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ABSTRACT
To fit empirical data distributions and then interpret them in a

generative way is a common research paradigm to understand the

structure and dynamics underlying the data in various disciplines.

However, previous works mainly attempt to fit or interpret empiri-

cal data distributions in a case-by-case way. Faced with complex

data distributions in the real world, can we fit and interpret them

by a unified but parsimonious parametric model?

In this paper, we view the complex empirical data as being gen-

erated by a dynamic system which takes uniform randomness as

input. By modeling the generative dynamics of data, we show-

case a four-parameter dynamic model together with inference and

simulation algorithms, which is able to fit and generate a family

of distributions, ranging from Gaussian, Exponential, Power Law,

Stretched Exponential (Weibull), to their complex variants with

multi-scale complexities. Rather than a black box, our model can

be interpreted by a unified differential equation, which captures

the underlying generative dynamics. More powerful models can

be constructed by our framework in a principled way. We validate

our model by various synthetic datasets. We then apply our model

to 16 real-world datasets from different disciplines. We show the

systematic biases of fitting these datasets by the most widely used

methods, and show the superiority of our model. In short, our model

potentially provides a framework to fit complex distributions in em-

pirical data, and more importantly, to understand their generative

mechanisms.
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• Mathematics of computing → Distribution functions; Sto-
chastic processes; • Networks→ Network dynamics; Social media
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1 INTRODUCTION
To fit empirical data distributions by parametric models and then

interpret them in a generative way is a major scientific paradigm to

understand the structure and generative dynamics underlying the

data, which is widely used in various domains, ranging from biol-

ogy [9], physics [1, 5], social science [12, 15], to computer science

[8, 32], etc. For example, by investigating the power-law degree

distribution of networks [2], the physicists found the network evo-

lution dynamics in random networks. By examining the response

time distribution of the correspondence patterns of Darwin and

Einstein [18], or online collaborations [30], the social scientists

tried to uncover the decision making dynamics of human behaviors.

By fitting the data distributions with Gaussian mixture model [19],

Bayesian methods [14], or even deep generative models [10], the

computer scientists try to find clustered structures and generative

dynamics of observed datasets. In short, this scientific paradigm is

applied to a wide range of data science tasks.

However, previous works mainly try to fit or interpret the com-

plex empirical data in a case-by-case way. For example, the Gaussian

distribution is most widely used to fit narrow-tailed data distribu-

tions. A vast amount of literatures try tomodel the heavy-tailed data

by power law distribution [5], Weibull distribution (or stretched ex-

ponential distribution) [11], and so on. Specific mixture models are

also used to fit complex multi-scale distributions [23, 30, 32]. Deep

generative networks like GAN exhibit limited power in fitting 1-D

parametric distributions [24]. Thus, can we have a unified model

to fit and to interpret various complex data distributions in the real

world? Answering to this question is of vital importance.

In this paper, we try to fit complex distributions in empirical

data by investigating their generative dynamics. The intuition be-

hind our model is as follows: we view the empirical data with

complex distributions as being generated from a dynamic system,

which takes uniform randomness as input. Rather than modeling

various complex distributions directly in a case-by-case way, we

try to model their unified and possibly parsimonious generative

dynamics, which generate all these complex distributions. One ex-

ample is shown in Table 1: rather than fitting Gaussian, Exponential,

Power-law, Stretched-Exponential, and their complex variants with

complexities in multi-scale regimes in a case-by-case way, through

a four-parameter dynamic model, we can capture all of them. More

complex dynamic models can be constructed by our framework in
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a principled way. Efficient inference method and simulation algo-

rithm are provided. Furthermore, rather than a black-box model, we

explain the generative dynamics of these complex distributions by

a unified dynamic differential equation. As for the experiments, we

analyze the properties of our model by various synthetic datasets,

and further validate it by 16 empirical datasets from a wide range

of disciplines. Our model fits all these complex empirical data accu-

rately (Fig. 5). Our model potentially provides a framework to fit

complex distributions observed in the real world, and more impor-

tantly, to understand their generative mechanisms. We summarize

our contributions as follows:

• Unification power: We propose a general model to fit vari-

ous complex distributions in empirical data, together with

inference and simulation algorithms.

• Parsimony: Our model has only four parameters to capture

multi-scale complexities in empirical distributions.

• Interpretability: Our model is interpreted by a unified gen-

erative dynamic equation. All the parameters have clear

physical meanings.

• Usefulness: Our model fits various empirical datasets accu-

rately, and can be generalized to more complex cases in a

principled way.

The outline of the paper is: survey, model, mechanisms, experi-

ments, discussion and conclusions. Reproducibility: The software

and datasets are open-sourced at www.calvinzang.com.

2 RELATED WORK
We mainly review the related works in following two folds:

From simple to complex distributions in empirical data.
Narrow-tailed distributions, like exponential distribution andGauss-

ian distribution, can be well captured by their mean and variance,

which have well-studied underlying structure and dynamics. In

contrast, heavy-tailed distributions, like power-law distribution,

stretched-exponential distribution, log-normal distribution etc., ex-

hibit larger even infinity variance, implying complex underlying

structure and dynamics of data. Among the heavy-tailed distribu-

tions, the power-law distribution is the most famous one due to

its scaling property [22] and generative mechanisms[2] . Extensive

evidence and discussions of power-law distributions can be found

in [13, 16]. Recently, more and more literatures found the distri-

butions of empirical data are more complex than pure power law,

ranging from human behavior data [26, 32], network data [3], to

various datasets as showin in Fig. 5.

