5.1.3 Parameters

For a fair comparison, we set the embedding dimension
d ¼ 100 for all models. The trade-off factor g in our method
is set as 1. We adopt grid search with a range of ð0; 1Þ to
obtain the best-weighted combination of meta-paths in eval-
uations assuming that we have the ground truth. The size of
negative samples is set as 5. We set the number of walks per
node as 10, the walk length as 50 and the window size as 5.
To apply the homogeneous network embedding models for
HINs, we ignore the types of nodes and edges. We will
make our code publicly available after the review.

5.2 Effectiveness of StHNE

To evaluate the effectiveness of StHNE, here we learn the node
embeddings with the static embedding methods on the whole
HINwithout considering the evolution of the network. In other
words, given a dynamic network with 10 time steps fG1;
. . . ;G10g, we conduct all static network embedding methods,
including StHNE, on the union network, i.e., G1 [ G1 [ � � � G10.

5.2.1 Node Classification

Node classification is a common task to evaluate the perfor-
mance of representation learning on networks. In this task,
after learning the node embeddings on the fully evolved net-
work, we train a logistic regression classifier with node
embeddings as input features. The ratio of training set is set as
40, 60, and 80 percent. We set the weights of BSB and BRURB
in Yelp to 0.4 and 0.6. In DBLP, we assign weights {0.05, 0.5,
0.45} to {APA,APCPA,APTPA}. InAMiner, we assignweights

{0.25, 0.5, 0.25} to {APA, APCPA, APTPA}. We report the
results in terms ofMacro-F1 andMicro-F1 in Table 2.

Aswe can observe, the StHNEoutperforms all baselines on
three datasets. It improves classification performance by
about 8.7 percent in terms of Macro-F1 averagely with 80 per-
cent training ratio, which is due to the weighted integration of
meta-paths and the preservation of network structure. Both
our model StHNE, ESim and metapath2vec fuse multiple
meta-paths with weights, but the performances of ESim and
metapath2vec are slight worse on three datasets. This may be
caused by the separation of meta-paths fusion and model
optimization, which lose some information between multiple
relationships for HIN embedding.We also notice that StHNE-
1st and StHNE-2nd both outperform LINE-1st and LINE-2nd
in most cases, which shows the superiority of the meta-path
based first- and second-order proximities in HINs. From a
vertical comparison, our StHNE continues to perform best
against different sizes of training data, which implies the sta-
bility and robustness of ourmodel.

5.2.2 Relationship Prediction

ForDBLP andAMiner, we are interested in the co-author rela-
tionships (APA). Hence, we generate training networks by
randomly hiding 20 percentAP in DBLP and 40 percentAP in
AMiner as AMiner is much larger. For Yelp, we want to find
two businesses that one person has reviewed (BRURB), which
can be used to recommend businesses for users. Thus, we ran-
domly hide 20 percent BR to generate the training network.
We set the weights of BSB and BRURB in Yelp to 0.4 and 0.6.
In DBLP, we assign weights {0.9, 0.05, 0.05} to {APA, APCPA,
APTPA}. In AMiner, we assign weights {0.4, 0.3, 0.3} to {APA,
APCPA, APTPA}. We evaluate the prediction performance on
testing networkswithAUC andAccuracy.

Table 3 shows the comparison results of different meth-
ods. Overall, we can see that StHNE achieves better relation

TABLE 2
Performance Evaluation of Node Classification on Static HINs

Datasets Metric Tr.Ratio DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE-1st StHNE-2nd StHNE

Yelp

Macro-F1

40% 0.6021 0.5389 0.5438 0.6387 0.5872 0.6193 0.5377 0.6421
60% 0.5954 0.5865 0.5558 0.6464 0.6081 0.6639 0.5691 0.6644
80% 0.6101 0.6012 0.6068 0.6793 0.6374 0.6909 0.5783 0.6922

Micro-F1

40% 0.6520 0.6054 0.6105 0.6896 0.6427 0.6838 0.6118 0.6902
60% 0.6472 0.6510 0.6233 0.7011 0.6681 0.7103 0.6309 0.7017
80% 0.6673 0.6615 0.6367 0.7186 0.6875 0.7232 0.6367 0.7326

