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Abstract

Owning to the rapid development of computer technologies, an increasing number of relational data have been emerging in
modern biomedical research. Many network-based learning methods have been proposed to perform analysis on such data,
which provide people a deep understanding of topology and knowledge behind the biomedical networks and benefit a lot of
applications for human healthcare. However, most network-based methods suffer from high computational and space cost.
There remain challenges on handling high dimensionality and sparsity of the biomedical networks. The latest advances in
network embedding technologies provide new effective paradigms to solve the network analysis problem. It converts
network into a low-dimensional space while maximally preserves structural properties. In this way, downstream tasks such
as link prediction and node classification can be done by traditional machine learning methods. In this survey, we conduct a
comprehensive review of the literature on applying network embedding to advance the biomedical domain. We first briefly
introduce the widely used network embedding models. After that, we carefully discuss how the network embedding
approaches were performed on biomedical networks as well as how they accelerated the downstream tasks in biomedical
science. Finally, we discuss challenges the existing network embedding applications in biomedical domains are faced with
and suggest several promising future directions for a better improvement in human healthcare.

Key words: biomedical networks; biomedical knowledge graphs; biomedical informatics; network embedding; graph
embedding; network-based learning

Introduction
Recent advances in biomedical research as well as computer
software and hardware technologies have led to an inrush of
a large number of relational data interlinking drugs, genes,
proteins, chemical compounds, diseases and medical concepts
extracted from clinical data [1–3]. The representation of a
biomedical object contains its relationship to other objects; in
other words, the data is in the form of a network comprised of
nodes (biomedical entities) and edges (relations between nodes).
The availability of such relational data has greatly facilitated
the biomedical studies, such as network biology [4–6], network

medicine [7, 8], pharmacogenomics [9], disease diagnosis [10, 11],
clinical phenotyping [12], etc.

Analyzing and modeling the biomedical data with network
structure rely on a thorough understanding of network topology.
Numerous network-based learning methods have been devel-
oped to explore reliable tools for multiple applications. Although
existing methods show capacity of processing networks and
demonstrate great promises [2, 13–16], they usually suffer from
high computational and space cost, owning to high dimension-
ality and sparsity of the networks. The challenges are further
complicated by various emerging heterogeneous biomedi-
cal networks, including the biomedical knowledge graphs
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Figure 1. Illustration of network embedding in biomedical research. Traditional network-based learning conforms to network structure, hence suffers from high

computational and space cost. In contrast, network embedding projects biomedical network into a low-dimensional space while preserving structural properties,

hence traditional machine learning methods can be easily applied to the low-dimensional embedding vectors for downstream biomedical tasks.

(e.g. PharmGKB [17], DrugBank [18] and TTD [19]), biomedical
ontologies [i.e. gene ontology (GO) [20], human phenotype
ontology [21] and disease ontology [22]] and heterogeneous
networks extracted from clinical data, which commonly consist
of multiple types of nodes and edges and complex biomedical
rules.

Network embedding provides another effective yet efficient
way to address the network analysis problem (as shown in
Figure 1). Specifically, network embedding aims at converting
the network into a low-dimensional space while structural
information of the network is preserved [23–26]. In this way,
nodes and/or edges of the network can be represented as
compacted yet informative vectors in the embedding space.
Therefore, typical non-network-based machine learning meth-
ods such as linear regression, Support Vector Machine (SVM) and
decision forest, which have been demonstrated to be effective
and efficient as the state-of-the-art techniques, can be applied
to such vectors. Network embedding methods have showed
effectiveness and potential on network analysis and hence have
introduced exciting opportunities for biomedical data science.
Efforts of applying network embedding to improve biomedical
data analysis are already planned or underway. However,
network embedding has not been extensively evaluated for
a broad range of biomedical issues that could benefit from
its capabilities. The biomedical networks are sparse, noisy,
incomplete, heterogeneous and usually consist of biomedical
text and other domain knowledge. It makes embedding tasks
more complicated than other application fields. To address
this, it is important to understand and compare the existing
network embedding models, as well as to investigate how
they were implemented on biomedical data. Therefore, it
can help us gain better insights on directions for future
work.

In this article, we discuss existing and forthcoming applica-
tions of network embedding in biomedical informatics, while
highlighting the key aspects to significantly accelerate biomed-
ical data science. Here we do not provide a comprehensive
network embedding background on technical details that has
been well reviewed by previous works [23–26]. Instead of general
applications of network embedding, we focus on biomedical
data only, including drug-related networks and knowledge
graphs, multi-omics networks, biomedical knowledge graphs
and heterogeneous networks extracted from clinical data. To
the best of our knowledge, there is no detailed review discussing
any insights of impacts of network embedding techniques on
biomedical science. To fill in this gap, we briefly introduce

the state-of-the-art network embedding models and review
their applications in biomedical domain. We further discuss
challenges and future research directions toward a better
usage of network embedding to improve the human healthcare
research.

Network embedding methodologies
In this section, we introduce the state-of-the-art network
embedding methods and propose taxonomy by grouping
the methods into two categories: non-attributed network
embedding and attributed network embedding (as shown in
Table 1 and Figure 2).

Non-attributed network embedding

A non-attributed network is also known as homogeneous net-
work, of which all nodes and edges belong to a unique type,
respectively. In practice, learning embeddings is to preserve local
and/or global structural property measured by the 1st-order
proximity and/or high-order proximity, respectively. We next
introduce the non-attributed network embedding methods lying
in how they define the proximity to preserve.

Matrix factorization-based methods

The 1st category of non-attributed network embedding is the
matrix factorization-based methods. The pioneer efforts, such as
the locally linear embedding (LLE) [27] and Laplacian eigenmaps
(LE) [28], first construct the network from the non-relational data
by using some constructing strategies, e.g. k-nearest neighbor
approach. Then they extract the adjacency matrix that holds
proximity in terms of similarity between nodes and their neigh-
bors and factorize it to obtain the embedding vectors of nodes.
The distinction is that LLE defines objective based on a linear
neighborhood combination assumption, while LE transforms the
embedding task into eigenvector problem of graph Laplacian
matrix.