Fitting complex distributions. The maximum likelihood es-

timation, possibly with priors or regularizers, is used for fitting

narrow-tailed distributions [14]. On another hand, deep generative

networks like GAN are validated by fitting 1-D parametric distribu-

tions but exhibit large bias [24]. In contrast, fitting theories for com-

plex distributions, say skewed or heavy-tailed ones [17], is not well

established. Taking the most typical case - power law distribution

- as an example, the visual inspection and least-square fitting are

used to fit power law distribution at first. Later, the well-celebrated

work [5] shows the bias of the least-square fitting method, and then

propose a parametric method (f (x) = αPL−1
xmin

( x
xmin

)αPL , denoted

as PL method) to fit power law distribution based on maximum

likelihood principal. The PL method has been widely used to fit

plausible power-law distributions by a large number of scientific

papers. However, we find PL method shows large bias when de-

tecting the power law signals in the real-world data as shown in

Fig. 5. The origin of failures lies in the fact that PL method ignores

the complexity in the real-world data [23, 26, 32]. How to fit and

interpret various complex distributions in empirical datasets by a

unified model is largely unknown.

3 PROPOSED METHOD
3.1 Model Intuition
The intuition behind our model is as follows: we view the empirical

data with complex distributions as being generated from a (non-

linear) dynamic system, which takes uniform randomness as input.

Rather than modeling the complex outputs, namely various data

distributions, of this dynamic system in a case-by-case way, we

try to capture their unified generative dynamics. In short, we try
to model the simpler generative dynamics which generate complex
phenomena.

Our model is based on survival analysis [32], point process [26],

and dynamic systems[25, 27, 31]. The probability density func-

tion fX(x) of data X = (x1, ...,xn−1,xn ) can be modeled by the

hazard function λ(x) =
fX (x )
SX (x )

, which describes the rate of the occur-

rence of the random variable X = x conditioned on X ≥ x , where
SX(x) = 1 −

∫ x
−∞

fX(s)ds . The Λ(x) =
∫ x
−∞

λ(s)ds represents the
cumulative hazard rate. By modeling the hazard rate, we can get

complex probability density function according to the relationship

fX(x) = λ(x)e−
∫ x
−∞

λ(s)ds
. We further build the link between hazard

function λ(x) and its corresponding dynamic system to interpret

the generative mechanisms of the data distributions in the next

section.

3.2 The Model
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Figure 1: Illustration of capabilities of our basic model. Our
model generates a family of distributions, including power
law (PL), PL with cutoff, PL with short-scale complexity, PL
with multi-scale complexity, exponential, stretched expo-
nential (SE), SE with short-scale complexity, SE with multi-
scale complexity, etc.

Here we propose the basic model, simple but versatile, leading

to various distributions, as shown in Table. 1 and Fig. 1. The hazard

function specifying the model is:

λ(x) = β + α(x + ∆)−θ (1)

www.calvinzang.com


Table 1: Capability table. Our basic model encompasses all the following distributions. Illustrations are shown in Fig. 1.

Capability Exponential Power law Power law
+ cutoff *

Power law
+ Shortscale

Power law
+ Multiscale

PDF (θ = 1) βe−βx α∆α x−(α+1) α∆α x−(α+1)e−βx α∆α (x + ∆)−(α+1) (β + α
x+∆ )(

x
∆ + 1)

−α e−βx
Hazard rate β α

x β + α
x

α
x+∆ β + α

x+∆
Our model ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Capability Exponential Stretched exponential ** Stretched exponential
+ Cutoff *

Stretched exponential
+ Shortscale

Stretched exponential
+Multiscale

PDF (θ , 1) αe−αx αx−θ e−
α

1−θ x1−θ αx−θ e−
α

1−θ x1−θ −βx α (x + ∆)−θ e−
α

1−θ [(x+∆)1−θ −∆1−θ ]
[β + α (x + ∆)−θ ]e−βx−

α
1−θ [(x+∆)1−θ −∆1−θ ]

Hazard rate α α
xθ

β + α
xθ

α
(x+∆)θ

β + α
(x+∆)θ

Our model ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

* For the Power law distritbuion with cutoff case and Stretched exponential distribution with cutoff case, the probability density functions of which are derived approximately by the harzard rates. Refer to the Model Section.

** Special case is approximately Normal Distribution when θ = −1. Refer to the Model Section.

3.2.1 Critical Case: Power-Law-Based Distributions. When θ =
1, λ(x |θ = 1) generates a family of distributions based on power-law

distribution.

Lemma 3.1. The λ(x |θ = 1) generates a family of distributions,
from exponential distribution, power-law distribution, power-law dis-
tribution with exponential cut-off, to the complex multi-scale distri-
butions.

Proof. The probability density function of the random variable

x is:

f (x |θ = 1) = λ(x |θ = 1)e−
∫ x
0

λ(s |θ=1)ds

= (β +
α

x + ∆
)e−βx−α ln( x∆ +1)

= βe−βx (
x
∆
+ 1)−α +

α
∆
(
x
∆
+ 1)−(α+1)e−βx

(2)

Exponential distribution. When α = 0, regardless of other

three parameters, the λ(x |α = 0) generates exponential distribution

with the probability density function f (x |α = 0) = βe−βx , as
shown in Fig. 1a gray curve.

Power-law distribution. When β = 0 and ∆ ≪ x , f (x |θ =

1, β = 0) = α∆α (x + ∆)−(α+1) ∝ x−(α+1). Another meaning of ∆ is

the minimal value, say x0, which x can take: f (x |θ = 1,∆ = 0) =

α
x e

∫ x
x
0

α
s ds = αx0

αx−(α+1).
Power-law distribution with cutoff. When β ≫ 0 and ∆ ≪

x ≪ α
β −∆, f (x |θ = 1) = (β+ α

x+∆ )(
x
∆+1)

−α e−βx ≈ α∆αx−(α+1)e−βx .