DBLP

Macro-F1

40% 0.9295 0.9271 0.9172 0.9354 0.9213 0.9392 0.9283 0.9473
60% 0.9355 0.9298 0.9252 0.9362 0.9311 0.9436 0.9374 0.9503
80% 0.9368 0.9273 0.9301 0.9451 0.9432 0.9511 0.9443 0.9611

Micro-F1

40% 0.9331 0.9310 0.9219 0.9394 0.9228 0.9421 0.9312 0.9503
60% 0.9383 0.9328 0.9291 0.9406 0.9305 0.9487 0.9389 0.9519
80% 0.9392 0.9323 0.9347 0.9502 0.9484 0.9543 0.9496 0.9643

AMiner

Macro-F1

40% 0.8838 0.8929 0.8972 0.9449 0.9487 0.9389 0.9309 0.9452
60% 0.8846 0.8909 0.8967 0.9482 0.9490 0.9401 0.9354 0.9499
80% 0.8853 0.8947 0.8962 0.9491 0.9493 0.9412 0.9381 0.9521

Micro-F1

40% 0.8879 0.8925 0.8958 0.9465 0.9469 0.9407 0.9412 0.9467
60% 0.8881 0.8936 0.8960 0.9482 0.9497 0.9423 0.9431 0.9509
80% 0.8882 0.8960 0.8962 0.9500 0.9511 0.9448 0.9423 0.9529

(Tr.Ratio means the training ratio.)
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prediction performance than other methods on two metrics.
The improvement indicates the effectiveness of our model
to preserve structural information in HINs. Benefiting from
the second-order proximity preserved based on meta-path,
StHNE-2nd outperforms than StHNE-1st significantly. The
reason is that the higher order proximity is more conducive
for preserving complex relationships in HINs.

5.3 Effectiveness of DyHNE

In this section, our goal is to verify the effectiveness ofDyHNE
compared with these baselines designed for dynamic net-
works (i.e., DANE and DHPE). Since some baselines (e.g.,
DeepWalk, LINE and StHNE) cannot handle dynamic net-
works and we have reported the performance of these meth-
ods in Section 5.2, here we only apply these methods to initial
networks as in [17], [33]. Specifically, given a dynamic net-
work with 10 time steps fG1; . . . ;G10g, for the static network
embedding methods, including StHNE, we only conduct
them on G1 and report the results, while for the dynamic net-
work embedding methods, i.e., DANE, DHPE and DyHNE,

we conduct them from G1 to G10 to update the embedding
incrementally, and report the final results to evaluate their
performance in a dynamic environment.

5.3.1 Node Classification

For each dataset, we generate the initial and growing HIN
from the original network. Each growing HIN contains ten
time steps. In Yelp, reviews are time-stamped, we randomly
add 0.1 percent new UR and BR to the initial network at each
time step. For DBLP, we randomly add 0.1 percent new PA,
PC and PT to the initial network at each time step. Since AMi-
ner itself contains the published year of each paper, we divide
the edges appearing in 2005 into 10 time steps uniformly.

As settings in Section 5.2.1, we vary the size of the training
set from 40 to 80 percent with the step size of 20 percent and
the remaining nodes as testing. We repeat each classification
experiment for ten times and report the average performance
in terms of both Macro-F1 and Micro-F1 scores, as shown in
Table 4. We can see that DyHNE consistently performs better
than other baselines on all datasets with all varying sizes of

TABLE 3
Performance Evaluation of Relationship Prediction on Static HINs

Datasets Metric DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE-1st StHNE-2nd StHNE