Some other works directly factorize the proximity matri-
ces. A simple version is the graph factorization (GF) [29],
which models the proximity matrix regarding the presence
of each edge. GraRep [30] is a further work similar to GF,
which constructs the high-order proximity matrix based on
transition probability by a random walk with specific length.
HOPE [31] aims at preserving high-order proximity according
to the asymmetric transitivity for directed networks and
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Table 1. Network embedding models surveyed in this study. The 1st column is the subcategory of network embedding models. The 2nd and 3rd
columns present the names and release years of network embedding models, respectively. The 4th column introduces the main architectures
of the network embedding models. The 5th column presents the learning methods of the network embedding models. The 6th column gives
the time complexities of the methods. The last column lists URLs linked to the source codes of the network embedding models. n and m are
numbers of nodes (entities) and edges (relations) in the network, respectively; d and k are dimensions of embedding spaces of node and edge,
respectively; l is the predefined length of random walk, μ is the average degree of node

Category Algorithm Year Architecture Learning method Time complexity Source code

Non-attributed network embedding

Matrix
Factorization

LLE [27] 2000 Eigenvector
problem

Unsupervised O
(
d2m

)
http://cseweb.ucsd.
edu/~saul/matlab/
manifolds.tar.gz

LE [28] 2002 Laplacian
eigenvector
problem

Unsupervised O
(
d2m

)
http://scikit-learn.
org/stable/modules/
manifold.html

GF [29] 2013 Adjacency matrix
factorization

Unsupervised O(dm) -

GraRep [30] 2015 Transition
probability-based
proximity matrix,
SVD

Unsupervised O
(
n3

)
https://github.com/
ShelsonCao/GraRep

HOPE [31] 2016 Asymmetric
transitivity-based
proximity matrix,
SVD

Unsupervised O
(
d2m

)
http://git.thumedia.
org/embedding/HOPE

Random walk DeepWalk [32] 2014 Truncated
random
walk + SkipGram

Unsupervised O(dn) https://github.com/
phanein/deepwalk

node2vec [34] 2016 BFS, DFS modified
random
walk + SkipGram

Unsupervised O(dn) https://github.com/
aditya-grover/node2
vec

Walklets [35] 2016 Random walk
with
skips + SkipGram

Unsupervised O(dn) -

DCA [41] 2015 Diffusion state by
random walk
with restart

Unsupervised O
(
dn2

)
https://github.com/
hhcho/diffusion-
component-analysis

Deep learning Structual Deep
Network
Embedding
(SDNE) [38]

2016 Deep
autoencoder +
Laplacian
eigenmaps

Semi-supervised O(nm) https://github.com/
suanrong/SDNE

Deep Neural
Networks for
Graph
Representation
(DNGR) [39]

2016 Deep
autoencoder +
random surfing

Unsupervised O
(
n2

)
https://github.com/
ShelsonCao/DNGR

Others MDS [40] 1995 Euclidean
distance

Unsupervised O
(
n2

)
-

Isomap [41] 2000 Euclidean
distance

Unsupervised O
(
d2m

)
http://web.mit.edu/
cocosci/isomap/
isomap.html

LINE [42] 2015 Local and global
context

Unsupervised O(dm) https://github.com/
tangjianpku/LINE

Attributed network embedding

Semantic
Matching Models

RESCAL [46,47] 2011 Bilinear model Supervised O
(
d2

)
https://github.com/
mnick/rescal.py

DistMult [49] 2014 Bilinear model Supervised O(d) -
HolE [50] 2016 Holographic

model
Supervised O

(
d log(d)

)
https://github.com/
mnick/holographic-
embeddings

Continued
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Table 1. (continued)

Category Algorithm Year Architecture Learning method Time complexity Source code

SME [51] 2014 Neural network Supervised O
(
d3

)
https://github.co
m/glorotxa/SME

MLP [52] 2014 Multi-layer
perceptron

Supervised O
(
d2

)
-

NTN [53] 2013 Neural tensor
network

Supervised O
(
d2k

)
-

Translational
Distance Models

SE [54] 2011 Naive distance
model

Supervised O
(
d2

)
https://github.co
m/glorotxa/SME

TransE [55] 2013 Translation model Supervised O
(
d
)

https://github.co
m/glorotxa/SME

TransH [56] 2014 Translation
model;
relation-specific
hyperplane

Supervised O
(
d
)

https://github.co
m/mrlyk423/rela
tion_extraction

TransR/CTransR
[57]

2015 Translation
model;
relation-specific
space

Supervised O
(
dk

)
https://github.co
m/mrlyk423/rela
tion_extraction

TransD [58] 2015 Translation
model; entity and
relation diversity

Supervised O
(
max

(
d, k

))
https://github.co
m/thunlp/Tenso
rFlow-TransX

TransF [60] 2016 Flexible
translation model

Supervised O
(
d
)

-

TranSparse [59] 2017 Translation
model; adaptive
sparse matrices

Supervised O
(
dk

)
-

Meta-path PGHNE [62] 2017 Meta-path
specific matrices

Supervised O
(
dm

)
https://github.co
m/chentingpc/Gui
dedHeteEmbeddi
ng

HINE [63] 2017 Heterogeneous
proximity

Unsupervised O
(
nlμ

)
-

metapath2vec
[64]

2017 Meta-path-based
random walk +
SkipGram

Unsupervised O
(
dn

)
https://ericdo
ngyx.github.io/me
tapath2vec/m2v.
html

Others LANE [65] 2017 Laplacian matrix Unsupervised O
(
n2

)
-

EOE [66] 2017 Based on LINE,
harmonious
matrix

Unsupervised O
(
d2n

)
http://www2.co
mp.polyu.edu.hk/∼
cslcxu/#publicatio
ns

defines the proximity matrix using different global struc-
tural measurements. GraRep and HOPE optimize the objec-
tives by introducing the singular value decomposition (SVD)
technique.