Complex multi-scale distribution. When β → 0, the com-

plex multi-scale distribution features constant short-scale, power-

law middle-scale and exponential long-scale. When x → 0, f (x |θ =
1) → α

∆ . In the short-scale regime x ∈ (0,∆], f (x |θ = 1) ≈
α
∆ (

x
∆ +1)

−(α+1)
, which decays slowly to the power-lawmiddle-scale

regime. When βe−βx ( x∆ + 1)−α ≫ α
∆ (

x
∆ + 1)−(α+1)e−βx , namely

x ≫ α
β −∆, f (x |θ = 1) = βe−βx ( x∆ +1)

−α + α
∆ (

x
∆ +1)

−(α+1)e−βx ≈

βe−βx ( x∆ +1)
−α

, which is the exponential long-scale regime. When

∆ ≪ x ≪ α
β −∆, f (x |θ = 1) ≈ α∆α (x +∆)−(α+1) ∝ x−(α+1), which

is the power-law middle-scale regime. □

3.2.2 General Case: Stretched-Exponential-based Distribution.
When θ , 1, λ(x |θ , 1) generates a family of distributions based

on stretched exponential distribution.

Lemma 3.2. The λ(x |θ , 1) generates a family distributions, from
exponential distribution, stretched exponential (Weibull) distribution,
stretched exponential distribution with exponential cut-off, to the
complex multi-scale distributions.

Proof. Similar to the justification above, the probability density

function of random variable x is:

f (x |θ , 1) = λ(x |θ , 1)e−
∫ x
0

λ(s |θ,1)ds

= [β + α (x + ∆)−θ ]e−βx−
α

1−θ [(x+∆)1−θ −∆1−θ ]

= βe−βx e−
α

1−θ [(x+∆)1−θ −∆1−θ ]

+ α (x + ∆)−θ e−
α

1−θ [(x+∆)1−θ −∆1−θ ]e−βx

(3)

Exponential distribution. When β = θ = 0, f (x |β = 0,θ =
0) = αe−αx .

Stretched exponential (Weibull) distribution. When β = 0

and ∆ = 0, the λ(x |θ , 1) leads to

f (x |θ , 1) = αx−θ e−
α

1−θ x1−θ
(4)

The cumulative density function is F (x |θ , 1) = 1 − e−
α

1−θ x
1−θ

,

which is the stretched exponential distribution. Some special cases:

exponential distribution αe−αx when θ = 0, approximately Normal

distribution
α
x 2
e−

αx2
2 when θ = −1.

Stretched exponential distribution with exponential cut-
off. When β ≫ 0 and ∆ ≪ x ≪ (αβ )

1

θ − ∆, f (x |θ , 1) =

[β + α(x + ∆)−θ ]e−
α

1−θ [(x+∆)
1−θ−∆1−θ ]e−βx ≈ αx−θ e−

α
1−θ x

1−θ
e−βx .

Complex multi-scale distribution.When θ , 1, the complex

multi-scale distribution is based on stretched exponential distribu-

tion. When β → 0, the complex multi-scale distribution features

constant short-scale, stretched exponential middle-scale and expo-

nential long-scale. When x = 0, f (x |θ , 1) ≈ α
∆θ

. In the short-scale

regime x ∈ (0,∆], f (x |θ , 1) ≈ α(x + ∆)−θ e−
α

1−θ [(x+∆)
1−θ−∆1−θ ]

,

which decays slowly to the stretched exponential middle-scale

regime. When β ≫ α(x + ∆)−θ , i.e., x ≫ (αβ )
1

θ − ∆, f (x |θ ,

1) ≈ βe−
α

1−θ [(x+∆)
1−θ−∆1−θ ]e−βx , which is the exponential long-

scale regime. When ∆ ≪ x ≪ (αβ )
1

θ − ∆, f (x |θ , 1) ≈ α(x +

∆)−θ e−
α

1−θ [(x+∆)
1−θ−∆1−θ ]

, which is the stretched exponential middle-

scale regime.

□

We illustrate above justifications in Fig. 1. We find complex

distributions based on power law distribution (Fig. 1a) and stretched

exponential distribution (Fig. 1b) are generated by our simple hazard

function, possibly taking on complexities in multi-scale regimes.



3.3 Parameter Inference
The parameters of our model can be learned by the maximum like-

lihood estimation (MLE) framework. The log-likelihood function

of observing a set of data {x1, ...,xn−1,xn } is given by:

ln L(x1, ..., xn ) = ln

n∏
i=1

λ(xi )e−Λ(xi ) =
n∑
i=1

ln λ(xi ) −
n∑
i=1

Λ(xi ) (5)

According to the value of θ , Λ(x) takes on different forms. When

θ , 1, the log-likelihood function is:

lnL(x
1
, . . ., xn |θ , 1) =

n∑
i=1

ln [β + α (xi + ∆)
−θ ] − β

n∑
i=1

xi −
α

1 − θ

n∑
i=1

[(xi + ∆)
1−θ − ∆1−θ ]

(6)

, while when θ = 1, the log-likelihood function is:

ln L(x1, ..., xn |θ = 1) =

n∑
i=1

ln [β + α (xi + ∆)−1] − β
n∑
i=1

xi − α
n∑
i=1

ln(
xi
∆
+ 1)

(7)

Maximizing Eq. 5 or 6 regarding {β ,α ,∆,θ }, subject to {β ,α ,θ ≥

0;∆ > 0} leads to estimated modeling parameters. However, due to

the clear physical meaning of the parameters, prior knowledge can

be applied to the initialization. We show this point later.