Yelp

AUC 0.7404 0.6553 0.7896 0.6651 0.8187 0.8046 0.8233 0.8364
F1 0.6864 0.6269 0.7370 0.6361 0.7355 0.7348 0.7397 0.7512

ACC 0.6819 0.6115 0.7326 0.6386 0.7436 0.7286 0.7526 0.7661

DBLP

AUC 0.9235 0.8368 0.7672 0.9074 0.9291 0.9002 0.9246 0.9385
F1 0.8424 0.7680 0.7054 0.8321 0.8645 0.8359 0.8631 0.8850

ACC 0.8531 0.7680 0.6805 0.8416 0.8596 0.8266 0.8577 0.8751

AMiner

AUC 0.7366 0.5163 0.5835 0.8691 0.8783 0.8935 0.9180 0.8939
F1 0.5209 0.5012 0.5276 0.6636 0.6697 0.7037 0.8021 0.7085

ACC 0.6686 0.6475 0.6344 0.7425 0.7506 0.7622 0.8251 0.7701

TABLE 4
Performance Evaluation of Node Classification on Dynamic HINs

Datasets Metric Tr.Ratio DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE DANE DHPE DHNE DyHNE

Yelp

Macro-F1

40% 0.5840 0.5623 0.5248 0.6463 0.5765 0.6118 0.6102 0.5412 0.6293 0.6459
60% 0.5962 0.5863 0.5392 0.6642 0.6192 0.6644 0.6342 0.5546 0.6342 0.6641
80% 0.6044 0.6001 0.6030 0.6744 0.6285 0.6882 0.6471 0.5616 0.6529 0.6893

Micro-F1

40% 0.6443 0.6214 0.5901 0.6932 0.6457 0.6826 0.6894 0.5823 0.6689 0.6933
60% 0.6558 0.6338 0.5435 0.6941 0.6656 0.7074 0.6921 0.5981 0.6794 0.6998
80% 0.6634 0.6424 0.6297 0.7104 0.6722 0.7281 0.6959 0.6034 0.6931 0.7298

DBLP

Macro-F1

40% 0.9269 0.9266 0.9147 0.9372 0.9162 0.9395 0.8862 0.8893 0.9302 0.9434
60% 0.9297 0.9283 0.9141 0.9369 0.9253 0.9461 0.8956 0.8946 0.9351 0.9476
80% 0.9322 0.9291 0.9217 0.9376 0.9302 0.9502 0.9051 0.9087 0.9423 0.9581

Micro-F1

40% 0.9375 0.9310 0.9198 0.9383 0.9254 0.9438 0.8883 0.8847 0.9352 0.9467
60% 0.9346 0.9245 0.9192 0.9404 0.9281 0.9496 0.8879 0.8931 0.9404 0.9505
80% 0.9371 0.9297 0.9261 0.9415 0.9354 0.9543 0.9071 0.9041 0.9489 0.9617

AMiner

Macro-F1

40% 0.8197 0.8219 0.8282 0.8797 0.8673 0.8628 0.7642 0.7694 0.8903 0.9014
60% 0.8221 0.8218 0.8323 0.8807 0.8734 0.8651 0.7704 0.7735 0.9011 0.9131
80% 0.8235 0.8238 0.8351 0.8821 0.8754 0.8778 0.7793 0.7851 0.9183 0.9212

Micro-F1

40% 0.8157 0.8189 0.8323 0.8729 0.8652 0.8563 0.7698 0.7633 0.8992 0.9117
60% 0.8175 0.8182 0.8361 0.8734 0.8693 0.8574 0.7723 0.7698 0.9045 0.9178
80% 0.8191 0.8201 0.8298 0.8751 0.8725 0.8728 0.7857 0.7704 0.9132 0.9203

(Tr.Ratio means the training ratio.)
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training data, which demonstrates the effectiveness and
robustness of our learned node embeddings when served as
features for node classification. Especially, our DyHNE signifi-
cantly outperforms the two dynamic homogeneous network
embeddingmethods, DANE andDHPE. The reason is that our
model considers the different types of nodes and relations and
can capture the structure and semantic information in HINs.
We also notice that our DyHNE achieves better performance
than DHNE which is also designed for dynamic HINs. We
believe that the improvement is due to the preserved meta-
path based first-order and second-order proximities in node
embeddings learned by ourDyHNE.

Comparedwith the baselines designed for static HINs (i.e.,
DeepWalk, LINE, ESim and metapath2vec), our method also
achieves the best performance, which proves the effectiveness
oftheupdatealgorithmwithout losingimportantstructureand
semanticinformationinHINs.