Random walk-based methods

In graph theory, random walk is exploited to capture struc-
tural relationships between nodes. By performing truncated
random walks, a network is transformed into node sequences,
i.e. paths, which preserve structural proximity of the network.
Inspired by SkipGram [32], a famous deep model for neuro-
linguistic programming (NLP) that embeds words into a low-
dimensional space by incorporating the context of words in
sentences, DeepWalk [33] considers the paths as sentences
and implements SkipGram to learn embedding of each node.
Compared to DeepWalk, node2vec [34] introduces a more

flexible random walk strategy with a trade-off of breadth-
first searching and depth-first searching. Therefore, global
and local proximities are encoded in the sampled paths.
Walklets [35], another extension to DeepWalk, modifies the
basic random walk strategy by skipping some nodes in each
walk, analogous to constructing the proximity matrix of GraRep.
Hence, Walklets is confident in preserving global structural
information. Besides, diffusion component analysis (DCA) [36]
was proposed to deal with biological networks, which encodes
inherent structural properties as diffusion state by random
walk with restart (RWR) [37]. Particularly, for each node v in
a biological network, DCA computes its diffusion state that
is defined as probability distribution that a diffusion path
starting from v will reach other nodes based on RWR strategy.
RWR captures both global and local structural properties
and enables DCA to overcome noise and sparsity of biology
networks.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/21/1/182/5228144 by Pfizer Inc., user on 17 N

ovem
ber 2022

https://github.com/glorotxa/SME
https://github.com/glorotxa/SME
https://github.com/glorotxa/SME
https://github.com/mrlyk423/relation_extraction
https://github.com/mrlyk423/relation_extraction
https://github.com/thunlp/TensorFlow-Tr
https://github.com/chentingpc/GuidedHeteEmbedding
https://ericdongyx.github.io/metapath2vec/m2v.html
http://www2.comp.polyu.edu.hk/~cslcxu/#publications


186 Su et al.

Figure 2. Taxonomy of network embedding models.

Deep learning-based methods

Over the past years, deep learning methods have shown impres-
sive improvement across diverse domains. The idea of building
deep architecture was also introduced to deal with the network
embedding issue. SDNE [38] and DNGR [39] were designed based
on the deep autoencoder architecture. Specifically, SDNE rep-
resents nodes by their high-dimensional neighborhood vectors
and feeds to the autoencoder to preserve high-order proximity;
meanwhile, it also incorporates LE’s proximity measure into the
autoencoder to preserve 1st-order proximity. On the other hand,
DNGR constructs a positive pointwise mutual information (PPMI)
matrix by using random surfing, which can capture more global
information than random walk. DNGR achieves embeddings
by applying autoencoder to the PPMI matrix and shows better
performance in preserving high-order proximity than DeepWalk.

Other methods

Two previous works, multidimensional scaling (MDS) [40] and
Isomap [41], learn node embedding by preserving the Euclidean
distances of node pairs in the embedding spaces. A common
drawback of them is that they need to compute the shortest
lengths of node pairs. Another widely used method, LINE [42],
aims at embedding by preserving both local and global structure
properties. To this end, it defines 1st-order proximity and 2nd-
order proximity as connection weight and node’s context simi-
larity, respectively.

Attributed network embedding

The attributed networks, also known as heterogeneous net-
works, allow nodes and/or edges to belong to multiple types,
including the multimedia networks, knowledge graphs, e.g.
Freebase [43], DBpedia [44] and YAGO [45], as well as recently
emerged biomedical knowledge graphs, e.g. PharmGKB [17],
DrugBank [18] and TTD [19]. To embed an attributed network,
people should explore structural consistency between different
types of objects. The semantic matching models and transla-
tional distance models try to address this issue by building
energy functions. Specifically, they define a fact as a triple

(
h, r, t

)

such that h and t are head and tail entities (i.e. nodes) and r is a
relation (i.e. edge) connecting h to t. Let D+ denote the collection
of facts observed from the network, and D− the collection of
false or missing facts. Then the task of network embedding is to
train a model based on an energy function f

(
h, r, t

)
to preserve

the ranking of facts in D+ over D−. In addition, some other efforts
are also able to capture heterogeneity of network by using other
insightful techniques, e.g. meta-path.

Semantic matching models

The semantic matching models exploit similarity-based energy
functions by matching latent semantics of entities and relations
in embedding spaces. RESCAL [46, 47] was proposed based on the
idea that entities are similar if connected to similar entities via
similar relations [48]. By associating each relation r with a matrix
Mr, it defines the energy function by a bilinear model f

(
h, r, t

) =
hTMrt, where h, t ∈ Rd are d-dimensional (d � n) embedding
vectors for entities h and t, respectively. RESCAL jointly learns
embedding results for entities by h and t and for relation by
Mr. DistMult [49] simplifies RESCAL by restricting matrix Mr for
relation r as a diagonal matrix. Though DistMult is more efficient
than RESCAL, it can only deal with the undirected networks.
To address this, HolE [50] composes h and t by their circular
correlation. Consequently, power of RESCAL and efficiency of
DistMult are inherited by HolE.

Other works refer to the neural network architecture by
considering embedding as the input layer and energy function as
the output layer. For example, semantic matching energy (SME)
model [51] designs the hidden layer as gleft

(
h, r

) = M1h + M2r + bh

and gright(t, r) = M3t + M4r + bt. Then its energy function is
given as inner product of gleft

(
h, r

)
and gright(t, r). Since all facts

share M1, M2, M3 and M4, the number of parameters of SME to
learn is much less than RESCAL. Multi-layer perceptron (MLP) [52]
associates each relation r with a vector r and designs a hidden
layer with weight w ∈ Rd. MLP defines the energy function as
f
(
h, r, t

) = wTtanh
(
M1h + M2r + M3t

)
with shared M1, M2 and

M3. Neural tensor network [53] constructs the hidden layer by
specifying each relation r a tensor Mr. Therefore, it is expressive
but has more parameters to learn compared to RESCAL.
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Translational distance models

The basic idea of the translational distance models is that, for
each fact

(
h, r, t

)
, relation r is considered as a translation from

head entity h to tail entity t, namely h + r � t in embedding
space. They exploit distance-based energy functions to model
the facts. A former approach with analogous idea is the struc-
tured embedding (SE) model [54] that assumes that relation r can
project h close to t by using M1

r and M2
r and defines f

(
h, r, t

) =∥∥M1
r h − M2

r t
∥∥

1. However, massive number of M1
r and M2

r usually
lead to inefficiency in training. TransE [55] is the pioneer of
translational distance models. Given an observed fact

(
h, r, t

)
,

TransE represents relation r as translation vectorr, such that h
and t is closely connected by r. Therefore, energy function is
defined as f

(
h, r, t

) = ∥∥ h + r − t
∥∥

2. Since all parameters to learn
are entity and relation embedding vectors lying in a same low-
dimensional space, TransE is obviously easy to train. A drawback
of TransE is that it cannot do well with N-to-1, N-to-1 and N-to-
N structures. To address this issue, TransH [56] extends TransE
by introducing a hyperplane for each relation r and projecting
h and t into the hyperplane before constructing the transla-
tion scheme. TransH improves model capacity while preserving
efficiency. Similarly, TransR [57] extends TransE by introducing
relation-specific space. h and t are projected by a matrix Mr w.r.t.
relation r. Further, for more fine-grained embedding, TransD
[58] extends TransE by constructing two matrices M1

r and M2
r

for each r to project h and t, respectively. In this way, TransD
captures not only diversity of relations but also diversity of
entities. TranSparse [59] is a simplified version of TransR by using
adaptive sparse matrices to model different types of relations,
and TransF [60] achieves a flexible embedding result by relaxing
the translation restriction to h + r � αt.