Another good advantage of the model is that all the parameters

have closed-form gradients. The gradients for theθ , 1 case, namely

stretched exponential based model, are:

∂ ln L
∂β

=

n∑
i=1

1

A(i)
−

n∑
i=1

xi (8)

∂ ln L
∂α

=

n∑
i=1

(xi + ∆)−θ

A(i)
−

1

1 − θ

n∑
i=1

[(xi + ∆)1−θ − ∆1−θ ] (9)

∂ ln L
∂∆

= −αθ
n∑
i=1

(xi + ∆)−θ−1

A(i)
− α

n∑
i=1

[(xi + ∆)−θ − ∆−θ ] (10)

∂ ln L
∂θ

= −α
n∑
i=1

(xi + ∆)−θ ln(xi + ∆)
A(i)

− α
n∑
i=1

{
[−(xi + ∆)1−θ ln(xi + ∆) + ∆1−θ

ln∆]

1 − θ
+

(xi + ∆)1−θ − ∆1−θ

(1 − θ )2
}

(11)

where A(i) = β + α(xi + ∆)
−θ

.

When θ = 1, the gradients for the power-law based model are:

∂ ln L
∂β

=

n∑
i=1

1

B(i)
−

n∑
i=1

xi (12)

∂ ln L
∂α

=

n∑
i=1

(xi + ∆)−1

B(i)
−

n∑
i=1

ln(
xi
∆
+ 1) (13)

∂ ln L
∂∆

= −α
n∑
i=1

(xi + ∆)−2

B(i)
+ α

n∑
i=1

xi
xi∆ + ∆2

(14)

where B(i) = β + α
xi+∆ . We can solve the optimization problem

by many gradient-based optimization algorithms. For example, we

adopt the interior point algorithm [4], and for reproducibility, we

open our code, see Section 7.

3.4 Generator
The simplest and the most elegant way of generating a random

number x from the cumulative distribution function F (x) is the
inverse transformation method [7]. First we generate a random

numberu from standard uniform distributionU (0, 1]. By solving the

equation F (x) = u for x , x is the number which follows distribution

F (x). We extend this inverse transformation method to the hazard

rate function by the fact that F (x) = 1 − e−Λ(x ), where Λ(x) =

∫ x
x0

λ(s)ds . Thus, F (x) = u = 1 − e−Λ(x ), and we can get the wanted

random number by solving Λ(x) = − ln(1 − u) for x where u and

1 − u make no difference when sampling from U (0, 1]. Due to the

fact that Λ(x) is monotone-increasing function thus with inverse

function Λ−1
, we can get

x = Λ−1(− lnu) (15)

Even if there is no closed-form inverse function Λ−1
, we can get it

numerically by solving the equation lnu + Λ(x) = 0 for x where u
is generated from the uniform distribution U (0, 1).

Algorithm 1: Generating random samples specified by the

hazard rate Equation 1

Input :Hazard function of model λ(x) = β + α(x + ∆)−θ ,
total number N

Output : {x1, ...,xN }

1 Set current number of events n = 1;

2 while n ≤ N do
3 Sample u ∼ Uni f orm([0, 1]) ;

4 Solve lnu + Λ(x) = 0 for x by Algorithm 2.;

5 xn = x ;

6 end

Algorithm 2: Newton’s iterative method

Input :Equation Φ(x) = logu + Λ(x).
Output :x

1 Set ϵ = 10
−8
, x = 0;

2 while |Φ(x)| ≤ ϵ do
3 if θ == 1 then
4 Φ(x) = lnu + βx + α ln( x∆ + 1);

5 else
6 Φ(x) = lnu + βx + α

1−θ [(x + ∆)
1−θ − ∆1−θ ];

7 end
8 Φ′(x) = β + α(x + ∆)−θ ;

9 x = x −
Φ(x )
Φ′(x ) ;

10 end

4 PHYSICAL MECHANISMS
In this section, we give the underlying generative dynamics of

our model, namely Equ. 1 together with various distributions as

shown in Table 1. We view the complex data distributions as being

generated by a (non-linear) dynamic system, which takes uniform

randomness as input:

4.1 Uniform Inputs and Growth
In order to give a dynamic view of the data generative process,

our first step is to figure out the inputs of the dynamic system by

connecting the point process and survival analysis. The process by

which we sample n numbers from the standard uniform distribution

U (0, 1] can be viewed as a stochastic point process. Given a Poisson

process N (t) = {ti |i = 1, ...,N (t) = n; ti ≤ t2 ≤ ... ≤ tn }, then ti is
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Figure 2: Illustration of (a) generator and (b) generative dy-
namics for generating stretched-exponential data as shown
in the inset in (b). Generated samples by the generator are dis-
tributed in x-axis, while samples by physical process are dis-
tributed as a cross-sectional snapshot along x(t) axis.

uniformly distributed on the interval (0, t]. If we normalize the ti
by t , then u = ti

t follows the standard uniform distributionU (0, 1].

We replace u in Equ. 15 by
ti
t , leading to growth dynamics of an

agent i with a uniformly arriving time ti in (0, t]:

xi (t ) = Λ−1(− lnu) = Λ−1(− ln(
ti
t
)) = Λ−1(ln(

t
ti
)). (16)

For instance, let λ(x) = αx−θ , which generates power-law distri-

bution f (x) = α∆αx−(α+1) when θ = 1, and stretched-exponential

distribution f (x) = αx−θ e−
α

1−θ x
1−θ

when θ , 1 (Detailed in Sec. 3).