5.3.2 Relationship Prediction

For each dataset, we generate the initial, growing and testing
HIN from the original HIN. For Yelp, we first build the testing
network containing 20 percent BR. The remaining constitutes
the initial andgrowingnetwork,where thegrowingnetwork is
divided into 10 time steps, and 0.1 percent new UR and BR
areadded to the initial networkat each timestep.ForDBLP,we
use the similar approach as described above. For AMiner, we
take the data involved in 1990-2003 as the initial network, 2004
asthegrowingnetworkand2005asthetestingnetwork.

We report the prediction performance in Table 5 and have
some findings: (a) Ourmethod consistently improves the rela-
tionships prediction accuracy on the three datasets, which is
attributed to the structural informationpreservedby themeta-
pathbasedfirst-orderandsecond-orderproximities. (b)DANE
andDHPEobtainpoorperformanceduetotheneglectofmulti-
ple types of nodes and relations in HINs. (c) Compared to
DHNE, ourDyHNEconsistently performances better on three
datasets,which isbenefit fromtheeffectivenessofupdatealgo-
rithm.Additionally,themeta-pathbasedsecond-orderproxim-
ity ensures that ourDyHNEcaptures the high order structures
of HIN, which is also preserved with the updated node
embeddings.

5.4 Efficiency of StHNE

In this section,we evaluate the efficiency of the proposed static
HIN embedding model StHNE. Specifically, we compare

StHNEtootherstaticmodelw.r.ttherunningtimeonthreedata-
sets,andplotitinalogscale.

As we can see from Fig. 3, our method StHNE is much
faster than other methods, though the time complexity is
large in theory. Compared with models designed for static
networks (i.e., DeepWalk, LINE, ESim and metapath2vec),
the running time of StHNE is in the same order with that of
them, because StHNE does not require iterative optimiza-
tion and only needs to calculate top-d eigenvalues and
eigenvectors of the sparse matrices.

5.5 Efficiency of DyHNE

In this section, we evaluate the efficiency of our proposed
DyHNE, includingnot only the comparisonwith the efficiency
of thebaselines that aredesigned fordynamicnetworkembed-
ding (i.e.,DANEandDHPE), but also the comparisonwithour
proposedstaticHINembeddingmodelStHNE.

5.5.1 Efficiency Compared to Baselines

SinceDANEandDHPEcanalsohandlethedynamicchangesin
the network, we compare the running time of DyHNE with
DANE andDHPE in Fig. 4. Obviously, DyHNE ismuch faster
than DHPE and DANE as the time complexity of DHPE is
OðT ðf þ gþNÞd2 þ d4Þ and that of DANE is OðT ðf þ gþ
NÞd2Þ.Here,N isthetotalnumberofnodesinthenetwork.Since
DyHNE models the changes of HINs with meta-path aug-
mented adjacencymatrices, we only need to update the repre-
sentationofnodes in themeta-pathset insteadofall nodeswith
OðT ðf þ gþNMÞd2Þ timecomplexity.

5.5.2 Efficiency Compared to StHNE

InordertovalidatethesuperiorityofDyHNEagainstretraining
StHNE (i.e., StHNE-retrain), we compare the speedup ratio of
DyHNEagainstStHNEwithrespect toembeddingdimensions
inFig.5.Asthedimensionisactuallythenumberofeigenvalues
to be solved, DyHNE obtains around 174� speedup ratio on
Yelp when the embedding dimension is around 10. At the
defaultembeddingdimensionof100,DyHNEisalso16� faster
than StHNE. Overall, although the speedup ratio decreases
with the increase of the dimension, DyHNE is still much faster
thanretrainingbyStHNE.