Meta-path-based methods

A meta-path is defined as a sequence of node types separated
by edge types [61]. For example, a meta-path of length l is

in form of a1
b1→ a2

b2→ · · · bl−1→ al, where {a1, a2, · · · , al} and{
b1, b2, · · · , bl−1

}
are sets of node type and relation type, respec-

tively. Therefore, a meta-path is able to capture both structure
and attribute information. Several attributed network embed-
ding models have been proposed by using the meta-path concep-
tion. By defining an adjacency matrix Mp by node connectivity
under meta-path p, path-augmented general heterogeneous net-
work embedding model [62] learns node embeddings by using
a neighbor prediction framework on adjacency matrices {Mp}
of selected meta-paths. Following this idea, HINE [63] defines
meta-path-based proximity in two ways: count of specific path
between nodes or probability of meta-path-based random walks
linking two nodes. HINE preserves heterogeneous structure by
minimizing difference between meta-path-based proximity and
expected proximity in embedding space. Moreover, similar to
DeepWalk, metapath2vec [64] formalizes meta-path-based ran-
dom walks and introduces a heterogeneous-version SkipGram
to learn node embeddings.

Other methods

Like LE, LANE [65] constructs proximity matrices by incorpo-
rating node attributes, network structure and labels and learns
embeddings based on Laplacian matrix. In addition, EOE [66] was
designed to embed network coupled by two non-attribute net-
works. Particularly, EOE first embeds the non-attribute networks
separately by LINE and next jointly embeds them by introducing
a harmonious embedding matrix.

Connection to machine learning

Intuitively, network embedding is proposed to bridge the gap
between network topology and traditional machine learning,
which is only able to process subjects in vector space. A usual
use of the network embedding techniques is to translate net-
work structural information into low-dimensional vectors and
feed to machine learning models to address downstream tasks
such as link prediction, node classification and clustering and
network visualization, etc. In this case, embedding model and
the downstream machine learning model are trained separately.
For ease of use, some integrated open-source software packages
of network embedding have been developed as shown in Table 2.
Moreover, in many domains such as biomedicine, a network
or relational data usually contains non-topological information,
e.g. texts, images and domain roles. To comprehensively incor-
porate such heterogeneous information attached to the network,
there arise increasing needs of deep combination of network
embedding and machine learning. For example, as deep learning
has achieved great success in representation learning of text
and image [67], a deep architecture was designed to simultane-
ously incorporate and train network embedding, text embedding
and image embedding components [68]. As network embedding
has been the focus of network analysis, how to adapt network
embedding to data and applications in practice has become a
crucial point. In brief, a network embedding method should
not only efficiently learn informative network representation
but also adapt to practical application. With this in mind, we
will introduce how the network embedding is applied to the
biomedical data to advance the biomedical study in the next
section.

Applications in biomedical data science
The use of network embedding for biomedical data analysis
is recent and not thoroughly explored. In this section, we will
review some of the main literatures related to applications of
network embedding techniques to pharmaceutical data analy-
sis, multi-omics data analysis and clinical data analysis. Table 3
lists all the papers mentioned in this literature review.

Pharmaceutical data analysis

Drug repositioning

Computational drug repositioning, also known as drug repurpos-
ing, is a promising and efficient tool for exploring new usage for
existing drugs to save drug development cost and increase pro-
ductivity [3, 69]. Drugs bind with target proteins and affect their
downstream activity, consequently lead to impact on human
body to treat the disease. A drug repositioning tool usually aims
at predicting unknown drug–target or drug–disease interactions.
The reviewed studies introduced network embedding into the
drug–target and drug–disease interaction network analysis to
facilitate drug repositioning.

Drug–target interaction prediction. Previous drug–target inter-
action (DTI) prediction efforts performed matrix factorization
based embedding methods on proximity matrices of the
bipartite DTI networks and made predictions based on distances
in the learned low-dimensional embedding spaces. For example,
Yamanishi et al. [70] constructed the graph-based proximity
matrix by known DTIs and developed an eigenvalue factorization
algorithm similar to LLE. Cobanoglu et al. [71] directly applied
probabilistic matrix factorization to the DTI network to learn
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Table 2. Open-source software packages of the network embedding techniques. The 1st column is the software package names. The 2nd column
presents the network embedding algorithms included in the package. The 3rd column is the platforms that the software runs. The 4th column
presents the URLs linked to the software packages

Package name Algorithms included Platform URLs

OpenNE DeepWalk, LINE, node2vec,
GraRep, TADW, GCN, HOPE, GF,
SDNE and LE

Python https://github.com/thunlp/Ope
nNE

TensorFlow-TransX TransE, TransH, TransR and TransD C++ https://github.com/thunlp/Tenso
rFlow-TransX

Fast-TransX TransE, TransH, TransR, TransD
and TranSparse

C++ https://github.com/thunlp/Fast-
TransX

knowledge-graph-embeddings RESCAL, TransE, DistMult, HoLE,
etc.

Python https://github.com/mana-ysh/kno
wledge-graph-embeddings

scikit-kge RESCAL, TransE, HoLE, etc. Python https://github.com/mnick/scikit-
kge

Graph-Embedding DeepWalk, LINE, node2vec, etc. Python https://github.com/dedekinds/Gra
ph-Embedding

Graph-Embedding-Methods (GEM) LLE, LE, GF, HOPE, SDNE, node2vec Python https://github.com/palash1992/GE
M

embeddings. Ezzat et al. [72] applied LE, SVD-based matrix factor-
ization and another dimensionality reduction technique, Partial
Least Squares [73], to the DTI network embedding. Further,
many studies tried to integrate external information into the
factorization. For example, in the further work by Yamanishi
et al. [74], drug side effect and protein domain information
were integrated into the proximity matrix. Zheng et al. [75]
incorporated external chemical and genomic information as
regularization terms of the factorization to improve embedding
and prediction. For the purpose of incorporating new drugs and
targets that do not have any DTI record, Ezzat et al. [76] modified
proximity matrix of DTI network by using k-nearest known
neighbors’ interaction profiles of each new drug or target.