Thus, Λ(x |θ = 1) = α
∫ x
∆

1

s ds = α ln( x∆ ), and Λ(x |θ , 1) =

α
∫ x
∆

1

sθ
ds = α (x 1−θ−∆1−θ )

1−θ .We can get their inverse functionΛ−1(y |θ =

1) = ∆e
y
α , and Λ−1(y |θ , 1) = ( 1−θα y + ∆1−θ )

1

1−θ .

By using Λ−1(y |θ = 1) = ∆e
y
α to Equ. 16, we get growth curve

over time t :

xi (t ) = Λ−1(ln(
t
ti
) |θ = 1) = ∆e

ln( tti
)

α = ∆(
t
ti
)
1

α . (17)

Similarly, by applying Λ−1(y |θ , 1) = ( 1−θα y + ∆1−θ )
1

1−θ to Eq. 16

when θ < 1, we get growth curve:

xi (t ) = Λ−1(ln(
t
ti
) |θ , 1) = (

1 − θ
α

ln(
t
ti
) + ∆1−θ )

1

1−θ . (18)

4.2 Generative Dynamics: Base Model
Our second step is to reverse engineer generative dynamics by

connecting the survival analysis and dynamic systems. We take

derivative of Equ. 17 and Eq. 18 to time t , we get the generative
dynamics of power-law distribution data and stretched-exponential

distribution data as follows:

dxi (t )
dt

=
d∆( tti )

1

α

dt
=

∆

t
1

α
i

1

α
t

1

α −1 =
xi (t )
α t

(19)

dxi (t )
dt

=
d ( 1−θα ln( tti

) + ∆1−θ )
1

1−θ

dt
=

( 1−θα ln( tti
) + ∆1−θ )

θ
1−θ

α t
=
xi (t )θ

α t
(20)

We find the linear preferential attachment by Eq. 19 to generate

power-law distribution, and non-linear preferential attachment by

Equ. 20 to generate stretched-exponential distribution, consistent

with literatures on the scale-free observations in random networks

[2].

4.3 Generative Dynamics: General Model
Here, we give the generative dynamics of our model. When λ(x) =

β + α(x + ∆)−θ , Λ(x) =
∫ x
0

λ(s)ds = βx + α
1−θ [(x + ∆)

1−θ − ∆1−θ ].

By our construction, we get:

Λ(xi (t )) = βxi (t ) +
α

1 − θ
[(xi (t ) + ∆)1−θ − ∆1−θ ] = ln

t
ti

(21)

By taking derivative of above equation to time t , we get:

dxi (t )
dt

=
(xi (t ) + ∆)θ

β (xi (t ) + ∆)θ t + α t
(22)

Thus, from a dynamic view, the complex data which exhibit com-

plex multi-scale distributions (captured by our model Equ. 1 ) are

generated from a dynamic system with differential equation 22,

including physical mechanisms: non-linear preferential attachment

(xi (t)+∆)
θ
, growth system αt , together with short-term complexity

∆ and long-term complexity β(xi (t) + ∆)
θ t . Our dynamics encom-

pass Equ. 19 and 20 as special cases.

Thus, we describe the data generation process in random net-

work scenario as follows:

• A new node i comes to the network following a Poisson

process at 0 < ti < t where t is the maximum observational

time,

• and the degree of node i , denoted as xi (t), grows over time

according to the differential equation 22 .

Then, the cross-sectional degree distributions of this network at

time t follows fX(x) = λ(x)e−
∫ x
−∞

λ(s)ds
, where λ(x) = β + α(x +

∆)−θ as shown in Equ. 1.

5 EXPERIMENTS
In this section, we evaluate our model on both synthetic and real-

world datasets.

5.1 Synthetic data analysis
5.1.1 Ignoring the compleity leads to systematic bias. Actually,

distributions which measure the quantities of the real-world data

are much more complex than a pure power-law distribution. We

show the evidence from the real-world datasets in next section.

Here, we examine the possible biases which introduced by apply-

ing the well celebrated power-law fitting method (denoted as PL

method) [5] to the complex distributions.

Long-scale complexity.Wefirst investigate the long-scale com-

plexity. The parameter β acts as the simplest form of modeling the

long-scale complexity. By varying the β in λ(x |β ,α = 0.5,∆ =
50,θ = 1), we get a series of distributions illustrated in Fig. 3a. The

case when β = 0, as shown by the straight line part (with power-law

exponent 1 + α = 1.5) of the blue curve in Fig. 3a, indicates the

missing of long-scale complexity. As β increases, the long-scale

complexity will move towards to the short-scale until the two parts

overlap. Indeed, the characteristic scale of the long-scale regime is

α
β and the characteristic scale of short-scale regime is ∆ (Refer to

Sec. 3). We avoid this overlap by limiting β < 10
−2
. We generate

10
4
(a relatively large dataset to get reasonable fitting results and at

the same time within the scalability limits of the baseline method.