To further explore the efficiency of DyHNE, we count the
runningtimew.r.tembeddingdimensions.Fig.6showsthatthe
time required to update the embedding increases gradually as

TABLE 5
Performance Evaluation of Relationship Prediction on Dynamic HINs

Datasets Metric DeepWalk LINE-1st LINE-1st ESim metapath2vec StHNE DANE DHPE DHNE DyHNE

Yelp

AUC 0.7316 0.6549 0.7895 0.6521 0.8164 0.8341 0.7928 0.7629 0.8023 0.8346
F1 0.6771 0.6125 0.7350 0.6168 0.7293 0.7506 0.7221 0.6809 0.7194 0.7504

ACC 0.6751 0.6059 0.7300 0.6185 0.7395 0.7616 0.7211 0.7023 0.7024 0.7639

DBLP

AUC 0.9125 0.8261 0.7432 0.9053 0.9196 0.9216 0.5413 0.6411 0.8945 0.9278
F1 0.8421 0.7840 0.7014 0.8215 0.8497 0.8621 0.7141 0.6223 0.8348 0.8744

ACC 0.8221 0.7227 0.6754 0.8306 0.8405 0.8436 0.5511 0.5734 0.8195 0.8635

AMiner

AUC 0.8660 0.6271 0.5648 0.8459 0.8694 0.8659 0.8405 0.8412 0.8289 0.8823
F1 0.7658 0.5651 0.6071 0.7172 0.7761 0.7567 0.7167 0.7158 0.7386 0.7792

ACC 0.7856 0.5328 0.5828 0.7594 0.7793 0.7733 0.7527 0.7545 0.7498 0.7889
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thedimensionincreases,whichisconsistentwithouranalysisof
thetimecomplexity.

5.6 Approximation Error Analysis

As mentioned before, we drop the higher-order terms that
have limited effects on the accuracy of matrix decomposition
[20]. In order to evaluate the effects of higher-order terms on
the accuracy of the solution (the learned node embeddings),
we design an approximation error analysis experiment from
two aspects, i.e., matrix eigendecomposition and performance
comparison. In particular, with respect tomatrix eigendecom-
position, we have the changed eigenvalues DL and eigenvec-
tor DU by our proposed DyHNE at timestamp tþ 1, (i.e.,
drop the higher-order terms), and then we calculate the rela-
tive approximation errors w.r.t. ommited the higher-order

terms as
jjðDþDDÞ�1ðLþDLþ�Hþ�DHÞ�ðUðtÞþDUÞðLðtÞþDLÞðUðtÞþDUÞ>jj2F

jjðDþDDÞ�1ðLþDLþ�Hþ�DHÞjj2F
.

Let Uðtþ1Þ
g and Lðtþ1Þ

g denote the eigenvector and eigenvalue
of the recomputed factorization for matrix ðLþ DLþ �Hþ
�DHÞUðtþ1Þ

g ¼ ðDþ DDÞLðtþ1Þ
g Uðtþ1Þ

g , then we can get the

relative approximation errors w.r.t. non-ommitted the higher-

order terms as
jjðDþDDÞ�1ðLþDLþ�Hþ�DHÞ�U

ðtþ1Þ
g L

ðtþ1ÞgUðtþ1Þ
g

>
jj2F

jjðDþDDÞ�1ðLþDLþ�Hþ�DHÞjj2F
. As

shown in Fig. 7a, we report the approximation errorw.r.t. Non-
omitted and Omitted the higher-order terms on three datasets.
We can find that the approximation error is quite small with
respect to one timestamp update, which indicates the omission
of the higher-order terms in our DyHNE brings much little
error. Compared to the approximation error w.r.t. non-omitted
the higher-order terms, the approximation error w.r.t. omitted
is larger, which makes sense that losing high-level terms will
inevitably lead to information loss. However, the approxima-
tion error is still quite small (< 1e� 5) which can be ignored.

On the other hand, we analyze the approximation error
of task performance with the learned embedding. Specifi-
cally, we conduct two models, namely Non-omitted and
Omitted models. The non-omitted means that we keep the
higher-order terms in the derivation, then our final model
evolves into retraining on the whole network as the HIN
evolves. The omitted is actually our proposed DyHNE

Fig. 3. Efficiency of StHNE.

Fig. 4. Efficiency of the DyHNE compared to baselines.

Fig. 5. The speedup ratio of DyHNE.
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model, which efficiently updates node embeddings when
the HIN evolves. On three datasets, we report the results of
node classification and relationship prediction tasks in
Table 6. As shown in the table, we can find that the overall
approximation error is around 0:2% 	 3% on three datasets
in two tasks (calculated as ðjNon-omitted�OmittedjÞ=
Non-omitted). Compared with not omitting higher-order
terms, omitting higher-order terms leads to a slight decrease
in model performance on three datasets. The approximation
error on AMiner dataset is larger than that on the other two
datasets, we believe this is due to the large time span of
AMiner dataset. Overall, the approximation errors on all
datasets are small enough to be ignored. Hence, omitting
the higher order terms have limited effects on the accuracy
of the learned node embeddings.