More recent works focused on heterogeneous frameworks
that contain diverse types of drug-related interactions besides
DTIs. Luo et al. [77] proposed DTINet by extending DCA by sep-
arately performing RWR on drug–drug, drug–disease, drug side
effect and drug similarity networks for drug embedding and
on protein–protein, protein–disease and protein similarity net-
works for target protein embedding. After that, DTINet projected
drugs into the embedding space of target proteins and made pre-
diction based on geometric proximity. Other works implemented
embedding on heterogeneous networks integrated from hetero-
geneous interaction data. For example, Zong et al. [78] introduced
DeepWalk to a tripartite network consisting of drug–target, drug–
disease and target–disease interactions. Alshahrani et al. [79]
integrated GO, protein–protein interactions (PPIs), DTIs, gene–
disease interactions, drug side effect and disease–phenotype
pairs into a heterogeneous biological knowledge graph. To cap-
ture the heterogeneity, they modified DeepWalk by incorpo-
rating the types of relations into the random walk sequences.
Therefore, structural properties combining with relation-type
information were preserved when projecting biological entities
into the embedding space. Afterwards, a logistic regression clas-
sifier was trained for prediction. The results showed that imple-
mentation of network embedding on such heterogeneous frame-
works effectively integrates chemical, genomic, pharmacological
and phenotypic information, and hence accelerates accurate DTI
prediction and provides new insights into drug repositioning.

Drug–disease interaction prediction. Other studies upon drug
repositioning focused on computationally predicting drug–

disease associations, in which network embedding techniques
were also involved. Dai et al. [80] first embedded genes by
applying eigenvalue decomposition to a gene–gene interaction
network and next calculated genomic representations for drugs
and diseases from the gene embedding vectors via neighbor-
ing information of drug–gene and disease–gene interaction
networks, respectively. Afterwards, they developed a matrix
factorization method, of which the genomic representations of
drugs and disease served as initial states of the final embedding
vectors during training. The results revealed that introducing
genomic space produced by network embedding provides rich
molecular-level biological information and helps learn more
informative representations for drugs and diseases. Wang et al.
[81] proposed to detect unknown drug–disease interactions from
the medical literature by using NLP and network embedding
techniques. Using treatment and inducement drug–disease pairs
extracted from 27 million PubMed articles, they first constructed
a heterogeneous network. They next expanded the network
embedding method, LINE, by modifying the 1st-order proximity
to encode treatment and inducement relations as positive and
negative effects to the objective function, respectively. The result
showed that the embeddings lead to significant improvement
in predictions of both types of drug–disease interactions.

Adverse drug reaction analysis

An adverse drug reaction (ADR) is defined as any undesirable
effect from the medical use of drugs beyond its anticipated
therapeutic effects that occurs at a usual dosage [82]. The study
of ADRs is the concern of drug development especially before
a drug is launched on clinical application. Detecting poten-
tial ADRs is always time consuming and expensive. To address
this, computational methods based on network embedding have
been introduced to ADR analysis. Stanovsky et al. [83] proposed
to recognize ADR mentions in social media by infusing a knowl-
edge graph, DBpedia [44]. Similar to translational distance mod-
els, such as SE, TransE and TransH, they trained a deep learning
model by incorporating distance-based energy function. The
embedding was infused into a recurrent neural network (RNN)
transducer model [84] that was then trained for recognizing
ADR mentions. The results showed that embedding of DBpedia
knowledge graph is able to provide additional improvements
to RNN.
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Table 3. Biomedical applications of network embedding surveyed in this study. The 1st column presents the biomedical tasks. The 2nd column
lists authors and references of the studies. The 3rd column introduces data used in the biomedical tasks. The 4th column presents the concrete
applications. The 5th column introduces the network embedding methods used in the biomedical studies

Tasks Authors Data Application Embedding method

Computational drug development and discovery
Drug repositioning Yamanishi et al. [70,74] DTI network, external

drug and protein domain
information

DTI prediction Eigenvalue factorization
algorithm

Cobanoglu et al. [71] DTI network DTI prediction Probabilistic matrix
factorization

Zheng et al. [75] DTI network, external
chemical and genomic
information

DTI prediction Matrix factorization

Ezzat et al. [76] Modified DTI network,
external chemical and
genomic information

DTI prediction Matrix factorization

Ezzat et al. [72] DTI network DTI prediction LE, SVD, PLS
Luo et al. [77] Heterogeneous drug

related network
DTI prediction DCA

Zong et al. [78] tripartite drug-related
network

DTI prediction DeepWalk

Alshahrani et al. [79] biological knowledge
graph

DTI prediction Modified DeepWalk

Dai et al. [80] Gene–gene, gene–drug,
gene–disease interactions

Drug–disease interaction
prediction

Eigenvalue decomposition
and matrix factorization

Wang et al. [81] Drug–disease pairs Drug–disease interaction
prediction

Modified LINE

Adverse drug reaction
analysis

Stanovsky et al. [83] Drug knowledge graph Recognizing ADR
mentions in social media

Distance-based model
similar to SE, TransE and
TransH

Zitnik and Zupan [85] DTIs and DDIs DDI prediction Extended RESCAL
Abdelaziz et al. [86] Drug knowledge graph DDI prediction TransH and HolE
Wang et al. [87] Drug knowledge graph

and biomedical text
information

DDI prediction Extended TransH

Zitnik et al. [88] Drug knowledge graph DDI prediction Deep autoencoder similar
to SDNE and DNGR

Multi-omics data analysis
Genomics data analysis Cho et al. [36] Biological network Learning informative but

low-dimensional
representations for nodes
in biological networks

DCA, a model based on
RWR

Wang et al. [91] Biological network Gene function prediction clusDCA, an extension of
DCA

Wang et al. [92] Heterogeneous network
comprised of gene
expression and drug
response–gene
information

Pathway identification
associated with
chemosensitivity data

DCA

Li et al. [93] Cell-ContexGene and
Gene-ContexGene
networks

Learning representation
for single cell RNA-seq
data

Extended LINE

Zeng et al. [95] Gene–disease network Prediction of pathogenic
human genes

Matrix factorization

Proteomics data analysis Airoldi et al. [99] PPI networks Learning latent
representation for
proteins