We will show the scalability of our model and the baseline later.)

samples by the λ(x |β,α = 0.5,∆ = 50,θ = 1) with each specific β ,
and fit the α and ∆ by the PL method and our method. Figures 3e
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Figure 3:Complexities in short-, long-, andmiddle- scale regimes introduce systematic biases to the previousmethod. Ourmethod
fits reality well. The first row shows the distributions with different complexities in different regimes. Last two rows shown
mean estimated values for themodeling parameters plotted as a function of the varying parameterwhich capture the complex-
ity in corresponding regime. Figures in each column are of same settings. In all cases, the statistical errors are smaller than the
data points. The true parameter values are shown in dashed lines. The pdf described in PL method is f (x) = αPL−1

xmin
( x
xmin

)αPL ,
where α = αPL − 1

and i plot the mean estimated values of α (scaling exponent) and

∆ as a function of β . We find the larger and larger discrepancy

between the power-law scaling parameter α estimated by the PL

method and the true value marked in dashed line as β increases as

shown in Fig. 3e. In contrast, our model well gets the true scaling

value. As for the estimation of short-scale ∆ shown in Fig. 3i, the PL

method seriously overestimates the true value, up to 450 times as

much as true value when β ≈ 3∗10−5. As β increases, the long-scale

regime squeezes into the short-scale regime, and thus the estimated

∆ by PL method decreases to the true value.

Short-scale complexity.We then consider the impact of short-

scale complexity. The parameter ∆ is the simplest form to capture

the characteristic scale of the short-scale regime. Figure 3b plots

λ(x |β = 0,α = 0.5,∆,θ = 1) as ∆ varies, which consists of short-

scale regime followed by a power-law regime with same slope.

The larger ∆ is, the larger short scale is and thus a wider range

of short-scale regime. Similarly, we generate 10
4
samples by the

λ(x |β = 0,α = 0.5,∆,θ = 1) with each specific ∆, and fit the α
and ∆ by the PL method and our method. Our model fits the real

data quite well for both the parameters as shown in Figs. 3f and

j. The PL method does well in fitting scaling exponent α for this

special experimental setting, but the good result of α is at the cost of

seriously overestimating ∆, indicating that the PL method discards

the data samples in the short-scale regime which account for ≥ 80%

of the whole dataset.

Middle-scale complexity. Last but not least, we examine the

middle-scale complexity. When θ = 1, the middle-scale regime

follows power law with scaling exponent 1+α . By varying the α of

the λ(x |β = 0,α ,∆,θ = 1) when control for other parameters, we

get different scaling exponent of power law distribution at middle-

and long- scale regimes. Figure 3c plots λ(x |β = 0,α ,∆ = 50,θ = 1)

asα varies, the larger theα , the steeper the curves. However, we find
as α grows, the PL method underestimates the scaling parameter α ,
and the discrepancy becomes larger and larger, shown in Fig. 3g.

Besides, the PL method seriously overestimates the short-scale

parameter δ at the same time, up to 3 order of magnitudes, shown

in Fig. 3k. In contrast, our model consistently reaches the true

values well.

Whenθ , 1, themiddle-scale regime follows stretched-exponential

law. Figure 3d plots λ(x |β = 0,α = 1,∆ = 50,θ ) as θ varies. The



red curve with θ = 1 is the power law distribution (at middle- and

long- scale regimes) with slope of the pdf curve α + 1 = 2, while

other curves are stretched exponential distributions. We can not

tell differences between these power law or stretched exponential

curves by visual inspections. The power-law tools and the Taylor

expansion can be used to analyze the complexities in this regime ap-

proximately in asymptotic analysis section later. Within the range

of (−∞, 1 + ϵ] where ϵ → 0 (refer to asymptotic analysis section),

larger the θ , fatter the tail of the curves as shown in Fig. 3d. We find

PL method overestimates the scaling parameter α when θ < 1, and

underestimates α when θ > 1 shown in Fig. 3h. At the same time,

PL method consistently overestimates the ∆ as shown in Fig. 3l. In

contrast, our model again gives much better estimations.
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Figure 4: (a) Asymptotic behaviors of the stretched-
exponential distribution. (b) Scalability. Our model can
be applied to large datasets while the power law method
cannot.

5.1.2 Asymptotic behaviors. We analyze the asymptotic behav-

iors of our model. Taking the stretched exponential as an exam-

ple, the asymptotic behaviors of which leads to the confusion

with power law distribution and complex scaling law of the dis-

tribution. The pdf. of the stretched exponential distribution is

f (x |θ , 1) = αx−θ e−
α

1−θ x
1−θ

for x > 0. By applying the Taylor

expansion when x → 0 and θ < 1, we get:

f (x → 0 |θ < 1) =
α
xθ

[1 −
α

1 − θ
x 1−θ + O(x 2−2θ )] (23)

Thus, f (x → 0|θ < 1) ≈ α
xθ

, which, however, can be easily lost

by the short-scale regime when ∆ is large. When x → ∞, f (x →

∞|θ < 1) = αx−θ e−
α

1−θ x
1−θ

, which decays faster than power law

decay
α
xθ

but slower than exponential decay e−
α

1−θ x
1

.

When θ > 1 and x → ∞ , we get the Taylor expansion:

f (x → ∞|θ > 1) =
α
xθ

[1 +
α

(θ − 1)xθ−1
+ O(

1

x 2θ−2
)] ≈ α

1

xθ
+

α 2

θ − 1

1

x 2θ−1

(24)

, which approximates the power-law distribution with scaling expo-

nent being governed by scaling parameter θ and 2θ −1 alternatively.

When θ = 1 + ϵ where ϵ → 0
+
, the coefficient of

α 2

θ−1 ≫ α , and

thus f (x → ∞|θ = 1 + ϵ, ϵ → 0
+) ≈ α 2

θ−1
1

x 2θ−1 =
α 2

θ−1
1

x 1+2ϵ , indi-

cating the scaling exponent 1+2ϵ where ϵ → 0
+
. In contrast, when

θ ≫ 1, f (x → ∞|θ ≫ 1) ≈ α
xθ

, indicating the scaling exponent θ

where θ ≫ 1 . Thus, mathematically, we conclude the empirical

power-law observations can come from the asymptotic behaviors

of the stretched-exponential distribution. Besides, an interesting

phenomenon is that as θ increases from 1, the distribution curve

first becomes fatter and then back to previous states and further

steeper and steeper. The above asymptotic analysis can be validated

by the collapse of distributions with different θ values as shown in

Fig. 4a.