5.7 New Node Classification

Since we assume that the newly-introduced nodes as iso-
lated nodes following the previous works [17], [33], we

regard the evolution of a network as the changes of edges in
our proposed DyHNE. In order to verify the effectiveness of
the learned embedding for these isolated nodes (i.e., newly-
introduced nodes), we conduct node classification task on
the newly-introduced node embeddings. After learning
node embeddings with our StHNE (i.e., retraining model on
the whole HIN) and DyHNE (i.e., training model with the
dynamic HIN). We train a logistic classifier with 80 percent
of the learned newly-introduced node embeddings as input
features, and test the classifier with the rest data. The result
in terms of Macro-F1 and Micro-F1 is reported in Fig. 8.

Obviously, we can find that our proposed DyHNE is capa-
ble of achieving very competitive performance as StHNE. On
Yelp and DBLP datasets, the classifier can accurately classify
the new nodes with the updated embeddings by DyHNE,
which indicates the effectiveness of the ourDyHNE in dealing
with these isolated nodes as we assumed. Even on AMiner
with large time spans, the new node classification perfor-
mance of DyHNE is slightlyworse than that of StHNE.

5.8 Parameter Analysis

5.8.1 Meta-Paths Fusion

Since we fuse multiple meta-paths with weights, we explore
the effect of different meta-paths on classification. Specifically,
we use a single meta-path to learn the node embeddings, then
weight meta-paths uniformly, and finally fuse meta-paths
with the optimal weights. As shown in Fig. 9, using a single
meta-path can not fully model the structure of HINs, leading
toworse performance. The performance of combiningmultiple
meta-paths with weights is improved. Since the structure and

Fig. 6. The running time w.r.t embedding dimensions.

Fig. 7. The approximation error of matrix eigendecomposition in DyHNE,
with respect to one timestamp update.

TABLE 6
The Approximation Error That Whether to Omit Higher-Order
Terms in DyHNE, w.r.t. Node Classification and Relationship

Prediction

Task Model Yelp DBLP AMiner

Classification Non-omitted 0.6922 0.9611 0.9521
Omitted 0.6893 0.9581 0.9212

(Mircro-F1) Error 0.004189 0.003124 0.032454

LinkPrediction Non-omitted 0.8364 0.9385 0.8939
Omitted 0.8346 0.9278 0.8821

(AUC) Error 0.002152 0.011401 0.013201

Fig. 8. New node classification. DyHNE means that the classifier takes
the learned embeddings of new nodes with DyHNE as input, while
StHNE means that the input of the classifier are the learned embeddings
of new nodes with StHNE.
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semantics of different meta-paths are different, fusing them
with non-uniformweights achieves the best performance.

5.8.2 Dimension Selection

We investigate the sensitivity of the number of embedding
dimension on node classification. Specifically, we vary the
number of embedding dimensions as 10, 20, 50, 100, 150 and
200. The results of node classification are reported in Fig. 10. As
we can see, the performance of our model improves with the
increase of the number of embedding dimensions, and the per-
formance tends to be stable once the dimension of the represen-
tation reaches around 100. It is evident that our model are
capable to capture rich information of various relations in
HINs using the low-dimensional representation.

6 CONCLUSION

In this paper, we investigate the problem of dynamic HIN
embedding andpropose a novel representation learningmodel
for dynamicHINs (DyHNE). Based on the designed static HIN
embedding model, DyHNE captures the structure and seman-
tics by preserving the meta-path based first- and second-order
proximities. With the evolution of the dynamic HIN, DyHNE
incorporates the change of structure and semantics with meta-
path augmented adjacency matrices, and efficiently learns the
embedding of nodes based on perturbation theory. Experimen-
tal evaluations show thatDyHNEnot only significantly outper-
forms the state-of-the-arts, but also ismuchmore efficient.
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