Mixed membership
stochastic block model

Kuchaiev et al. [101] PPI networks PPI network de-noising Extended MDS
You et al. [102] PPI networks Assessing and predicting

PPIs
Isomap

Lei et al. [103] PPI network, genomic and
proteomic data

PPI network embedding Extended Isomap

Continued
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Table 3. (continued)

Tasks Authors Data Application Embedding method

Cannistraci et al. [105,106] PPI networks Assessing and predicting
PPIs

Minimum curvilinear
embedding

Zhu et al. [107] PPI networks Assessing PPIs Logistic metric embedding
Josifoski and Trivodaliev
[109]

PPI networks Protein function
prediction

node2vec

Wang et al. [110] PPI networks Protein function
prediction

Extended DCA based on
meta-path

Transcriptomics data
analysis

Shen et al. [114] miRNA–disease bipartite
network, miRNA
functional similarity and
disease semantic
similarity

Prediction of Esophageal
Neoplasms-related
miRNAs

Matrix factorization

Li et al. [117] miRNA–disease bipartite
network

Prediction of associated
miRNAs of 22 disease

DeepWalk

Clinical data analysis
Medical knowledge graph
embedding

Zhao et al. [118] Bipartite medical
knowledge graphs

Learning medical entity
embeddings

A method by extending
RESCAL and TransE

Wang et al. [119] Medical knowledge graph Recommending proper
medicine to patients

A method by extending
TransR and LINE

Zhao et al. [120] Symptom–disease
network extracted from
medical forum data

Representation learning
for disease prediction,
disease category
prediction and disease
clustering

Extended TransE

Electronic health/medical
record embedding

Choi et al. [121] EHR + medical ontology
graph

Learning EHR
representation with the
help of medical
ontologies.

GRAM

Huang et al. [122] EMR + biomedical
knowledge graph

Visualizing EMR of patient ProSNet, i.e. extended DCA

Liu et al. [12] Medical temporal graphs
extracted from EHR

Learning representations
of EHR record sequences,
i.e., temporal phenotyping

Graph reconstruction

Choi et al. [126] Medical concepts Medical concept
embedding

Factorization of PPMI
matrix analogous to DNGR

Other works on ADR analysis aimed at predicting drug–drug
interactions (DDIs) because the majority of preventable ADRs
occur between pairs of drugs. Zitnik and Zupan [85] proposed
a collective relational learning method, Copacar, based on the
intuition of RESCAL to identify the most meaningful relations
from multi-relational data. To predict novel DDIs, Copacar was
applied to medical relational data composed of known DTIs
and DDIs. Most recent works implemented network embedding
on knowledge graphs that contain drug-related entities and
relations. For example, Abdelaziz et al. [86] proposed Tiresias
that utilizes TransH and HolE to embed a drug knowledge graph.
The embedding results then served as global features for DDI
prediction. The predictive results showed that combination of
network embeddings, text embeddings and similarity-based
local features helps reach a significant prediction. Wang et al.
[87] developed a new framework, PRD, which aims at encoding
drug knowledge graph and biomedical text information into
a common embedding space for DDI prediction. In particular,
TransH was extended by replacing each fact

(
h, r, t

)
as

(
h, I, t

)
,

where I keeps text information over relation r. Accordingly, a
deep autoencoder model was developed. The results showed
that joint learning of embedding results in PRD outperforming
Tiresias, TransE and TransR in DDI prediction. In a recent work
by Zitnik et al. [88], they proposed a deep autoencoder method,
Decagon, following the intuition of SDNE and DNGR to predict

labeled DDIs. Decagon consists of two components: an encoder
by convolutional network for producing embeddings [89, 90]
and a decoder by tensor factorization model for prediction
by using the embeddings. The results showed that Decagon
outperformed baselines, including RESCAL and DeepWalk,
up to 69%.

Multi-omics data analysis

Omics aims at quantitatively and qualitatively studying struc-
tures, functions and dynamics of molecules of the organisms.
Network embedding is a valuable tool for implementations of
relational data analysis in omics. The reviewed studies tried
to introduce network embedding methods to accelerate com-
putational tasks in multi-omics from the following subclasses:
genomics, proteomics and transcriptomics.

Genomics data analysis

Several works applied network embedding to predictive tasks
in genomics data analysis. A widely used biological network
embedding method, DCA, was introduced to interaction
prediction studies in genomics analysis. For example, Wang
et al. [91] proposed clusDCA to predict gene function, by applying
DCA to gene–gene interaction and GO to learn low-dimensional
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representations for genes and GO labels, respectively. Based
on such embedding results, they trained a projection model
from gene space to GO space such that genes geometrically
closed to their known GO labels. It bridges latent gene features
and GO labels and results in desirable prediction of sparsely
annotated gene functions. In a recent work by Wang’s group
[92], they developed PACER that introduced DCA to embed
a heterogeneous network comprised of gene expression and
drug response-gene information. As genes and pathways are
embedded in to a unified space, PACER is able to rank pathways
by similarities to response-correlated genes for specific com-
pound. PACER was applied to pathway identification associated
with chemosensitivity data. Other embedding techniques were
also involved in genomics data analysis. Li et al. [93] proposed
SCRL to address representation learning for single cell RNA-seq
data by network embedding. The basic idea is to extend the
network embedding method, LINE, to two bipartite networks,
Cell-ContexGene and Gene-ContexGene networks. The low-
dimensional representations of cells and genes were jointly
learned while context genes appeared in both networks bridging
information from gene expression data and pathway priors. The
experimental results showed that SCRL outperforms traditional
dimensional reduction methods, e.g. PCA [94]. Besides, Zeng
et al. [95] extended matrix factorization to embed gene–disease
network for prediction of pathogenic human genes.