5.1.3 Scalability. We compare the scalability of our model and

the power-law (PL) method numerically. We generate N samples

from power-law distribution configuration λ(x |β = 0,α = 1,∆ =
50,θ = 1), and by varying theN , we plot the average time consumed

by two methods in Fig. 4b. The power-law method scales with

complexity ≈ O(N 2). The rule-of-thumb upper-limit of the sample

size for the power-law method is 10
5
. The worse scalability of the

PL method is due to the grid search of the ∆ [5]. However, our

method can be applied to much larger datasets with much faster

speed. For instance, we get ≈ 2 ∗ 103 times faster when N = 10
5
.

5.2 Real-world data analysis
5.2.1 Datasets. Wevalidate ourmethod by 16 real-world datasets

from a variety of different human endeavors. According to the tem-

poral nature of datasets, we classify them as cross-sectional data

and dynamic data. The first eight datasets are from cross-sectional

obervations:

(a) The number of occurrence of words in the novel Moby Dick

by Herman Melville [16].

(b) The number of deaths by terrorist attacks worldwide from

February 1968 to June 2006 [6].

(c) The number of mammals on Earth per taxonomic groups [20].

(d) The numbers of customers influenced by electrical blackouts

in the US between 1984 and 2002 [16].

(e) The populations of US cities in the 2000 US Census [5].

(f) The acre sizes of wildfires occurring in US between 1986 and

1996 [16].

(g) The intensities of earthquakes occurring in California be-

tween 1910 and 1992 [16].

(h) The degree of actors in the movie-actor bipartite network

[2].

The last eight ones are from dynamic records on human or social

dynamics:

(i) The inter-event-time of adding consecutive friends in WeChat

by an active user [25, 26].

(j) The IET of short-messaging from a mobile phone user [23].

(k) , (l) The response time of letter correspondence for Einstein

and Freud during their whole life [18].

(m) The time intervals between an individual sending two con-

secutive e-mails during a 3 month period in a university [1, 21].

(n) The time interval of two retweets in a information cascade

in Tencent Weibo [28, 29].

(o) The time interval of chatting behavior in an online group

from Tencent QQ [32].

(p) The time interval of consecutive revision of one Wikipedia

item [30].

We compile and public all the datasets (refer to Sec .7) for repro-

ducibility, among which the last eight datasets serve as the first

data collection on human and social dynamics.
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Figure 5: The PDF (X ) and their fitting results by our method and baselines [5] for 16 real-world datasets from a wide range
of different disciplines. The real distributions are complex, and our method fits reality well. The first eight datasets are cross-
sectional datasets: (a) The number of occurrence of words in the novel Moby Dick by Herman Melville. (b) The number of
deaths by terrorist attacks worldwide from February 1968 to June 2006. (c) The number of mammals on Earth per taxonomic
groups. (d) The numbers of customers influenced by electrical blackouts in the US between 1984 and 2002. (e) The populations
of US cities in the 2000 US Census. (f) The acre sizes of wildfires occurring in US between 1986 and 1996. (g) The intensities of
earthquakes occurring in California between 1910 and 1992. (h) The degree of actors in themovie-actor bipartite network. The
last eight datasets are dynamic datasets: (i) The inter-event-time of adding consecutive friends inWeChat by an active user. (j)
The IET of short-messaging from amobile phone user. (k) and (l) The response time of letter correspondence for Einstein and
Freud during their whole life. (m) The time intervals between an individual sending two consecutive e-mails during a 3month
period in a university. (n) The time interval of two retweets in a information cascade in Tencent Weibo. (o) The time interval
of chatting behavior in an on-line group from Tencent QQ. (p) The time interval of consecutive revision of one Wikipedia
item. Our model (green circles) fits all these datasets (purple squares) quite well, while the state-of-art method (dashed lines
for the equation curve, triangles for the generated samples from the equation) shows large bias.



Table 2: Results of real-world datasets. Basic statistics of the 16 datasets, results of the PL method and the results of our
method. With respect to KS-Dist error, our model captures the real datasets with much smaller error than the PL Method. The
pdf described in PL method is f (x) = αPL−1

xmin
( x
xmin

)αPL .

Real-World Data Statistics PL Method Our Method

Dataset N Min(X ) Max (X ) E[X ] Std (X ) x̂min α̂PL − 1 KS-Dist ˆβ α̂ ∆̂ ˆθ KS-Dist

(a)Words 18855 1 14086 11.14 148.33 26.00 0.93 0.960 3.63e − 04 5.00 6.31 1.34 0.319
(b) Terrorism 9101 1 2749 4.35 31.58 50.00 1.52 0.992 1.18e − 10 5.00 7.20 1.21 0.348
(c) Species 29 1 1425 148.41 324.35 2.00 0.36 0.208 1.00e − 03 0.33 3.93 0.95 0.138
(d) Blackouts 211 1000 7500000 253868.68 610308.58 230000.00 1.27 0.725 1.58e − 06 0.03 10000.00 0.80 0.108
(e) Cities 19447 1 8008654 9002.05 77825.05 52457.00 1.37 0.970 7.99e − 07 0.40 723.77 0.92 0.033
(f) Fire 203785 0 412050 89.56 2098.73 6324.00 1.16 0.997 3.53e − 05 0.53 0.14 1.00 0.249
(g) Quakes 19302 1.00 63095734.45 24537.21 563830.70 794.33 0.64 0.439 1.96e − 15 0.37 521.91 0.92 0.095
(h) Actor 383640 1 646 3.83 10.42 162.00 4.21 0.999 2.05e − 02 1000.00 14.54 2.83 0.388