Proteomics data analysis

PPIs produced by high-throughput experimental technologies
[96–98] play crucial roles in most cell functions. Network embed-
ding has also been introduced to PPI networks for proteomics
data analysis, such as assessing and predicting PPIs and pre-
dicting protein functions, etc. Airoldi et al. [99] applied their
mixed membership stochastic block (MMSB) model to learn
embeddings for PPI networks [100]. The MMSB was originally
proposed to detect community structure in complex networks.
For each protein, MMSB generated a latent representation vector
of which each element denotes the probability that the protein
belongs to a specific cluster/community. Such latent represen-
tation vectors construct the embedding space for the proteins.
To address the high false positive and false negative rate of
PPIs by the high-throughput experimental techniques, Kuchaiev
et al. [101] proposed an embedding algorithm based on MDS for
PPI network de-noising. By using the embeddings of proteins,
they predicted new PPIs and assessed the confidence of existing
PPIs. You et al. [102] proposed to use Isomap to embed PPI net-
works by preserving geodesic distances between protein nodes.
The task of assessing and predicting PPIs was transformed into
measuring similarity between proteins in the embedding space.
Lei et al. [103] constructed PPI network by incorporating both
genomic and proteomic data and extended Isomap for PPI net-
work embedding. Czekanowski–Dice distance index [104] was
applied to the protein embeddings for PPI assessment and pre-
diction. Cannistraci et al. [105, 106] proposed minimum curvi-
linear embedding (MCE) that encoded structural properties by
extracting the minimum spanning tree (MST; MST is a subset
of edges of a connected (un)directed graph that connects all
nodes in the graph without cycles). The results showed that
MCE can result in a better performance compared to MDS and
Isomap. Zhu et al. [107] developed a logistic metric embedding
(LME) model based on Euclidean distance analogous to SE. LME
can also outperform MDS and Isomap in assessing PPIs. Besides,
network embedding was also used to predict protein functions.
For example, Kulmanov et al. [108] used modified DeepWalk to

learn protein embeddings, which were further input into a deep
model to predict protein functions. Josifoski and Trivodaliev [109]
proposed to adapt node2vec to PPI networks to embed proteins
by preserving both local and global topologies. The embeddings
were then used to train a binary classifier for protein function
prediction. Wang et al. [110] proposed ProSNet for protein func-
tion prediction by introducing DCA to a heterogeneous molec-
ular network. A meta-path was introduced to modify DCA to
preserve heterogeneous structural information. The prediction
performance was greatly improved due to embeddings of the
heterogeneous network.

Transcriptomics data analysis

Transcriptomics focuses on the study of an organism’s tran-
scriptome. MicroRNAs (or miRNAs), a class of short non-coding
RNA molecules, normally regulate gene expression and have
been found to highly associate with complex human diseases
[111–113]. Identifying miRNA-disease associations has become
a crucial component of the study of pathogenicity. Network
embedding has been also involved in transcriptomics for
prediction of miRNA-disease associations. Shen et al. [114]
developed CMFMDA that introduced matrix factorization to
bipartite miRNA-disease network for embedding to predict
new associations. In CMFMDA, miRNA functional similarity and
disease semantic similarity were involved in factorization in
terms of regularizations to improve embedding. The evaluation
was performed to discover esophageal neoplasms-related
miRNAs that were previously confirmed by miR2Disease [115]
and dbDEMC [116]. The results showed that CMFMDA can
outperform other computational methods. Besides, Li et al. [117]
proposed a method by using DeepWalk to embed the bipartite
miRNA-disease network. After that, the topological similarities
of disease pairs were calculated by using the low-dimensional
embedding vectors of diseases. The method was applied to
prediction of associated miRNAs of 22 diseases. The results
showed that, by preserving both local and global topology of
miRNA-disease network, DeepWalk can result in significant
improvements in association prediction, especially AUC ranging
from 0.805 to 0.973.

Clinical data analysis

Recent network embedding-based computational methods were
applied to the clinical data, such as medical knowledge graph,
electronic health records (EHRs) and electronic medical records
(EMRs), to provide useful assistance for clinicians.

Medical knowledge graph embedding

Embedding of medical knowledge graph is similar to other
knowledge graphs. For example, Zhao et al. [118] derived a new
method to learn embeddings of medical entities in medical
knowledge graph. By modifying the energy functions of RESCAL
and TransE, two arbitrarily derivable energy functions were
proposed and resulted in better performances than RESCAL and
TransE. Wang et al. [119] recently proposed to learn embeddings
from a heterogeneous medical knowledge graph to recommend
proper medicine to patients. They constructed objective by
using both TransR’s energy and Line’s 2nd-order proximity
measurement. Upon a bipartite symptom–disease network,
Zhao et al. [120] proposed ContexCareto to learn representation
of medical forum data. Specifically, they defined energy
function by considering the relation between the symptoms
of a patient and a specific disease as a translation vector
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analogous to TransE. To alleviate sparseness, they incorporated
symptom co-occurrence and disease evolution networks into the
construction of objective function. Evaluations on real medical
forum data revealed significance of ContexCare in disease
prediction, disease category prediction and disease clustering.

Electronic health/medical record embedding

EHR and EMR commonly include medical and clinical infor-
mation of patients. Using network embedding techniques to
learn representations for EHR and EMR can help both medical
research and clinical decision. Yet, EHR and EMR data are het-
erogeneous because they contain multiple types of information
and usually have no obvious relationships. To address this issue,
some works incorporated external knowledge. Choi et al. [121]
developed GRAM to learn EHR representation with the help of
hierarchical information inherent to medical ontologies. Specif-
ically, embedding vector of a node (i.e. a medical code) was
generated by its ancestors in the medical ontology graph by
using an attention mechanism. Using representations by GRAM
to predict heart failure resulted in 10% higher accuracy and 3%
higher AUC than RNN. For visualizing EMR of patient, Huang et al.
[122] introduced ProSNet to an integrated biomedical knowledge
graph to learn the embeddings of medical entities. Afterwards
such embeddings were used to calculate a similarity matrix
of medical features to enrich a profile matrix. The proposed
method was applied to the visualization of Parkinson’s disease
data set. In addition, some other efforts aimed at construct-
ing network from EHR and EMR directly. As EHR of a patient
typically records sequence of his/her medical events, it can be
represented as a temporal graph [123–125]. By assuming that
each medical temporal graph can be reconstructed by multiple
latent graph bases, Liu et al. [12] proposed to extract latent graph
bases and learn embedding vectors for the temporal graphs. The
results showed effectiveness on personalized medicine, disease
diagnosis and patient segmentation in heart failure. In another
work by Choi’s group [126], they tried to embed medical con-
cepts, including diseases, medications, procedures and labora-
tory tests, into a unified space with dimensionality around 100.
To this aim, they proposed to introduce two strategies: one is to
sample connected concepts as word pairs to put into word2vec
[127] and another is to factorize the shifted PPMI matrix analo-
gous to DNGR, which has been demonstrated to be equivalent
to word2vec. The learned embeddings were then applied to
the study of medical relatedness property. Figure 3 provides an
overview of the different applications of network embedding in
biomedicine.

Challenges and opportunities
Despite the promising results obtained using network embed-
ding techniques, there remain several unsolved challenges the
biomedical application is faced with. In particular, we highlight
the following key issues:

• Data quality. Unlike other domain where the data are clean
and well structured, networks constructed from the biomed-
ical data are usually noisy and incomplete. For example, the
PPI data produced by high-throughput techniques, such as
Y2H and TAP-MS, suffer from high false negative rates up to
70% and high false positive rates up to 64% [128]. Meanwhile,
relational data extracted from EHRs are usually highly incom-
plete. Though efforts have focused on the issues including
network sparsity, redundancy and incompleteness, training
an effective model to thoroughly overcome undesirable data

quality and accurately embed the biomedical networks is still
challenging.

• Local and global. Performances of the network embedding
model and its downstream tasks rely on the type of structural
property to preserve. Preserving local property will gather
connected nodes in the embedding space, while preserving
global property will project topologically similar (even far
separated) nodes together. Designing embedding method by
properly considering local and global structure properties
according to application scenarios is an important aspect
that will require the development of novel solutions.

• Network evolution. Networks are always not static, especially
in the biomedical domain. For example, increasing number of
omics data are being produced thanks to the well-developed
high-throughput experimental techniques and database sys-
tems. Existing network embedding models mainly focused
on the static networks, and the settings of network evolu-
tion were overlooked. To learn embeddings for a dynamic
network, existing methods should be trained repeatedly for
each timestamp, which is definitely time consuming and
may not capture the temporal properties. Therefore, most of
the existing network embedding methods cannot be directly
applied to evolving biomedical networks.

• Domain complexity. Different from network embedding
application in other domains, the issue on biomedicine
and health care is much more complicated. For example,
in a biomedical network, each interaction between entities
usually represents a complex genetic, pathological or
pharmacological event or process, and there is usually no
complete knowledge on how it progresses. When applying
an embedding model, the biomedical domain knowledge is
also needed to better understand the network structure.

All above challenges introduce several opportunities and
future research possibilities to improve biomedical informat-
ics. Therefore, with all of them in mind, we point out the fol-
lowing directions, which we believe would be promising for
the future application of network embedding in biomedical
field.

• Local and global trade-off embedding. Preserving local and
global structure properties will result in distinct embedding
results. It is hard to assert which conception works better
due to the complexity of application scenarios. In fact, some
network embedding methods such as LINE and node2vec
aim at preserving both local and global structure properties.
Yet, how to better balance local and global information to
benefit biomedical informatics is rarely discussed. Therefore,
designing embedding model that is able to flexibly reach
a trade-off local and global structure properties according
to application scenarios, especially biomedicine, would be a
promising direction of our future work.

• Dynamic embedding. Considering that networks in biomedi-
cine and health care are growing rapidly, embedding results
should also evolve following the changes of network topol-
ogy. Therefore, training a time-sensitive model for network
embedding is crucial for a better understanding of temporal
properties and for settings of downstream applications. For
example, learning embeddings from a drug knowledge graph
in real time helps involve newly released in vitro experi-
mental results to improve analysis in silico, such as drug
repositioning and drug side effect prediction. Unlike static
network embedding, the models for dynamic networks need
to be scalable and flexible to deal with the changes of net-
works effectively and efficiently and remains a promising
issue.
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Figure 3. Illustration of applications of network embedding in biomedical data science.

• Text-associated embedding. Networks in biomedical domain,
especially the well-organized biomedical knowledge graphs,
always contain rich text information such as descriptions
of entities and relations, which would have high potential
to address network incompleteness and improve under-
standing of topological properties. However, to the best of
our knowledge, text information is rarely used to assist
the network embedding applications in biomedical domain.
Taking full advantage of biomedical text information for
network embedding needs to properly concatenate network
embedding with NLP techniques, which is still challenging
for researchers and needs more efforts in the future.

• Domain-knowledge-associated embedding. The existing
expert knowledge is invaluable for computational analysis
in biomedical informatics. Incorporating domain knowledge
into the network embedding process to guide it toward the
right direction is an important research topic in addressing
undesirable data quality and domain complexity. For
example, some previous works have incorporated external
information, such as drug similarity and protein similarity,
into matrix factorization-based embedding methods of DTI
prediction [70, 74–76]. In fact, well-developed ICD-9, ICD-10,
GO, online medical encyclopedia, PubMed abstracts, etc., also
provide abundant biomedical domain knowledge but are
rarely involved in network embedding applications. There
remain large room and desirable potential for incorporating
such external domain knowledge into network embedding
in biomedical informatics, and we expect more consummate
domain-knowledge-associated embedding models will be
launched soon.

Conclusions
Network is an important data format for data-driven issues in
biomedical science. Network embedding approaches, lying in
the overlapping of network analytics and representation learn-
ing, are powerful tools to learn compact yet informative repre-
sentations for networks and raise the possibility of using effi-
cient traditional machine learning to solve network-based prob-
lems. These methods have been used in numerous biomedical

applications. All the results available in the literatures reviewed
in this work illustrate the capabilities of network embedding
for biomedical network analysis. In fact, processing biomedi-
cal networks with network embedding increased the predictive
power for several specific applications in different biomedical
domains. By carefully reviewing and comparing applications of
network embedding in biomedicine, we summarize the chal-
lenges the current network embedding applications are faced
with and consequently point promising future directions in this
domain.

Key Points
• Advances in biomedical research have generated a large

volume of biomedical networks, which are high dimen-
sional, sparse, noisy and heterogeneous.

• Early applications of network-based learning to
biomedical networks helped understand topology
and knowledge from the complex networks and
benefited human healthcare research but suffered
from high computational and space cost.

• Network embedding can open a new way toward effec-
tive yet efficient network analysis, which projects net-
work into the low-dimensional yet informative space
that is friendly to state-of-the-art machine learning
methods.

• Network embedding has been widely applied to
biomedical data science, including pharmaceutical data
analysis, multi-omics data analysis and clinical data
analysis and showed robust performances in biomed-
ical tasks.

• Balancing local and global structural properties, han-
dling dynamics of evolving networks as well as incor-
porating rich text and domain knowledge would be
promising directions of network embedding for better
improving human healthcare in future study.
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