(i)WeChat 973 0 4073278 57644.40 159193.93 122841.00 1.66 0.887 1.22e − 05 0.11 30.00 1.12 0.076
(j) SMS 1692 0 4932276 16502.89 201848.27 45.00 0.62 0.556 4.76e − 07 1.75 26.17 1.17 0.134
(k) Einstein 5943 0 18496 197.32 819.46 9.00 0.53 0.483 5.09e − 04 10.00 18.55 1.62 0.076
(l) Freud 1190 0 7760 44.38 369.65 22.00 0.66 0.911 3.06e − 04 10.00 12.83 1.51 0.157
(m) Email 9856 1 228965 711.70 5086.52 34.00 0.49 0.661 6.57e − 05 7.37 38.05 1.43 0.121
(n) Cascade 3087 0 1586 52.42 102.59 49.00 1.36 0.720 6.82e − 04 10.00 96.22 1.26 0.021
(o) Group Chat 1055 0 266831 2200.11 16078.36 8.00 0.52 0.245 1.57e − 05 10.00 40.81 1.47 0.082
(p) Wikipedia 4660 1 29594. 311.58 1143.88 1153.00 1.32 0.940 4.77e − 04 0.22 1.52 0.92 0.111

5.2.2 Results. We validate our method by answering if our

model can capture all the empirical datasets. We compare our

method to the state-of-the-art method developed in [5], denoted

as PL model, which is widely used to fit the fat-tailed distributions

which possibly follow power law.

Figure 5 plot the real datasets, fitting results by the PL model

and our model. We find distributions of the real-world datasets

are much more complex than a pure power-law distribution. For

different data, the distribution of which exhibits different multi-

scale complexity. However, the overlaps of our model (green circles)

and the real data (purple squares) in all the plots indicate the good

performance of model, even by visual inspection. According to the

synthetic data analysis, the multi-scale complexities in distributions

lead to serious overestimation of the xmin of the PL model, and

we also observe these biases in the real datasets as shown in Fig. 5.

And thus, the f (x) learned by the PL model is systematic biased, as

indicated by the discrepancies of the gray triangles representing

the PL results and the purple squares representing real data.

We then conduct quantitative analysis. Given the real data X =
{x1, ...,xn }, we learn the parameters Θ of the pdf f (x |Θ) modeled

by the PL method and our method. We then generate the simulated

data samples from our method. denoted as Xour = {x1, ...,xn′},

and XPL = {x1, ...,xn′} from PL method. We evaluate the fitting

accuracy by the two-sample Kolmogorov-Smirnov distance (KS-

Dist), i.e., KS-Dist =maxx |F̂i (x) − F (x)|, and the lower the better.

The F (x) is the non-parametric cumulative distribution learned

from the real data, while the F̂ (x) is the non-parametric cumulative

distribution learned from the simulated datasets by method i . The
two-sample Kolmogorov-Smirnov distance is widely used for this

standard statistical test mission. In order to remove the errors due

the small number of the generated samples, we set n′ = 10 ∗ n.
We summarize the data and results in Table. 2. We find for all 16

datasets, our method get much lower error, namely KS-Dist, than

the PL method, indicating the superiority of our method.

6 DISCUSSIONS
The design principle of our show-cased model is: keep simple, cap-

ture complex. Only one parameter ∆ is used to capture the com-

plexity in short-scale regime, one parameter β to capture the com-

plexity in long-scale regime, and one parameter θ to encompass

both power-law distribution and stretched-exponential distribution

in the middle-scale regime. However, more efforts can be made

by following our framework. For example, mixture heavy-tailed

model, log-normal distribution can be further utilized. And we can

expect much smaller errors between empirical data and the fitting

results. However, no matter how complex the model is, modeling

parameters should be interpretable. Further, prior knowledge on

the parameters can be captured by a Bayesian framework. More

real-world datasets should be examined. Some previous conclusions

based on applying PL method on complex distributions should be

re-examined.

7 CONCLUSIONS
In this paper, we find distributions in various empirical data, rang-

ing from art, biology, physics, geology, social science to computer

science, from cross-sectional observations to dynamic records, take

on multi-scale complexities. We develop a dynamic framework to

fit the complex distributions in the real world. By modeling the

generative dynamics of the data, we extremely simplify the mathe-

matical form of the model, but at the same time generate a wide

range of complex distributions. Efficient inference method and data

generative algorithm are provided. Rather than a black-box model,

we explain the generative mechanisms of these complex distribu-

tions by a unified differential equation. We analyze the properties

of our model by various synthetic datasets, and validate our model

by a wide range of real-world datasets. Our model captures the com-

plexity in all these data quite well. Our model potentially provides

a framework to fit complex distributions in empirical data, and to

understand their generative mechanisms. In short, we summarize

our contributions as follows:



• Unification power: We propose a general model to fit vari-

ous complex distributions in empirical data, together with

inference and simulation algorithms.

• Parsimony: With four parameters, our model has a simple

form to capture multi-scale complexities in empirical distri-

butions.

• Interpretability: Our model is interpreted by a unified gen-

erative dynamic equation. All the parameters have clear

physical meanings in the random network scenarios.

• Usefulness:Our model fits complex empirical dataset distribu-

tions in various disciplines accurately, and can be generalized

to more complex cases in a principled way.

We open-source our code and datasets at www.calvinzang.com.
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